
Computer Science Department

TECHNICAL REPORT

ON TESTING NONTESTABLE PROGRAMS

BY

ELAINE J. WEYUKER

OCTOBER 198

REPORT NO. 025

NEW YORK UNIVERSITY

ON TESTING NONTESTABLE PROGRAMS

BY

ELAINE J. WEYUKER

OCTOBER 198

REPORT NO. 025

ABSTRACT

A frequently invoked assumption in program testing is that

there is an oracle (i.e., the tester or an external mechanism can

accurately decide whether or not the output produced by a program

is correct.) A program is nontestable if either an oracle does

not exist or the tester must expend some extraordinary amount of

time to determine whether or not the output is correct.

The reasonableness of the oracle assumption is examined and

the conclusion is reached that in many cases this is not a

realistic assumption. The consequences of assuming the

availability of an oracle are examined and alternatives

investigated

.

O.J-

1. INTRODUCTION

It is widely accepted that the fundamental limitation of

using program testing techniques to determine the correctness of

a program is the inability to extrapolate from the correctness of

results for a proper subset of the input domain to the program's

correctness for all elements of the domain. In particular, for

any proper subset of the domain there are infinitely many

programs which produce the correct output on those elements, but

produce an incorrect output for some other domain element.

Nonetheless we routinely test programs to increase our confidence

in their correctness, and a great deal of research is currently

being devoted to improving the effectiveness of program testing.

These efforts fall into three primary categories:

1) The development of a sound theoretical basis for testing,

2) Devising and improving testing methodologies,

particularly mechanizable ones,

3) The definition of accurate measures of and criteria for

test data thoroughness.

Almost all of the research on software testing therefore

focuses on the development and analysis of input data. In

particular there is an underlying assumption that once this phase

is complete, the remaining tasks are straightforward. This

consists of running the program on the selected data, producing

output which is then examined to determine the program's

correctness on the test data. That this last phase of output

examination is indeed routine is frequently expressed as the

oracle assumption. This states that the tester is able to

determine whether or not the output produced on the test data is

correct. The mechanism which checks this correctness is known as

an oracle . (See for example [13] or [5].)

Intuitively, it does not seem unreasonable to require that

the tester be able to determine the correct answer in some

"reasonable" amount of time while expending some "reasonable"

amount of effort. Therefore if either of the following two

conditions occur, a program should be considered nontestable .

1) There does not exist an oracle.

2) It is theoretically possible, but practically too

difficult to determine the correct output.

The term nontestable is used since if one cannot decide

whether or not the output is correct or must expend some

extraordinary amount of time to do so, from the point of view of

correctness testing, there is nothing to be gained by performing

the test.

In Section 2 we examine the reasonableness of the oracle and

related assumptions and discuss characteristics of programs for

which such assumptions are not valid. Section 3 considers how to

test such programs and Section 4 discusses the consequences of

accepting the oracle assumption. Section 5 concludes with

suggestions for software users and procurers.

2. THE ORACLE ASSUMPTION AND NONTESTABLE PROGRAMS

Although much of the testing literature describes

methodologies which are predicated on both the theoretical and

practical availability of an oracle, it is our belief that it is

unusual for such an oracle to be pragmatically attainable or even

to exist. That is not to say that the tester has no idea what

the correct answer is. Frequently the tester is able to state

with assurance that a result is incorrect without actually

knowing the correct answer. This corresponds to the concept of a

decision problem being partially solvable but not recursively

solvable, and will be known as a partial oracle . Recall that

many well-known problems of recursive function theory, including

the halting problem, fall into the partially solvable category.

(See [7] or [9] for definitions of these terms and a discussion

of these concepts.) Furthermore, it has been shown ([10], [11])

that many properties of programs which are of particular interest

in program testing have partially solvable, but not recursively

solvable decision problems. Included are whether a statement of

a program is semantically reachable, whether a given branch is

traversable, and whether a given path can be traversed.

As a simple example of the ability to detect incorrect

results without knowing the correct result, consider the

calculation of the total assets of a large corporation. $100 is

not a plausible result, nor is $1000. $1,000,000 might be

considered by the tester a potentially correct result, but a

specialist, such as the corporation's comptroller, might have

enough information to determine that it is incorrect while

$1,100,000 is plausible. It is unlikely that the comptroller can

readily determine that $1,134,906.43 is correct, and

$1,135,627.85 is incorrect. Thus even an expert may accept

incorrect but plausible answers as correct results. The

expertise generally permits the restricting of the range of

plausible results so that fewer incorrect results fall into this

range

.

Even if the tester does not know the correct answer, it is

sometimes possible to assign some measure of likelihood to

different values. For example, if a program which is to compute

the sine function is to be tested, and one of the test data

e
selected is 42 , one could begin by saying that if the output is

less than -1 or greater than 1, then there is an error. Thus an

answer of 3 is known to be incorrect without the actual value of

o
sin 42 being known. What one frequently tries to do is

repeatedly refine the range of plausible outputs until very few

possible answers are acceptable. To continue with the sine

example, we know that sin 30 = .5000 and sin 45 = .7071 and

that the sine function is strictly increasing on that interval.

o
Thus the plausible range for sin 42 has been further restricted.

Furthermore, since the curve between 30** and 45** is convex

upwards, a straight line approximation provides a lower bound of

.6657 for sin 42 . This type of analysis has allowed us to say

o
that .6657 < sin 42 < .7071. At this point the tester may not

have available any additional information to allow the further

restriction of the range of allowable values. Nonetheless, the

tester may know that since the sine curve is relatively flat

between 30 and 45 , the straight line approximation should be

quite good. Therefore it follows that the actual value of sin

42 is much more likely to fall near the low end of the

acceptable range than near the high end. Note that we have not

assumed' or established a probability distribution, but

nonetheless have a notion of likelihood.

The foregoing examples were intended to contrast the

disparity between the assumptions made in the testing research

literature, and the situations faced by testing practitioners. A

secondary purpose of the example is to demonstrate one technique

for restricting the range of possible outputs when the precise

answer cannot be readily determined. Other examples and partial

solutions are given in later sections.

It is interesting to attempt to identify classes of programs

which are nontestable. These include:

1) Programs which were written to determine the answer. If

the correct answer were known, there would have been no need to

write the program.

2) Programs which produce so much output that it is

impractical to verify all of it.

3) Programs for which the tester has a misconception. In

such a case, there are two distinct sets of specifications. The

tester is comparing the output against a set of specifications

which differs from the original problem specifications.

We note that the existence of tester misconceptions argues

convincingly for testing groups which are independent from

programming groups, and when possible the involvement of several

different testers in order to minimize the likelihood of

coinciding misconceptions. It also argues for precise

specifications and documentation, before implementation begins.

For a program to fall into the second category described

above, it need not produce reams of output. A single output page

containing columns of 30 digit numbers may simply be too tedious

to check completely. Typically, programs in this class are

accepted either by the tester "eyeballing" the output to see that

it "looks okay" or by examining in detail portions of the output

(particularly portions known to be error-prone) and inferring the

correctness of all the output from the correctness of these

portions

.

A common solution to the problem for programs in both

categories 1 and 2 is to restrict attention to "simple" data.

This will be discussed in the next section.

Testing programs in the third category presents radically

different problems. In the other cases, the tester is aware that

there is no oracle available (either because of lack of existence

or inaccessibility) and must find approximations to an oracle.

In this third case, however, the tester believes there is an

oracle, i.e., he believes he knows or can ascertain the correct

answers. This implies that if an input is selected which is not

processed in accordance with the tester's misconception, but is

rather processed correctly, the tester/oracle believes the

program contains an error and therefore attempts to debug it.

The consequences of this situation are discussed in Section 4.

3. TESTING WITHOUT AN ORACLE

Having argued that many, if not most programs are by our

definition nontestable, we are faced with two obvious questions.

The first is why do researchers assume the availability of an

oracle? There seem to be two primary reasons. Many of the

programs which appear in the testing literature are simple enough

to make this a realistic assumption. Furthermore, it simply

allows one to proceed. The second and more fundamental question

is how does one proceed when it is known that no oracle is

available? We are certainly not arguing for the abandonment of

testing as a primary means of determining the presence or absence

of software errors, and feel strongly that the systematization

and improvement of testing techniques is one of the foremost

problems in software engineering today.

Perhaps the ideal way to test a program when we do not have

an oracle is to write another program based on an independent

algorithm and compare the results. This comparison might be done

manually, although frequently a comparison program will also be

necessary. In particular, if the reason that the program was

deemed nontestable was due to the volume or tediousness of the

output, it would be just as impractical to compare the results

manually as to verify them initially.

In a sense, this new program might be considered an oracle,

for if the results of the two programs agree, the tester will

consider the original results correct. If the results do not

match, the validity of the original results is at least called

into question.

The notion of writing multiple independent programs or

subroutines to accomplish a single goal has been proposed in

other contexts, particularly in the area of fault tolerant

computing [1], [4], [8]. The motivation there, however, is

fundamentally different. In the case of fault tolerant systems,

alternate programs are frequently run only after it has been

determined that the original routine contains an error. In that

case a partial oracle must also be assumed. There have also been

suggestions of "voting" systems [1] for which the programmer

writes multiple versions of routines and a consensus is used to

determine the correct output. This is generally only proposed

for highly critical software - not for routine cases as discussed

above. We, in contrast, are discussing the use of an alternate

program or programs to determine whether or not the original

program functions correctly on some inputs.

There are two reasons why the use of multiple programs for

testing is generally not practical. Obviously such a treatment

requires a great deal of overhead. At least two programs must be

written, and if the output comparison is to be done automatically

three programs are required to produce what one hopes will be a

single result. Furthermore, each of these programs must be

debugged and tested. That such overhead might be worthwhile in

some cases is obvious, but for most applications it is simply

unreasonable

.

The other primary practical objection is the requirement

that the algorithms be independent. One is frequently lucky to

have one algorithm to solve a problem. Finding a second

algorithm, and showing that the two algorithms are independent,

may well be formidable tasks.

A different, and frequently employed course of action is to

run the program on "simplified" data for which the correctness of

the results can be accurately and readily determined. The tester

then extrapolates from the correctness of the test results on

these simple cases to correctness for more complicated cases. In

a sense, that is what is always done when testing a program.

Short of exhaustive testing, we are always left to deduce the

correctness of the program for untested portions of the domain.

But in this case we are deliberately omitting test cases even

though these cases may have been identified as important. They

are not being omitted because it is not expected that they will

yield substantial additional information, but rather because they

are too difficult, expensive or impossible to check.

For those programs deemed nontestable due to a lack of

knowledge in general of the correct answer, there are nonetheless

frequently simple cases for which the exact correct result is

known. A program to generate base 2 logarithms might be tested

only on numbers of the form 2 . A program to find the largest

prime less than some integer n might be tested on small values of

n.

In the case of programs which produce excessive amounts of

output, testing on simplified data might involve minor

modifications of the program. For example, a program intended to

generate all permutations of ten elements should output 3,628,800

permutations, surely too many to check or even count manually.

The addition of a counter to the program could be used to verify

that the correct quantity of output is produced, but not that the

output is correct. One might modify the program slightly and

make the number of elements to be permuted a program parameter.

10

If the tester then tests the program on a small input such as 4,

the correctness of these results could be readily checked, as

there are only 24 such permutations.

Note that this example is of interest for another reason:

it is an inputless program. In other words it is a program that

is intended to do a single computation. If the proper result is

not known in such a case, the only way to test it is to modify it

in some way, usually by making some fixed value a parameter, and

then testing the more general program on input for which the

results are known.

The problem with relying upon results obtained by testing

only on simple cases is obvious. Experience tells us that it is

frequently the "complicated" cases that are most error-prone. It

is common for central cases to work perfectly while boundary

cases cause errors. And of course by looking only at simple

cases, errors due to overflow conditions, roundoff problems and

truncation errors are likely to be missed.

We have now argued that programs are frequently nontestable,

in the sense of lacking ready access to an oracle, and suggested

two ways of testing such programs. The first of these

suggestions, writing multiple independent routines, is frequently

discarded as being impractical. The second technique of looking

at simplified data is commonly used by testers and is

satisfactory for locating certain types of errors but is

unsatisfactory for errors which are particularly associated with

large or boundary values.

The third alternative is to simply accept plausible results.

11

but with an awareness that they have not been certified as

correct. As in the case of the sine program described in Section

2, a useful technique is to attempt to successively narrow the

range of plausible results and even assign a probabilistic

measure to potential plausible answers or at least some relative

measure of likelihood. The sine example allowed us to

demonstrate this technique by employing information known about

the sine function's behavior.

One other class of nontestable programs deserves mention.

These are programs for which not only an oracle is lacking, but

it is not even possible to determine the plausibility of the

output. One cannot be expected to have any intuition about the

correct value of the one thousandth digit of Tr. Furthermore

there is no acceptable tolerance of error. The result is either

right or wrong. Since plausibility may be thought of as an

unspecified, yet intuitively understood, level of acceptable

error, the tester is faced with a serious dilemma. One way to

deal with this problem is to devise an independent algorithm and

compare the results. The other method is to apply the technique

of testing with simplified data. The limitations associated with

these approaches must be borne in mind. For this example, the

program could be slightly modified to generate the first n digits

of T^ rather than just the desired one thousandth digit, and then

tested with n = 10. Since these values are well-known, and can

be easily checked, one might deduce, subject to the limitations

discussed earlier, that provided these digits are correct, the

desired one is also correct. This too may be considered an

12

example of acceptance by plausibility.

4. THE CONSEQUENCES OF TESTING WITHOUT AN ORACLE

We now consider the consequences of accepting the oracle

assumption. There are two distinct situations which deserve

mention and consideration. The first is when an output result is

actually correct, but the tester/oracle determines that it is

incorrect. This is the less common of the two cases and

frequently represents a tester misconception.

There are several possible consequences of such an incorrect

"oracle" output. In any case, time is wasted while someone tries

to locate the nonexistent error. It may also cost time if it

causes a delay in the release of the program while useless

debugging is going on. Of course an even more serious problem

occurs when the tester or debugger modifies the correct program

in order to "fix" it and thereby makes it incorrect.

The other, and more common situation, is when the actual

result is incorrect, but the tester/oracle believes it is

correct. It is well known that many (if not most) programs which

have been tested and validated and released to the field, still

contain errors. However, we are discussing a fundamentally

different situation. In general whenever nonexhaustive testing

has been done, there remains a potential for error. But it is

expected that the aspects of the program which have been tested

and accepted as correct, actually are correct. At the very least

the specific data points on which the program has been run are

understood to yield correct results. When this is not the case.

13

even exhaustive testing does not guarantee freedom from error.

5. CONCLUSIONS

Although much of the testing literature routinely assumes

the availability of an oracle, it appears, based on discussions

with testing practitioners (i.e., people who work in independent

testing groups) that testers are frequently aware that they do

not have an oracle available. They recognize that they have at

best a good idea of the correct result (i.e., plausibility on a

restricted range) and sometimes very little idea what the correct

result should be.

It is apparent that the software user community has by and

large willingly accepted a caveat emptor attitude. We suggest

that the following five items be considered an absolute minimal

standard part of documentation:

1) The test data the program was run on.

2) The criteria used to select the test data. For example,

were they selected to cause the traversal of each program branch,

were they cases that proved troublesome in previous versions of

the software, were data selected to test each program function,

or were the test cases simply chosen at random?

3) The degree to which the criteria were fulfilled. Were

100% of the branches traversed or 30%?

4) The output produced for each test datum.

5) The reasons why the test results were deemed correct or

acceptable.

Although such information does not solve the problem of

14

nontestable programs, it does at least give the user more

information to decide whether or not the program should be

accepted as adequately tested, rather than simply accepting the

programmer's or tester's assurances that the software is ready

for use or distribution.

As the fields of software engineering in general, and

program testing in particular develop, it appears likely that

increased emphasis will be placed upon the development of

criteria for determining the adequacy of test data. Not only

will we have to write programs to fulfill specified tasks, we

will also have to be able to certify that they work as claimed.

This is routinely required of hardware producers.

To develop such criteria, we must be able to state precisely

what we have been able to show about the program. One of the

currently used criteria for adequacy requires the traversal of

each branch of the program [6]. Many people including [2], [3],

and [12] have discussed at length why such a criterion is a poor

indicator of program test adequacy. It might be argued, however,

that its virtue is clear. We are able to state precisely what

has been demonstrated; i.e., we are able to make statements such

as "all but three of the branches of the program have been

traversed", or "96% of the branches have been traversed." But

even these are not quite accurate statements of what is known.

Implicit in such statements is the assumption that the branches

have been traversed and yielded the correct results . But as we

have argued, this cannot in general be determined. Hence this

and any other such criterion of adequacy suffers from the

15'

fundamental flaws which we have discussed. Therefore, as testing

research progresses and testing methodologies continually

improve, we see that there are two fundamental barriers which

must be faced. The first is the unsolvability results mentioned

earlier in this paper and discussed elsewhere in the literature.

But these are largely of a theoretical nature. The second

barrier, however, is a real, pragmatic problem which must in some

sense be faced each time a program is tested. We must ask, and

be able to determine, whether or not the results obtained are

correct. This, we believe, is the fundamental limitation that

testers must face.

ACKNOWLEDGMENTS

I am grateful to Paul Abrahams, Tom Anderson, Tom Ostrand, and

Sandi Rapps for their comments and helpful suggestions. Thanks

also to Marilyn Grossman for her careful and cheerful typing of

the paper.

16

REFERENCES

1. Avizienis, A. and L. Chen. On the Implementation of
N-Version Programming for Software Fault-Tolerance During Program
Execution, Proceedings of COMPSAC Conference , 1977, 149-155.

2. DeMillo, R.A. , RoJ. Lipton, and F.G. Sayward. Hints on Test
Data Selection: Help for the Practicing Programmer, Computer ,

Vol. 11, No. 4, April 1978, 34-41.

3. Goodenough, J.B. and S.L. Gerhart. Toward a Theory of
Testing: Data Selection Criteria, in Current Trends in
Programming Methodology Vol. 2, ed . R.T. Yeh, Prentice-Hall,
1977, 44-79.

4. Horning, J.J., H.C. Lauer, P.M. Melliar-Smith, and
B. Randell. A Program Structure for Error Detection and
Recovery, in Lecture Notes in Computer Science , Vol. 16,
Springer, 1974, 177-193.

5. Howden, W.E. and P. Eichhorst. Proving Properties of
Programs from Program Traces, in Tutorial: Software Testing
Validation Techniques , eds. E. Miller and W.E. Howden, IEEE
Computer Society, 1978, 46-56.

6. Huang, J.C. An Approach to Program Testing, Computing
Surveys , Vol. 7, 1975, 113-128.

7. Manna, Z. Mathematical Theory of Computation , McGraw-Hill,
1974.

8. Randell, B. System Structure for Software Fault Tolerance,
IEEE Trans. Software Eng

.

, Vol. SE-1, June 1975, 220-232.

9. Rogers, H. Jr. Theory of Recursive Functions and Effective
Computability , McGraw-Hill, 1967.

10. Weyuker, E.J. Program Schemas wi th Semantic Restrictions ,

Ph.D. Thesis, Dept. Comp= Sci. Tech. Report DCS-TR-60,
Rutgers University, New Brunswick, N.J., June 1977.

11. Weyuker, E.J. The Applicability of Program Schema Results to
Programs, Int. J. Comput. Inf . Sci

.

, Vol. 8, No. 5, Oct 1979,
387-403.

12. Weyuker, E.J. and T.J. Ostrand. Theories of Program Testing
and the Application of Revealing Subdomains, IEEE Trans . Software
Eng. , Vol. SE-6, May 1980.

13. White, L.J. and E.I. Cohen. A Domain Strategy for Computer
Program Testing, IEEE Trans . Software Eng., Vol. SE-6, May 1980,
pp. 247-257.

C.2
NYU
Comp. Sci. Dept.

TR-02 5

On^testing nontestable

programs

.

This book may be kept

FOURTEEN DAYS

A fine wiU be charged for each day the book is kep^overUme^

CAYLORD 1*Z

