HONORARY MEMBERS
Günter Ebert (D), Pamela Gilbert (GB), Barry Goater (GB), Peter Hättenschwiler (CH),
Prof. Dr Niels P. Kristensen (DK)

COUNCIL
President: Dr Gerhard Tarmann (A)
Vice-President: Prof. Dr Joaquin Baixeras (E)
General Secretary: Dr Erik van Nieukerken (NL)
Treasurer: Dr Robert Trusch (D)
Membership Secretary: Willy De Prins (B)
Ordinary Council Members: Prof. Dr Stoyan Beshkov (BG), Dr Feza Can (TR),
Eric Drouet (F), Matthias Nuss (D),
Thomas Simonsen (UK)

NOTA LEPIDOPTEROLOGICA
A journal focused on Palaeartic and General Lepidopterology
Published by the Societas Europaea Lepidopterologica e.V.

Editor. Jadranka Rota
Associate Editor. Paul Sokoloff

Editorial Board. Franziska Bauer (Dresden, D), Sven Erlacher (subject editor; Chemnitz, D),
Thomas Fartmann (subject editor; Münster, D), Zdeněk F. Fric (subject editor; České Budějovice, CZ),
Axel Hausmann (subject editor; Munich, D), Peter Huemer (subject editor; Innsbruck, A),
Lauri Kaila (subject editor; Helsinki, FI), Ole Karsholt (Copenhagen, DK), Bernard Landry (subject editor; Genève, CH),
Carlos Lopez-Vaamonde (subject editor; Orléans, F),
Vazrick Nazari (subject editor; Ottawa, CA), Erik J. van Nieukerken (subject editor; Leiden, NL),
Matthias Nuss (Dresden, D), Thomas Schmitt (subject editor; Trier, D), Wolfgang Speidel (Bonn, D),
Alberto Zilli (subject editor; Romo, I).

© Societas Europaea Lepidopterologica (SEL)
ISSN 0342-7536
Type setting: blattwerk/dd
Printed by Druckhaus Dresden GmbH

All rights reserved. No part of this journal may be reproduced or transmitted in any form or by any means, electronic or mechanical including photocopying, recording or any other information storage and retrieval system, without written permission from the publisher. Authors are responsible for the contents of their papers.
Tomasz W. Pyrcz. Obituary: Janusz Wojtusiak (1942–2012) .. 111–113

Kari Nupponen. Redescription of *Pelochrista maculiferana* (Kennel, 1900), bona sp., with notes on eight poorly known species of leafrollers from the Volgo-Ural region (Lepidoptera: Tortricidae) ... 115–124

Daniel Bartsch. Revision of types of several species of *Bembecia* Hübner, 1819 from northern Africa and southwestern Europe (Sesiidae) ... 125–133

Jan Šumpich & Jan Skyva. New faunistic records for a number of Microlepidoptera, including description of three new taxa from Agonoxenidae, Depressariidae, and Gelechiidae (Gelechioidea) ... 161–179

Leif Aarvik. *Symmoca sparsella* Joannis, 1891 (Gelechioidea, Autostichidae) new to Europe. .. 181–183

Helen Alipanah, Jan Asselbergs & Mansour Sarani. Redescription of *Nephopterygia austeritella* Amsel, 1965 (Pyralidae: Phycitinae) with description of its hitherto unknown female ... 185–191

Vladimir Mironov & Ulrich Ratzel. *Eupithecia* Curtis, 1825 of Afghanistan (Geometridae: Larentiinae) ... 197–231

Book review .. 134

Nota lepidopterologica index to volume 35 by taxon and author names, with publication dates .. 233–234
Janusz Wojtusiak was born in 1942 in Kraków, Poland. Since early childhood, he was fascinated by nature, and particularly butterflies. Beyond any doubt, this interest was instilled in him by his father, the well-known Polish biologist, Roman Wojtusiak, Professor at the Jagiellonian University. With his father he observed and collected butterflies in then extremely rich and diversified locations around Kraków, such as Podgóρki Tynieckie, Kostrze, Ojców and the Niepolomicka Forest, as well as during summer vacations in their favourite Kościelisko locality and in Podhale and the Tatra Mts.

He began his biological studies at the Jagiellonian University in 1959. During his studies he was very active in the academic life – he organised the Club of Young Naturalists, led a number of speleological expeditions in the Polish Jura and Tatra Mts., and led scientific camps for students. After graduating in 1964, he was employed as an Assistant in the Department of Systematic Zoology and Zoogeography under the leaderships of Professor Stanisław Smreczyński. Throughout the 1960s and in the early 1970s he was particularly involved in the activities of the Polish Mountaineering Association, driven, as he himself put it, by his affection for mountains and by the desire to go beyond the border into the unknown. In 1966 and 1967 and in 1973 he participated in the first Polish climbing expeditions in the Hindu Kush Mts. in Afghanistan and in Kashmir in Pakistan. During these expeditions, Janusz amassed a rich and ex-
tremely valuable collection of butterflies including several thousands of rare specimens of *Parnassius*, as well as *Baltia* whites and *Karanasa* satyrines. As Janusz recalled, when other members of the expeditions were occupied with climbing the snow-covered peaks, he was rather interested in penetrating the high-mountain valleys in search of interesting insects. The material brought from these expeditions enriched the collection of the Zoological Museum of the Jagiellonian University. During expeditions to Asia, he also shot many hours of documentary films that have recently been converted into digital format.

His Ph.D. thesis, presented in 1971, concerned the morphology of microlepidoptera from the family Adelidae and was one of the pioneering studies of this group. He described in detail and illustrated the female copulatory apparatus of adelids, together with its associated musculature. Soon after gaining the title of *doctor habilitatus* at the beginning of the 1980s, he was appointed Head of the Zoological Museum of the Jagiellonian University. Immediately afterwards, he was offered a contract to teach at a university in Nigeria, which, in these difficult times, provided him with a rare opportunity to receive a decent salary as a Polish academic teacher. Between 1982 and 1986, Janusz taught zoology and entomology at the University of Nigeria in Nsukka. Throughout that period, he spent almost all his free time undertaking excursions into forests and savannas looking for interesting film footage and insects for the scientific collection of the Zoological Museum. The material collected by him, principally in southeastern Nigeria, in the Nsukka and Okomu forests, as well as the Obudu and Oban mountains, includes thousands of specimens and is one of the most exhaustive collections of butterflies and moths from this region in the world. Many specimens constituted species new to science, described later by specialists in various groups, and the number of type specimens deposited in Kraków elevated the scientific value of the collection at the Jagiellonian. Another scientific result of his stay in Nigeria was the description of a new morphological organ in the ants of the genus *Oecophylla*, namely pretarsal pads, which allow these insects to push large prey on smooth and almost vertical surfaces.

After returning from Nigeria, Janusz continued his research in the field of entomology. His interests focused on circadian cycles in insects, various aspects of the behaviour of social insects such as ants, bees, and termites, as well as issues in taxonomy and the faunistics of butterflies.

In 1989 and 1990 he gave lectures in forest entomology at the invitation of the University of Wisconsin in Stevens Point. At that time he started an active co-operation with the leading zoological museums in Europe and the United States, above all with the Natural History Museum in London. This project aimed at producing a comprehensive work detailing the scientific collection of butterflies in the Zoological Museum of the Jagiellonian University. In 1991, he published a textbook on the ethology of insects, which is the only such comprehensive treatment of this topic in the Polish language to date. For several years, Janusz continued his studies aimed at updating and publishing a new edition of this textbook, but these plans were thwarted by his illness. At the turn of the 1980s and 1990s he again collected butterflies in tropical countries on several occasions: in India and Tanzania, and under the scientific programme of the Zoological Museum in Sao Tome and Principe. The latter expeditions have again resulted in very
interesting scientific material serving as a source for a number of scientific publications concerning, _inter alia_, fauna, and taxonomy, including new species, as well as various aspects of the biology and ecology of butterflies of that region.

In 1994, Janusz received a professorial nomination from the President of the Republic of Poland, Lech Wałęsa. From the mid 1990s, the scientific interests of Professor Janusz Wojtusiak were geared towards the mountainous areas of South America, as he noticed the hidden scientific potential in the mostly unknown fauna of many groups of butterflies of this region. From 1996 he either participated in or organised more than ten scientific expeditions into the Andes: in 1996 into the Cordillera de Mérida in Venezuela; in 1997 to western Colombia; in 1998 to northern Peru; in 2000 and again in 2008 to Bolivia; in 2002 to central Peru; several times to Ecuador from 2002 to 2004, under the project sponsored by the State Committee for Scientific Research (KBN); and in 2007 again to Venezuela. During these scientific expeditions, extraordinarily valuable and extensive material of a large number of various lepidopteran groups across the whole order were collected, which resulted in more than 100 scientific publications and descriptions of more than 400 new species of butterflies and moths, principally belonging to Tortricidae, in co-authorship with Professor Józef Razowski. Together with the latter, Janusz described a new olfactory organ located on the abdomen of the African representatives of Adelidae. One of his most interesting achievements was discovering and describing the first brachypterous and non-flying male moth in the world, in the genus _Xenomigia_ (Notodontidae).

Janusz was the initiator of research and teaching co-operation agreements between the Jagiellonian University and several leading scientific institutions and universities in South America, including the Venezuelan Institute for Scientific Research and the National University of San Marcos in Lima. These agreements facilitated to a great extent the research activities of scientific staff, doctoral students, and undergraduates of the Jagiellonian University, carried out in the almost uncharted mountainous forests of this continent. The exploration of the Andes placed the Zoological Museum on the list of the most highly regarded museums and research institutions in Europe with respect to the studies of butterfly fauna and global biodiversity.

Janusz was an academic teacher highly regarded and well liked by his students. For many years he had taught the ethology of insects, zoogeography, and entomological techniques. Since 2007 he had co-organised and was one of the lecturers in Tropical Ecology, a course whose fieldwork component was being undertaken each year in Venezuela – first such course in Poland. In recent years he devoted much time to his new hobby, making films about nature. He shot and edited many hours of documentaries that are used as teaching aids and in the promotional activities of the Jagiellonian University.

He filled his free time with making field excursions in the Tatras, Alps, and Rocky Mountains, from which he always brought back interesting insect specimens. Janusz was a very active advocate for the establishment of a new chair at the Zoological Museum of the Jagiellonian University and for creating a modern basis for teaching within the Centre for Natural Sciences Education, whose planning he supervised as a senior consultant.
Redescription of *Pelochrista maculiferana* (Kennel, 1900), bona sp., with notes on eight poorly known species of leaf-rollers from the Volgo-Ural region (Lepidoptera: Tortricidae)

Kari Nupponen

Merenneidontie 19 D, FI-02320 Espoo, Finland; Kari.Nupponen@kolumbus.fi

Received 23 January 2012; reviews returned 27 February 2012; accepted 19 April 2012.

Abstract. The status of *Pelochrista maculiferana* (Kennel, 1900), bona sp., comb. nov., which was until now considered a synonym of *Epiblema junctanum* (Herrich-Schäffer, 1856), is revised and this species, now considered a good species, is redescribed. Additionally, notes on eight poorly known species of Tortricidae from the Volgo-Ural region are provided. *Lobesia subherculeana* (Filipjev, 1924), *Asketria lepta* Falkovitsh, 1964, *Eucosma pergratana* (Rebel, 1914), and *Dichrorampha alaicana* (Rebel, 1910) are reported as new to Europe, and *Eucosma medvedevi* (Gerasimov, 1928), *Clepsis nybomi* (Hackman, 1950), and *Asketria lepta* Falkovitsh, 1964 as new to Russia. The adults of seven of these species and the genitalia of four of them are illustrated.

Introduction

The leaf-roller (Tortricidae) fauna of the Volgo-Ural region is moderately well known. Eversmann (1844) made thorough faunistic investigations mainly in the southern Urals in the middle of the 19th century and listed 132 species of Tortricidae for this region. The vicinity of Sarepta in the Lower Volga region was intensively studied at the end of the 19th century by Hugo Christoph (Amsel 1964) and some other entomologists, and numerous new species were described from there (Christoph 1872; Kennel 1900; Staudinger 1871, 1877). From the beginning of the 20th century there have been no serious studies of microlepidoptera in the Volgo-Ural region until 1996, when research in the southern Urals was commenced by the author and several colleagues. The majority of the findings from about 30 expeditions made between 1996 and 2011 in the region remain unpublished. Anikin et al. (2006) summarised the data on Tortricidae from the Volgo-Ural region, which include 510 species. However, their list lacks several species recently recorded in the steppes of the southern Urals. In the present article, faunistic and/or taxonomically significant new records of nine species of Tortricidae from the region are reported.

Material and methods

This contribution is based on material collected by the author during 1996–2006 on about 30 expeditions to the southern Urals and the Lower Volga region, three of them joint with Timo Nupponen. The material was collected both by artificial light (ultraviolet tube lamps: Philips TL K 40W/09N, Sylvania blacklight 20W & 40W/350 BL; solar lamp Osram Ultra Vitalux 300W) at night and by netting and sweeping during the daytime. The material is deposited in the private collection of T. & K. Nupponen. The
following abbreviation is used in the text: ZIN (Zoological Institute, Russian Academy of Sciences, St. Petersburg, Russia).

Systematics

Pelochrista maculiferana (Kennel) was described from a single male specimen collected in the Guberlinsky Mountains, South Ural in 1892. No additional specimens have been reported since. Razowski (1999: 481) synonymised maculiferana with Epiblema junctanum (Herrich-Schäffer, 1856), and this opinion was followed in several subsequent publications (e.g., Razowski 2001, 2003; Sinev & Nedoshivina 2008; Lepiforum 2011).

During an expedition to the southern Urals in late June 2003, I collected two male specimens of a peculiar small tortricid moth in the Guberlinsky Mountains, Orenburg district. After dissecting one of them, it became obvious that the genitalia exhibited characteristics typical for the genus Pelochrista (see Razowski 2003). However, I was unable to find a comparable illustration in the literature. A few years later, I studied leaf-rollers in the collection of ZIN with special attention to two specimens of Pelochrista maculiferana, which were externally identical to the newly-collected specimens from southern Ural and were collected from the same locality. The specimens were not dissected, but the valvae of the holotype were sufficiently exposed to see the essential characteristics (see below). Based on facies and male genitalia, these two specimens are undoubtedly conspecific with the holotype of maculiferana.

The labels of the type specimens of P. maculiferana are somewhat confusing. The description is based on a single specimen labelled “Guberli, 19.6.1892, Christoph [leg.]”. The holotype in ZIN lacks the label with date and collector, and the red holotype label is not the original one. The second specimen is labelled as paratype, but no paratypes were designated by Kennel (1900).

The habitats in the Guberlinsky Mountains are steppe hills with steep, xerothermic rocky slopes (Fig. 1). The recently-collected specimens were swept in late afternoon.
from *Inula salicina* L. (Asteraceae), which is reported as a host plant for *E. junctanum* (Buhl et al. 1999). The known specimens of *P. maculiferana* have been observed in the second half of June, but the flight period probably extends into mid-July. The species is known only from the type locality, the Guberlinsky Mountains in the southern Ural range. The redescription of the moth and description of the male genitalia are given below.

Pelochrista maculiferana (Kennel, 1900), *bona* sp., comb. nov.

Epiblema maculiferana Kennel, 1900, Dt. ent. Z. Iris 13: 152, pl. 5 fig. 28.

Diagnosis. *P. maculiferana* is rather easily distinguished from other known species of the genus *Pelochrista* both externally and by the characters in the male genitalia. The moth is small, and the rusty brown forewings with a distinct dorsal patch surrounded by large dark blotches are characteristic. The male genitalia are unmistakable, and readily separated from the other known species of *Pelochrista* by a very thick neck of the valva and a rounded cucullus with one ventral and two distal spines. In the original description of *P. maculiferana*, the species was compared to *E. junctanum*. In the latter species, the forewings are greyish or fuscous, the dorsal patch is wider and not divided into two areas, the dorsal blotches are smaller and blackish, the hindwings are much paler, and the male genitalia are completely different.

Redescription (Figs 3, 4). Head: Vertex rusty brown; antenna concolourous; labial palp yellowish brown, inner surface paler. Thorax: Tegulae, collar, and thorax rusty brown. Legs pale rusty brown, hindlegs paler. Wingspan: 12.0–12.5 mm. Forewing with costal fold to 1/3, basally broad, apex rather pointed; ground colour rusty brown,
scattered black scales over wing surface, more frequently in distal fourth; dorsal patch dirty white, consisting of two parallel lines angled outwards, reaching mid-wing; dorso-postbasal and tornal blotches dark brown, latter somewhat extended; apical half of costa with distinct strigulae; inner spots of speculum indistinct; cilia line blackish, fringe paler than forewing. Hindwing dark fuscous, cilia line distinct, fringe paler than wing. Underside of wings unicolourous fuscous, except costa of forewing pale yellowish brown. **Abdomen:** Dark fuscous. **Male genitalia** (Fig. 5) with uncus short, rounded. Socii rather long, bent and hairy. Tegumen 1.5 × higher than wide. Valva robust, ventral incision almost absent, neck thick; cucullus round and hairy, ventrally with long and stout spine; two further spines at middle of apical margin. Sacculus 0.4 × length of valva, caudal edge indistinct. Vinculum short and rounded. Phallus half length of valva, thick, slightly bent at 0.4, apical third tapered, cornuti absent (or lost during mating, but their sockets are invisible).

Records of eight species of Tortricidae

The dates and localities of records for each species are given, as well as the known distributional range and basic information about the bionomy. Data on the geographical range of the species are from Kuznetsov (1989), Kuznetsov et al. (1996), Razowski (2002, 2003), and Sinev & Nedoshivina (2008).

Phtheochroa exasperantana (Christoph, 1872)
Fig. 6

Material. Russia, Astrahan district, 48°08′–09′N 46°49′–52′E, −15−100 m, Baskunzak salt lake SW, Bogdo Hill, 2♂♀, 26.viii.2006, 1♂, 28.viii.2006, leg. K. Nupponen; 47°34′N 47°01′E, −5 m, Sasykoli village 3 km NE, Peski Voniyuchie, 3♀♂, 29.viii.2006, leg. K. Nupponen; 48°02′–03′N 46°37′–40′E, 5 m, Peski Thikili near Bogdo village, 2♂♀, 1♀, 30.viii.2006, leg. K. Nupponen.

Distribution. Russia (Lower Volga), Tajikistan; recently recorded from the Ustyurt range in SW Kazakhstan (K. Nupponen, unpublished).

Remarks. The species inhabits desert steppes and semideserts in the northern Caspian Sea region. The flight period extends from the last third of August to late September.
The larva feeds on *Caroxylon laricinum* (Pall.) Tzvelev (Chenopodiaceae) (Anikin et al. 2006). *P. exasperantana* is easily distinguished from related species by its ochreous forewings with well-defined dark brown subterminal and median fasciae, the dorsal part of the latter is very broad forming a roundish blotch. The male and female genitalia are illustrated by Razowski (2002: pl. 6 fig. 58; pl. 44 fig. 58). The two adults illustrated by Razowski (2002: pl. IV figs 58 & 58a) as *P. exasperantana* are actually *P. krulikowskii* (Obraztsov, 1944). *P. exasperantana* has less elongated ochreous forewings, with a dorsally broad and subcostally cut off dark brown median fascia. Based on examination of a lot of material of both species (several hundreds of *P. krulikowskii* from S Ural, Lower Volga, and W Kazakhstan, and over 30 exx of *P. exasperantana* from Lower Volga and W Kazakhstan), it is clear that *P. krulikowskii* is externally a very variable species. It seems that specimens that are somewhat doubtful as to their identification are usually mottled forms of *P. krulikowskii*, and not *P. exasperantana*. With this on mind, the two species are fairly easy to separate from each other both by the external appearance and by the male genitalia.

Eugnosta medvedevi (Gerasimov, 1928)

Material. Russia, Volgograd district, 49°14′–19′N 43°43′–56′E, 60 m, Ilovla village 10 km WSW, 20 exx, 5.ix.2002, leg. K. Nupponen.

Distribution. Ukraine, Russia (Lower Volga). New to Russia.

Remarks. This species was previously known only from the type series collected in eastern Ukraine. The habitat in the Russian locality is a sandy steppe. The moths are nocturnal and came to artificial light. The male and female genitalia are illustrated by Razowski (2002: pl. 14 fig. 136; pl. 50 fig. 136).

Clepsis nybomi (Hackman, 1950)

Material. Russia, S Ural, Bashkoria/Cheliabinsk district, 54°33′N 58°50′E, 900 m, Iremel Mountains, 10°, 25.vi.1996, leg. K. Nupponen.
Distribution. Finland, N Sweden, Russia (S Ural). First record outside Fennoscandia, new to Russia.

Remarks. The moth was observed at 0830 hr flying slowly about 1 m above the ground; it landed on a branch of *Picea abies* (L.) H. Karst. (Pinaceae). The habitat where it was collected is a taiga forest with luxurious lower vegetation. For further notes on the species, see Bengtsson (2004).

Lobesia subherculeana (Filipjev, 1924)

Asketria

Distribution. Russia (Krasnojarsk district, Tuva Rep., S Ural). Recently recorded also from W Kazakhstan (K. Nupponen, unpublished). The present records are the westernmost, representing the first from the Urals and from Europe.

Remarks. Externally *L. subherculeana* resembles *L. indusiana* (Zeller, 1847), but the former is much larger (wingspan: range 14–20 mm, mainly 18–19 mm) and the forewing pattern elements have greater contrast. The moths were observed on xerothermic rocky steppe slopes (Fig. 2). The species occurs in two generations in June and from late August through first third of September.

Asketria lepta Falkovitsh, 1964

Figs 12–15

Distribution. SE Kazakhstan, Mongolia, Russia (S Ural). New to Russia and Europe.

Remarks. This species inhabits chalk steppes in South Ural (Fig. 2). The flight period extends from late June into the second half of August, possibly representing two generations. Falkovitsh (1964) reported *Atraphaxis virgata* (Reg.) Krassn. (Polygonaceae) as a larval host plant.

Thiodia irinae Budashkin, 1990

Material. Russia, S Ural, Orenburg district, 51°22′–23′N 56°48′E, 130–340 m, Donskoje village 4 km W, Verbljushka, 1♀, 30.v.1998, leg. T. & K. Nupponen, genitalia preparation preserved in glycerol; Cheliabinsk district, 52°39′N 59°34′E, 320 m, Arkaim reserve near Amurskii village, 1♀, 15.vi.1999, leg. K. Nupponen.

Distribution. Ukraine (Crimea), Russia (Lower Volga, S Ural). Recently recorded from W Kazakhstan (K. Nupponen, unpublished). The present records are the easternmost known and the first from the Urals.

Eucosma pergratana (Rebel, 1914)

Fig. 16

Distribution. Russia (Tuva Rep., Transbaikalia, S Ural), Kazakhstan, Kyrgyzstan, Mongolia, China. The present records are the westernmost known and the first from the Urals and Europe.

Remarks. The moths were observed on a xerothermic rocky steppe slope along a river. The male genitalia are illustrated by Kuznetsov (1989).

Dichrorampha alaicana Rebel, 1910

Distribution. C Asia (mountain ranges of Kazakhstan, Kyrgyzstan and NW China), Russia (Altai, Tuva, S Ural). The present records are the westernmost known and the first from the Urals and Europe.

Remarks. The species occurs on rocky steppe slopes in the Urals. In Southern Siberia and Central Asia it inhabits steppes and dry meadows in mountain ranges.
Acknowledgements

I thank Vladimir Olschwang (Ekaterinburg, Russia) and Pavel Gorbunov (Ekaterinburg, Russia) for organising the expeditions to the southern Urals and the Lower Volga region. Sergey Sinev (St. Petersburg, Russia) allowed me to study the collection of ZIN. Boyan Zlatkov (Sofia, Bulgaria) and an anonymous referee improved the manuscript by helpful comments and suggestions. My thanks are also due to the following for various kinds of help during the expeditions or preparing the present article: Lauri Kaila (Helsinki, Finland), Sergey Kornev (Orenburg, Russia), Alexander Lagunov (Miass, Russia), Alexander Malozemov (Ekaterinburg, Russia), Elena Nupponen (Espoo, Finland), Timo Nupponen (Espoo, Finland), and Kimmo Silvonen (Espoo, Finland).

References

Nupponen: Tortricidae of the Volgo-Ural region

Revision of types of several species of *Bembecia* Hübner, 1819 from northern Africa and southwestern Europe (Sesiidae)

DANIEL BARTSCH

Staatliches Museum für Naturkunde Stuttgart, Rosenstein 1, 70191 Stuttgart, Germany; daniel.bartsch@smns-bw.de

Received 14 March 2012; reviews returned 18 April 2012; accepted 18 August 2012.

Subject Editor: Jadranka Rota.

Abstract. The type specimens of *Sesia sirphiformis* Lucas, 1849 from Lac Tonga in Algeria and *Dipsosphecia megillaeariformis* v. *tunetana* Le Cerf, 1920 *syn. n.* from the vicinity of Tunis were examined and found to be conspecific. *Bembecia sirphiformis* belongs to the *B. ichneumoniformis* (Denis & Schiffermüller, 1775) species group and is currently known only from northern Africa. Records from Sicily, Sardinia, Corsica, southern Italy, and Morocco (as *B. tunetana*) are here considered doubtful and may belong to other species. *B. astragali* (Joannis, 1909) *stat. rev.*, which was described from northern Spain and southern France and was previously considered conspecific with *B. sirphiformis*, actually appears not to be so closely related to *B. sirphiformis* and seems to belong to the *B. megillaeariformis* (Hübner, 1813) species group. *B. igueri* Bettag & Bläsius, 1998 *syn. n.* from Morocco is now considered to be a synonym of *B. astragali*.

Introduction

During the examination of Sesiidae types in the Muséum National d’Histoire Naturelle, Paris (MNHP), the author noticed a significant similarity between the type specimens of *Sesia sirphiformis* Lucas, 1849 and *Dipsosphecia megillaeariformis* v. *tunetana* Le Cerf, 1920. This was also noted but not published by Ferdinand Le Cerf, documented by a handwritten label “Dips. sirphiformis Luc. v. tunetana Le Cerf, ♀ Type”, which was added by Le Cerf to one of the primary types of *D. megillaeariformis* v. *tunetana*. This specimen, a female, was later selected as lectotype by Špatenka (1992). The similarity between the two taxa, *sirphiformis* and *tunetana*, is in conflict with the current understanding of *S. sirphiformis*, which is considered conspecific with *Sesia astragali* Joannis, 1909 (Špatenka et al. 1993, 1999). Only two of three primary types of *D. megillaeariformis* v. *tunetana*, a male and a female, were found in the MNHP and were examined by Špatenka (1992). He dissected the genitalia of the male, designated the female as lectotype and listed it as subspecies of *Bembecia albanensis* (Rebel, 1918). Several years later, the genitalia of the lectotype were also dissected and *Bembecia tunetana* was treated as a distinct species by Bettag & Bläsius (1999). In agreement with
this conclusion, *B. tunetana* is listed with species rank on the Fauna Europaea website with the comment suggesting that “… taxonomic research is needed”. The aim of this paper is to clarify the identity of the taxa in question. Unless otherwise noted, the material examined is from the collection of the author.

Abbreviations and notation

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MNHP</td>
<td>Muséum National d’Histoire Naturelle, Paris</td>
</tr>
<tr>
<td>NHMM</td>
<td>Naturhistorisches Museum Mainz</td>
</tr>
<tr>
<td>CRB</td>
<td>collection of Rolf Bläsius, Eppelheim, Germany</td>
</tr>
<tr>
<td>CDB</td>
<td>collection of the author</td>
</tr>
</tbody>
</table>

‘21.vi./vii—viii.2005’ means that larva(e) or pupa(e) were found on June 21 and the adults emerged in July and August.

Bembecia sirphiformis (Lucas, 1849)

Figs 1–6, 13, 17

Sesia sirphiformis Lucas, 1849: 367. Syntype ♂ [without head and abdomen] (Fig. 1): “C’est en juin, dans les bois du lac Tonga, aux environs du cercle de Lacalle, que j’ai pris cette jolie petite espèce, dont je n’ai rencontré que deux individus.” (MNHP).

Dipsosphecia megillaformis *v. tunetana* Le Cerf, 1920: 305 syn. n., Lectotype ♂, des. Špatenka, 1992: 487 (Fig. 2): “Environs de Tunis, ex racines de Sulla, VI, coll. F. Le Cerf.” (MNHP).

In his original description, Lucas (1849) mentions two specimens of *Sesia sirphiformis*, only one of which is currently deposited in the collection of the MNHP. This is a syntype and not the holotype as mentioned by Špatenka (1992). The second syntype may have been destroyed or lost a long time ago (Le Cerf 1920), thus my decision is to

refrain from a lectotype designation. The remaining syntype is in a bad condition. The head, abdomen, and legs apart from the right hindleg are missing; the wings are not
spread making the hindwings incompletely visible. A lack of a longitudinal transparent area confirms the female gender of the specimen, despite the missing antennae and abdomen. The illustration of *Sesia sirphiformis* in Lucas (1849) (Fig. 1, insert) shows the tergites of the abdomen marked with five relatively consistent yellow posterior annulations. Females of *B. astragali* have only tergite 2, 4, and 6 with such complete yellow annulations and that on tergite 3 is indistinct or absent. Furthermore, the syntype of *sirphiformis* differs clearly from female specimens of *B. astragali* by the absence of a longitudinal transparent area (LTA), which is always present in both genders of *B. astragali*, and by the narrow external transparent area (ETA), consisting of three well-developed cells and mostly an additional very indistinct narrow cell (ETA distinctly broader, consisting of four well-developed cells in *B. astragali*).

The type series of *Dipsosphecia megillaeformis* var. *tunetana* was reared from larvae, which were found in the roots of *Hedysarum coronarium* (Fabaceae) (Le Cerf 1920). Since then, specimens that can be identified as conspecific without doubt have been collected only once. A series of five males and four females was reared by Bläsius from larvae found on *H. coronarium* in the vicinity of Beja, Tunisia. The females exhibit some variation in size and colouration, in the intensity of the forewing discal spot and in the extension of the transparent areas. The LTA is mostly absent, but sometimes very small, the ETA consists of 2, 3, or 4 partially very small cells (Figs 1, 2, 5, 6). The type localities of both *B. sirphiformis* and *D. megillaeformis* var. *tunetana* are separated by only about 200 km, and Beja is located almost in the middle. No other related species are known from this area. For the above reasons, *D. megillaeformis* var. *tunetana* is considered a synonym of *B. sirphiformis*.

B. sirphiformis appears to belong to the *B. ichneumoniformis* (Denis & Schiffermüller, 1775) species group and is closely related and habitually almost indistinguishable from *B. albanensis* (Rebel, 1918) from Southern and Central Europe, *B. handiensis* Rämisch, 1997 from Fuerteventura and Morocco, and *B. psoraleae* Bartsch & Bettag, 1997 from the Iberian Peninsula, southern France, and northwestern Italy. The males of *B. albanensis* have the yellow annulations less brilliant and more greyish. Small differences exist in the morphology of the genitalia. Male genitalia (Fig. 13) differ by the shape of the crista sacculi of the valva. In *B. sirphiformis* it has a short bald, apically directed ridge distally, which is lacking in *B. albanensis* (Fig. 14). The saccus is shorter and broader in *B. sirphiformis*. Furthermore, *B. sirphiformis* differs from *B. albanensis* and *B. handiensis* by the size of the medial crista of the gnathos, which is less prominent in *B. albanensis* and much bigger in *B. handiensis*. The females (Fig. 17) differ in the shape of the ostium bursae, which is y-shaped in *B. sirphiformis*, v-shaped in *B. psoraleae*, and with semi-circled lateral hemispheres in *B. albanensis* (Fig. 18), as well as the surface structure of the ante vaginal plate (densely grained, without folds in *B. sirphiformis* (Fig. 17, detail) and *B. albanensis* (Fig. 18, detail); scarcely grained, with strong folds in *B. psoraleae*). *B. psoraleae* differs further by a small sclerotised signum of the corpus bursae.

Bembecia sirphiformis (as *B. tunetana*) has been reported from northern Africa, Sicily, Sardinia, Corsica, and southern Italy (Bertaccini & Fiumi 2002; Laštůvka & Laštůvka 2001; Špatenka et al 1999). The European populations and specimens from
Morocco, reported by Bettag & Bläsius (1999), however, differ significantly in occurrence time and host-plant preference and have conspicuously different barcode sequences (Pühringer, in litt.). Therefore, the records of *B. sirphiformis* from Europe and Morocco are doubtful and may belong to other species. The relationships of the species in this complex and their distributions remain unclear and need further investigation.

Bembeicia astragali (Joannis, 1909) stat. rev.

Figs 7–12, 15, 16, 19, 20

Bembeicia astragali was described from a series of three males and six females. All specimens except one female were reared from larvae that were found in southern France, la Bonde, Vaucluse, in rootstocks of *Astragalus monspessulanum* (Fabaceae). One female was collected at Montserrat, Barcelona (Joannis 1909). Only one of the female paralectotypes from la Bonde was actually found in MNHP (Fig. 8). *B. astragali* (as *B. sirphiformis*) is a well-known member of the *B. megillaeformis* (Hübner,
130

BARTSCH: Types of Bembecia Hübner, 1819 (Sesiidae)

1813) species group (Bertaccini & Fiumi 2002; Freina 1997; Laštůvka & Laštůvka 1995, 2001; Špatenka et al. 1999). The genitalia, especially that of the males, are very
homogeneous within this group and scarcely suitable for determination (Laštůvka & Laštůvka 2001). Larger specimens of *B. astragali* are very typical and unmistakable,
whereas small specimens can be confused with *B. iberica* Spatenka, 1992, which, however, has a very different morphology of the genitalia. The Moroccan *B. igueri* Bettag & Bläsius, 1998 syn. n. is here considered conspecific with *B. astragali*. It was described from a series of six males that were captured with the help of synthetic sexual pheromones at the Tizi-n-Test, in the western part of the High Atlas Mountains. A male and a female specimen from the type locality were reared by the author from larvae, which were found in rootstocks of *Colutea atlantica* (Fabaceae) (Figs 11, 12). This male and the specimens of the type series agree perfectly. They differ only marginally from typical French specimens of *B. astragali*, which were reared from *Colutea arborescens* and *Astragalus monspessulanum*. Males of *B. astragali* are strongly attracted by various synthetic pheromones and have been collected in large numbers. The males from Morocco show greater individual variation than specimens from Europe. The ground colour of the forewing, including the apical area, varies from nearly completely black to orange-yellow, and the discal spot is sometimes completely orange-yellow. The ETA can consist of four or five cells and its width is very variable, with occasionally only a very small apical area. The population of the Tizi-n-Test is in the southwestern extreme of the known range. Its representatives are generally somewhat darker with slightly smaller transparent areas and somewhat more prominent discal spots. Differences mentioned in the original description of *B. igueri* cannot be confirmed: “Arten der *Bembecia sirphiformis*-Gruppe [auctorum] unterscheiden sich am auffälligsten von der neuen Art und von *Bembecia megillaeformis* durch die kurze Stielung der Adern M$_3$-Cu$_1$ und durch lange Haarschuppen an den Vordercoxen [...]” (Bettag & Bläsius 1998). Investigation of several specimens of *B. megillaeformis* and *B. astragali* shows that the common stalk of veins M$_3$-CuA$_1$ varies much more in length as noted, broadly overlapping for both species. The long, hair-like scales of the forecoxa are common to all freshly emerged male specimens of *Bembecia*.

Acknowledgements

I wish to thank Joël Minet (MNHP) for his kind support and for the permission to take photographs of the sesiid type specimens and to Carsten Renker (NHMM) for the loan of type specimens. I am further grateful to Rolf Bläsius (Eppelheim) for his generous donation of sesiid specimens revised in this study, and to Theo Garrevoet (Antwerp) and Axel Kallies (Melbourne) for constructive comments and linguistic help.

References

Laštůvka, Z. & A. Laštůvka 1995. An illustrated key to European Sesiidae (Lepidoptera). – Faculty of Agronomy, Mendel University of Agriculture and Forestry, Brno, Czech Republic. 174 pp.

It has been more than 80 years since the last global catalogue of the bagworm family Psychidae by Dalla Torre and Strand (1929) was published. As is carefully documented in the abstract section of this latest catalogue by German Lepidopterist, Thomas Sobczyk, many new taxonomic changes have occurred over the ensuing years, and our knowledge of this biologically interesting family has increased significantly. A total of 236 genera and 110 generic synonyms and unjustified emendations are listed, including 1,324 species names, 45 subspecies, and 391 species synonyms. These totals do not include the five genera and 26 species treated by Davis (2003) in the formerly considered family Arrhenophanidae, now regarded as a subfamily of Psychidae (Mutanan et al. 2010). Sobczyk does refer to this reference in the introduction of his catalogue and briefly refers to the most recent classification of Arrhenophanidae. These numbers were later added to the taxon totals for the Psychidae in van Nieukerken et al. (2011), bringing the current world totals to 241 genera and 1,350 species. Also summarised in the abstract of the catalogue are many new nomenclatural changes initiated by the author, including the introduction of three new generic names, two new generic synonyms, eight new species synonyms, a new replacement of a species name, and 144 new combinations. The type designations of four species are also presented.

In the introduction following the abstract, Sobczyk briefly reviews major features of the biology, classification, distribution, fossil records, and publication history of the family. The catalogue proper begins with references to all family group names in alphabetical sequence by subfamily. The genus and species names are not associated with subfamilies and, consequently, are likewise arranged alphabetically. In addition to the original literature reference, information about the type locality and type specimen(s) is provided for each species name. Any pertinent additional information is included under remarks. Following the procedure used in most recent Lepidoptera catalogues, gender agreement between the specific and generic names as prescribed by article 31.2 of the International Code of Nomenclature (ICZN 1999) is not adhered to (Sommerer 2002).

Concluding the catalogue are five sections listing names whose statuses remain uncertain, often because no specimens are known to exist, or what material remains is poorly preserved, found to be misplaced to family, are nomina nuda, or unrecognized for other reasons. These groups include 1) unplaced taxa, 2) unavailable names, 3) hybrids, 4) taxa excluded from Psychidae, and 5) one “unsolved” name.

Because of the abundance of taxon names in any large catalogue, the possibility for some misspellings always exists. Although most names were not checked, one misspelling was noted: the generic name Acomerata was misspelled “Acomerata” on page 42. Also, the genera Apeocis and Aprata (pp. 61–62) occurred out of sequence in the text and should have been listed alphabetically before Apterona (p. 58).

This catalogue will be a vital, necessary reference for all entomologists seeking up to date information on this biologically interesting and often economically important family. By providing an outstanding guide to the literature and taxonomic diversity of Psychidae, the author has facilitated the study of these insects appreciably.

References

Donald R. Davis
Bucculatrix ainsliella Murfeldt, a new North American invader already widespread on northern red oaks (*Quercus rubra*) in Western Europe (Bucculaticidae)

Erik J. van Nieukerken¹, **Camiel Doorenweerd**¹, **Willem N. Ellis**¹, **K.J. (Hans) Huisman**², **J.C. (Sjaak) Koster**¹, **Wolfram Mey**³, **Tymo S.T. Muus**⁴ & **Arnold Schreurs**⁵

¹ Naturalis Biodiversity Center, PO Box 9517, NL-2300 RA Leiden, Netherlands; nieukerken@naturalis.nl (corresponding author)
² Patrijzenlaan 4, NL-8091 BK Wezep, Netherlands
³ Leibniz-Institut für Evolutions- und Biodiversitätsforschung, Invalidenstr. 4, DE-10115 Berlin, Germany
⁴ Hogewal 137, NL-8331 WP Steenwijk, Netherlands
⁵ Conventuelenstraat 3, NL-6467 AT Kerkrade, Netherlands

Received 28 June 2012; reviews returned 22 July 2012; accepted 9 August 2012.
Subject Editor: Jadranka Rota.

Abstract. *Bucculatrix ainsliella* Murfeldt, 1905 is for the first time reported from Europe: the Netherlands, Belgium, and adjacent Germany. DNA barcodes confirm its identity. It is the first North American lepidopteran species feeding on northern red oak *Quercus rubra* ever found in Europe, and only the second North American oak-feeding insect found in Europe. The species has regularly been found in the Netherlands and northern Belgium since 2006, and in 2011 also in Nordrhein-Westfalen in Germany, adjacent to the Dutch border, but the earliest records are from the Netherlands, Amersfoort in 1989 and 1990. Early stages, leafmines, and the adult are described, illustrated, and diagnosed against oak-feeding *Bucculatrix ulmella* Zeller, 1848 and other similar species. The biology and distribution are discussed. This species can be abundant in Europe, but significant damage has not been observed.

Introduction

Northern red oak (*Quercus rubra* L.) was introduced into Western Europe at the end of the 17th century and became an economically important and widely planted timber tree in Central and Western Europe during the 19th and 20th century (Bauer 1953; Göhre & Wagenknecht 1955; Goßner et al. 2009; Magni Diaz 2004). Many authors noted that the number of insect species feeding on red oak in Europe is still very small and consists mainly of relatively polyphagous species (Csóka & Szabóky 2005; Goßner & Bräu...
2004; Turčání et al. 2009). This is in sharp contrast to the very rich entomofauna on the indigenous European deciduous oaks (in Northern and Western Europe mainly Q. robur L. and Q. petraea (Matt.) Liebl.), on which hundreds of herbivore species are known to feed (for Britain 423 species are cited: Kennedy & Southwood 1984; for Germany 699: Brändle & Brandl 2001). The difference can probably be explained by the phylogeny of the genus Quercus: the red oak belongs to a phylogenetically separate part of the genus Quercus, the section Lobatae (commonly known as “red oaks”), only known from the New World, whereas all European deciduous oaks belong to the so called “white oaks” (Quercus sensu stricto) that include both North American, European, and Asian species (Manos et al. 1999). Both groups of oaks harbour different faunas in North America (e.g., Robinson et al. 2002), and in other studies it was shown that introduced oaks belonging to the same taxonomic group as native oaks received a considerably higher number of herbivores than oak species from different taxonomic groups (e.g., Connor et al. 1980). In the late 20th century, the first, and hitherto only, North American insect attacking Q. rubra was recorded from Europe, the aphid Myzocallis (Lineomyzocallis) walshii Monell, 1879 (Hemiptera, Aphidoidea). It has since become invasive and problematic in city areas (Havelka & Stary 2007; Modic 2010; Osiadacz & Wieczorek 2006; Perez Hidalgo et al. 2009; Pons & Lumbieres 2010). As far as we know until now, no species of Lepidoptera restricted to red oaks have been found in Europe. We here report first records of the oak skeletoniser Bucculatrix ainsliella Murfeldt, 1905 from the Netherlands, Belgium, and Germany.

One of us (KJH) collected Bucculatrix specimens in a light trap in his garden in Wezep (Netherlands, province Gelderland) that he did not recognise and thus presented to JCK for dissection and identification. Because he also could not recognise these specimens as belonging to any species known from the Netherlands, photographs of the male genitalia were sent to WM, who identified it as the North American species Bucculatrix ainsliella in 2011. After that, we started looking for early life stages. From the life history in its original distribution area, we knew we had to look for a species likely feeding on Q. rubra, the only red oak that is commonly planted in the Netherlands. The search started in Wezep, near KJH’s house, where Q. rubra is common. We found larvae and cocoons at two sites. After confirming the identity by breeding adult moths from the larvae and cocoons, these findings prompted a press release on 13 July 2011 (http://www.naturalis.nl/nl/over-ons/pers/persberichten/2011/eerste-vestiging-amerikaanse-eikenmot-europa) and a short online story in Dutch on a website for Microlepidoptera (van Nieukerken & Doorenweerd 2011).

Very soon after this media coverage, it became apparent that various records of this species were already available as misidentified or unidentified records on national observers’ websites (http://waarneming.nl/contact.php; http://waarnemingen.be/index.php), and several collectors, including some of us, were able to record the species from more localities after knowing where and what to look for. Finally, searching collection holdings resulted in recognising several older specimens, including some from 1989 and 1990.

Bucculaticridae is a rather small family with 297 described species (van Nieukerken et al. 2011), most belonging to the very uniform genus Bucculatrix Zeller, 1839. In
Europe, 55 species are known (Mey 2010), in North America more than 100 (Braun 1963; Opler 1974; Rubinoff & Osborne 1997), the majority feeding on Asteraceae. Whereas there is only a single native *Bucculatrix* species feeding on oaks in Europe (*B. ulmella* Zeller, 1848, a confusing name, since it does not feed on *Ulmus*), there are at least 11 species associated with oaks in North America, which usually only feed on a single *Quercus* species or a limited group of either white or red oaks (Braun 1963). Most *Bucculatrix* species mine in their first larval instar, and later feed externally on the parenchyma between veins, making small windows in the leaf. The ribbed cocoon is one of the best characters and apomorphies for the genus. There is no single work treating all European species, and only a few papers can be used for the identification of a subset (Bengtsson & Johansson 2011; Langmaid et al. 2007; Mey 1999; Seksjaeva 1993; Svensson 1971), but a survey of European species is in preparation (Z. Tokár, personal information). All North American species are treated by Braun (1963), except the few that were described later (Opler 1974; Rubinoff & Osborne 1997). Baryshnikova (2008) provided the first phylogenetic analysis of the genus.

Material and Methods

Material

Specimens were either taken as adults collected at light, using various methods, or as larvae or cocoons from *Quercus rubra* trees and shrubs. Later in the year, larvae and cocoons were also found on fallen leaves, and cocoons were observed on tree trunks. Rearing in small plastic containers proved easy for the summer generation, although many parasitoids emerged as well. The material is either deposited in the collections of the Naturalis Biodiversity Centre, Leiden, or in private collections. Many records were identified from photographs provided by the observers. All data on specimens and observations of *B. ainsliella* are given in Table 1, and for barcoded specimens (also of other species) data are uploaded to the BOLD project “Lepidoptera of the Netherlands – public [NLLA]” (http://www.barcodinglife.com), where also Genbank Accession numbers can be found.

Morphological methods

Genitalia were dissected in the usual way (van Nieukerken 1985; Robinson 1976), males were stained with phenosafranin and females with chlorazol black. Because the valvae in the male genitalia of these species cannot be spread, we folded them downwards, whereas the socii remain in their posterior position (following Svensson 1971). Photographs of moths, leafmines, genitalia slides, and wing slides were taken with a Zeiss AxioCam digital camera attached, respectively, to a Zeiss Stemi SV11 stereomicroscope, a motorised Zeiss SteREO Discovery.V12 or a Zeiss Axioskop H, using Carl Zeiss AxioVision software. In the field, various digital cameras were used. Measurements of genitalia and mines were taken from photographs with AxioVision software, and measurements of moths were taken with the stereomicroscope provided
with a calibrated eyepiece graticule. The distribution map was prepared with the program "Klasse" (Anonymous 2011).

DNA barcoding

DNA was extracted destructively from larvae preserved in 96% ethanol or adult legs. Extractions were carried out with the Qiagen DNeasy Blood and Tissue kit. A 658 bp fragment of the mitochondrial COI gene was amplified using as primers Lep-F and Lep-R (Hebert et al. 2004), often tailed with T7 promoter [TAATACGACTCACTATAGGG] and T3 [ATTAACCTCACTAAAG]. Amplification was performed in volumes of 25 μl. The PCR cycle consisted of 3 min initial denaturation at 94°C, 15 sec denaturation at 94°C, 30 sec at 50°C, 40 sec extension at 72°C for 40 cycles. After completion of all cycles, there was a final extension at 72°C for 5 min. A negative control with no template was included for each series of amplifications. The amplified products were separated on a 1% agarose gel and visualized under UV following staining with ethidium bromide before clean-up and sequencing.

PCR clean-up and bi-directional sequencing was outsourced to MACROGEN Europe on an ABI 3730XL. The chromatograms were checked with Sequencher (Gene Codes Corporation) and the resulting sequences were aligned by eye with reference to amino acids in BIOEDIT 7.0.9.0 (Hall 2004). Neighbor-joining (NJ) trees based on DNA barcode sequences of all available specimens, supplemented with publicly available sequences of Bucculatricidae, were calculated with PAUP* 4.0b10 (Swofford 2003), using uncorrected P distance (Srivathsan & Meier 2012). Inter- and intraspecific distances between the COI barcodes were calculated with the species delimitation plugin v1.04 by Brad Masters & Howard Ross for Geneious (Drummond et al. 2011).

Results

Bucculatrix ainsiella Murfeldt
Figs 1, 3–7, 13, 14, 17–19, 21–23, 26–30, 35

Bucculatrix ainsiella Murfeldt 1905: 218. Holotype male: USA, Minnesota, Olmstead, cocoons, on/near black oak [*Quercus velutina*], C.N. Ainslie, Type 65035 (USNM). [not examined]

Material. See Table 1.

Diagnosis. Adults of *Bucculatrix ainsiella* can be distinguished from *B. ulmella*, the other European oak-feeding species, by the more monochrome grey forewing with the prominent elongate blackish brown spot on dorsum with white edging, the longer forewings and the distinct separation of dark and pale areas in the frontal tuft. Further, *B. ainsiella* is slightly larger. *B. ulmifoliae* (Hering, 1931) from *Ulmus* is also rather similar, has a rather similar frontal tuft, but the dorsal spot is more square and often much smaller, and the antennal annulation is regular. In living specimens, the spot in *B. ainsiella* is distinctly rounded and rendered more apparent by white edging. In European collections, *B. ainsiella* specimens were misidentified as *B. bechsteinella* (Scharfen-
berg, 1805), B. demaryella (Duponchel, 1840), and even B. cidarella (Zeller, 1839). These species have smaller dorsal spots than B. ainsliella and different antennal annulation. Photographs on observers’ websites had been identified earlier as B. ulmella, B. albedinella (Zeller, 1839) or B. noltei Petry, 1912. Among other European Bucculatrix specimens, B. ainsliella usually stands out by its larger wingspan and elongate wings with the distinct spot. Annulation of antenna and legs also separate B. ainsliella and ulmella from various other Palaearctic species.

The male genitalia of B. ainsliella are large, bear a double row of cornuti in the bulbose basal part of the phallus, and the valva has a hooked apex. The male genitalia of B. ulmella are much simpler and smaller, and those of B. ulmifoliae can be recognised by the terminally hooked phallus and short soci (Fig. 16). Female genitalia are immediately recognisable by the extremely long ductus bursae, several times longer than the abdomen, presence of spines in ductus, and peculiarly shaped ostium and surrounding sclerotisations.

Description. Adult (male, female) (Figs 1, 3–7). Forewing length 3.7–4.0 mm (male), 3.4–3.9 mm (female), wingspan 7.6–8.8 mm (male), 7.6–8.4 mm (female). Head: frons white, irrorate with some pale grey scales, vertex with tuft of hairscales clearly separated in ferruginous central band and white lateral bands; neck tufts and collar white; labial palpus hardly visible, white. Antenna with 56–62 segments in both sexes; first flagellar segment strongly notched in male; scape dorsally white, irrorate with greyish brown scales, ventrally shining white with greenish reflections, flagellum dorsally greyish white, strongly annulated dark brownish grey, ventrally white, vaguely annulated; annulation regular until 23 segments before tip, after that with characteristic pattern as follows: segment formula (d=dark segment, w=white segment): 3d-1w-5d-1w-1d-1w-5d-1w-1d-4w (Fig. 7). Thorax and tegulae white, irrorate with greyish brown scales, thorax with two dark brown posterior spots. Legs: white on inner side; fore- and midfemur, -tibia and first segment of tarsus dark brownish grey with whitish iroration on outer side; hindfemur: whitish with pale grey iroration; tarsus segments 2–4 of all legs white with dark brownish grey apical rings, tarsus segment 5 white, apically tipped dark brownish grey, spurs dark greyish brown on outer side, white on inner side. Forewing white, heavily irorate with ochreous-grey to dark grey scales,
especially from fold to costa, a large blackish brown elongate spot on dorsum from just before 1/2 to 2/5, in- and outwardly edged whitish, a blackish brown inward oblique streak from costa at one-half to tornus, outwardly edged with white, tufts of raised blackish brown scales at dorsum near base, at inner edge of elongate spot and at dorsal end of inward oblique streak, two blackish brown cilia lines encircling apex, cilia pale grey. Hindwing shining grey, cilia pale grey. Underside: forewing shining dark grey, more ochreous towards apex, outer cilia line distinctly visible, hindwing shining grey. Abdomen dorsally shining grey, laterally shining pale grey, ventrally shining white, anal tuft white; abdomen in female widened posteriorly, covered with one broad anal tuft; in male tapering, anal tuft smaller, not completely covering external genitalia.

Male genitalia (Figs 13–14). In size almost twice as large as genitalia of *B. ulmella*. Socii long and slender, setose, narrowing apically, tip rounded. Vinculum more or less rounded, wider in the middle: Valva long (435–465 μm), broad at base, narrowing distally with narrowest part just beyond one-half, apex rounded and with a short and slightly bent latero-ventral hook. Phallus long (ca. 650–730 μm), bulbous at base, distal part tubular, one and a half times length of basal part, slightly narrowing distally and upwardly bent. Vesica with double row of eight long spiny cornuti.

Female genitalia (Figs 17–19). Anal papillae setose, posterior apophyses short, anterior apophyses absent. Tergite 8 with centrally elevated group of special scales. Ostium tubular, opening more or less triangular; connected laterally on sternum 8 to two semicircular excavations, broadly connected in the middle. Ductus bursae narrow and extremely long (almost 5 mm), coiled, ca. twice as long as abdomen, abruptly widening before entering corpus bursae and with anterior rows of spines, more or less along midline. Corpus bursae elongate, signa forming ring around posterior half, comprising rows of spined ribs, spines directed anteriorly.

Immature stages (Figs 21, 26–30). Larva. Early instar in mine yellow, with brown head capsule and prothoracic plate (Fig. 21). Free-living larva up to 5 mm long (Fig. 26), with pale yellowish green body; prothoracic and anal plates concolourous, head slightly more pale brownish. Pinacula not distinguishable, major setae appearing dark against light body. Rear end of the body tapering towards long anal prolegs (typical for the genus); the four abdominal prolegs relatively long. The free-living larvae are easily distinguished from those of *B. ulmella* by the absence of colouration. Larvae of *B. ulmella* are greyish green, with several indistinct darker longitudinal lines, and with about eight whitish spots on each body segment. Pupa (Figs 28–30). Only exuviae were studied (one on slide). Tenth abdominal segment (A10) with one pair of lateral tubercles, similar to most *Bucculatrix* species, but unlike *B. thoracella* (Thunberg, 1794) which has two pairs. Tergites A3–7 with 2–3 rows of rather coarse spines anteriorly, amidst a strong network of microspines (Figs 29, 30). Macroscopically, T2 seems also to have an indistinct row of spines, but this appears to be an indistinct row (or almost absent) when studied in a slide under high magnification (Fig. 29). *B. ulmella* has only single rows of large spines, none on T2, and the microspines are less strong (see also below).

Biology. Hostplants: *Quercus velutina* Lam. (eastern black oak) and *Q. rubra* L. (northern red oak). Single records on chestnut oak (*Quercus montana* Willd.) (Drooz
Figs 3–12. Bucculatrix species, comparison between oak feeding species in mounted and live specimens. 3–7. B. ainsliella, female, Wezep, RMNH.INS.54441 (3 and 7), RMNH.INS.544412 (4–6). 8–12. B. ulmella, male, 't Harde, RMNH.INS.544414 (8–11), female, as Fig. 2 (12). 7 and 12 show aberrant antennal annulation pattern, extra group of 3 dark segments in B. ainsliella arrowed. Some photos were mirrored for reasons of comparison. Scales 1 mm, 2 mm (4), 0.5 mm (7 and 12).

1960, cited by Gibbons & Butcher 1961), a white oak, and chestnut (Castanea sp.) (labels cited by Braun 1963) should be confirmed because of their different taxonomic placement. Since cocoons can be placed on any surface, records of cocoons alone are not sufficient proof for host records. In Europe only recorded from Quercus rubra.

Life history. The egg is deposited on the upperside of the leaf, adjacent to (but never on) a major vein. The empty eggshell is oval in outline, and has a cockled sur-
face, making it iridescent under magnification. The mine (Figs 21–23) is a full-depth gallery, more than 1 cm in total length (11–14 mm); except for the last few mm, the gallery is strongly contorted. The sides are not straight but rather scalloped or jagged. The larval exit is on the leaf underside. For most of its width, the gallery, larval chamber excluded, is filled with lumpy, brownish-black frass. The mining larva does not cross major veins. The mine itself is indistinguishable from that of B. ulmella, but consistently longer in the few measured mines.

The free-living larvae window or skeletonise the underside of the leaves by consuming the softer tissue between the minor veins. Skeletonised patches of several mm in diameter in northern red oak leaves are a good indication of the presence of *Bucculatrix*, but we are not sure how to discriminate between *B. ainsiella* and *ulmella*.

The larva makes two “moulting cocoons”, usually in vein axils on a leaf underside and the final instar larva fashions an oval, ribbed cocoon, with 5–8 ribs, without a “picket fence” (or palisade, see Braun 1963). Most cocoons lie adjacent to a major vein, at the underside of the leaf, or at the leaf margin or the margin of a leaf hole. Unlike *B. ulmella*, which has a somewhat dirty yellow cocoon, the cocoon of *B. ainsiella* is bright white.

Volitionism. In North America recorded as bivoltine: larvae occur from mid-April to early July and again from early August through mid-October. Cocoons of the first generation occur from late June to August, with moths flying from early July on, those of the second generation from October. Hibernation occurs in the pupal stage, on fallen leaves, trunks or other debris. Adults fly in spring mostly in April and early May, the summer generation from early July to August, in southern localities in the US until September (Braun 1963; Gelok et al. 1999; Gibbons & Butcher 1961). So far, the European records fit this general pattern (Table 1). Adults were found on the wing from mid-April to early October, thus a third generation might be a possibility.

Parasitoids. In the field, we very often observed cocoons with an exit hole of a parasitoid (see e.g., Ellis 2012, photo of cocoon), but until now, only a few hymenopterans have been reared from cocoons in Europe. They were all Ichneumonidae, two specimens belonging to the subfamily Campopleginae, and one to the genus *Gelis* Thunberg, 1827. The latter are often hyperparasitoids. In British Columbia and Canada the majority of parasitoids were also Ichneumonidae, but many Chalcidoidea were reared as well (Gelok et al. 1999).

From the native area of *B. ainsiella* the following parasitoids are recorded: Braconidae: *Pholetesor ornigis* (Weed, 1887), *Stiropius bucculaticris* (Ashmead, 1889); Eulophidae: *Chrysocharis* Forster, 1856 (unidentified species), *Cirrospilus cinctithorax* (Girault, 1916), *Cirrospilus flavicinctus* Riley, 1883, *PNigalio maculipes* (Crawford, 1913); and Eurytomidae: *Eurytoma solenozopheriae* Ashmead, 1887 (Yu 2012).

Distribution (Fig. 35). Widespread in eastern North America, from the southern end of the Appalachians in South Carolina northward to the coastal area of New England, Nova Scotia, west to Oregon and Minnesota (Braun 1963), introduced into British Columbia in western Canada (Gelok et al. 1999).

Here, we record the species as new for Europe and currently found in The Netherlands, Belgium, and Germany. It is likely to be more widespread in Germany, and
should be searched for in France, Denmark, and other countries. Details of the records are presented in Table 1. The oldest specimens are from 1989–1990, and there is a gap in records between the 1989–1990 findings from Amersfoort and those in the Veluwe from 2003 onwards.

Damage. In North America, the species, known widely as the Oak Skeletonizer, can have outbreaks which lead to damage: trees that sustain repeated attacks are weakened and suffer crown thinning and die-back; ornamental trees appear especially vulnerable (Gibbons & Butcher 1961; Hanson & Walker 2004; Solomon et al. 2000). The prepupal larvae of *B. ainsliella* can be a nuisance when they are abundant because of their habit of descending along a silken thread (Gelok et al. 1999) and/or spinning cocoons over a variety of surfaces.

Remarks. The characteristic annulation of the antennae was also described by Braun (1963), but slightly different (probably an observation error). The pattern we see is constant in all specimens examined, and constantly different from *B. ulmella* that lacks the first group of three dark segments. The annulation pattern may be an interesting diagnostic character for the separation of *Bucculatrix* species. Braun described a comparable pattern for *B. pomifoliella* Clemens, 1860 and a slightly different one in *B. platyphylla* Braun, 1963; an illustration of European *B. demaryella* shows a similar pattern as well (Bengtsson & Johansson 2011).

Bucculatrix ulmella Zeller

Comparative notes. A d u l t (male, female) (Figs 2, 8–12) smaller than *B. ainsliella*: with forewing length ca. 3.1–3.4 mm, wingspan 6.7–7.6 mm. Antennal segments ca. 52–61, terminal segment formula: 5d-1w-1d-1w-5d-1w-1d-4w (Fig. 12), missing the first group of three dark segments present in *B. ainsliella*; first flagellar segment in male hardly notched. Head with tuft of scales completely ferruginous or yellow, only some pale scales may be seen laterally, but not banded as in *B. ainsliella*. Forewings with strong ochreous to ferruginous ground colour, black maculation variable, a squarish dorsal spot usually present. M a l e g e n i t a l i a (Fig. 15) small. Socii short and triangular; valvae ca. 210–230 μm long, without apical hook. Phallus a short tube without cornuti. Female genitalia (Fig. 20) with short ostium, oval opening, no semicircular excavations. Ductus bursae slender, only slightly longer than corpus bursae, less than 1 mm long, without spines. Corpus bursae with signum comprising very closely set spined ribs, with very long spines, directed anteriorly.

I m m a t u r e s t a g e s (Figs 24, 31–34). Larva. The free-living larva is basically greyish green, with several indistinct darker longitudinal lines, and with about eight whitish spots on each body segment. Larva in mine yellow (Fig. 24). Pupa (Figs 32–34). A10 with one pair of lateral tubercles. Tergites A3–7 with a single anterior row of rather coarse spines, in contrast to *B. ainsliella* that has 2–3 rows per seg-
ment. Microspines less conspicuous than in *B. ainsliella*. See also Patočka & Turčáni 2005.

Life history: Very similar to B. ainsliella. Mines (Figs 24, 25) in principle inseparable, but smaller, with length of measured mines always less than 10 mm (ca. 8–9 mm), both on Q. robur and Q. rubra. Cocoon dirty yellow.

Distribution. Throughout Europe where oaks occur, yet to be recorded from Spain, Slovenia, Bosnia, Albania, and Bulgaria (Corley et al. 2006; Mey 2010).

Remark. The confusing name B. ulmella was suggested by Mann to Zeller (1848), who quoted Mann (in litt.) as describing that hundreds of caterpillars went down on threads from elms (Ulmus) near Vienna. Zeller also quoted Mann’s description of the mine from Ulmus. Zeller identified the moths that he found on oak trunks as the same species, an understandable mistake, since the species that Mann described is probably B. ulmifoliae, a species externally rather similar to B. ulmella.

DNA barcodes

A neighbor-joining tree (Fig. 36) of DNA barcodes of our specimens of B. ainsliella combined with some other species from the Netherlands, plus publicly available barcodes of Bucculatrix (http://www.barcodinglife.com), demonstrate the conspecificity of Dutch and North American specimens. B. ainsliella is represented by 19 specimens, five from the Netherlands [NLLA] and 14 from North America, which collectively form a monophyletic cluster with an average (uncorrected) intraspecific distance of 0.7%. The Dutch specimens are represented by several haplotypes that are scattered over this cluster. The closest neighbour to B. ainsliella in this dataset of COI barcodes, which is lacking many species of Bucculatrix, is the North American B. canadensisella Chambers, 1875 at an average distance of 7.9%. This distance can be considered as relatively large for a distance to the nearest neighbour, when compared to other leaf-mining Lepidoptera (e.g., van Nieukerken et al. 2012a). The average intraspecific distances in B. canadensisella are 1.1%. B. ulmella is the nearest neighbour to B. ainsliella if the comparison is limited to European species, at an average distance of 8.0%. The average intraspecific distances in the available B. ulmella are 0.5%. This makes the identification of B. ainsliella by COI barcodes reliable.

Discussion

Lepidoptera on Quercus rubra

From the scarce literature data it appears that the northern red oak has a poor entomofauna in Europe, with few oak specialists. Polyphagous external feeding caterpillars, such as Tortricidae: Archips xylosteana (Linnaeus, 1758); Lasiocampidae: Malacosoma
neustria (Linnaeus, 1758); Geometridae: Operophtera brumata (Linnaeus, 1758), Erannis defoliaria (Clerck, 1759), Ectropis crepuscularia (Denis & Schiffermüller, 1775), and Colotois pennaria (Linnaeus, 1761); Notodontidae: Phalera bucephala (Linnaeus, 1758) and Thaumatothrips processionea (Linnaeus, 1758); and Erebidae (Lymantriinae): Lymantria dispar (Linnaeus, 1758), Calliteara pudibunda (Linnaeus, 1758), Euproctis chrysorrhoea (Linnaeus, 1758), E. similis (Fuessly, 1775), and Orgyia antiqua (Linnaeus, 1758) have been recorded as defoliators on red oaks in Europe (Csóka & Szabóky 2005; Göhre & Wagenknecht 1955; Gößner & Hausmann 2009). Leafminers were rarely recorded, e.g., Tischeria ekebladella (Bjerkander, 1796) (Tischeriidae, Csóka & Szabóky 2005). While searching Bucculatrix mines in 2011, but also earlier, we have observed several more specialised oak-feeding leafminers on Quercus rubra, but usually in very low numbers, e.g., the Nepticulidae Stigmella robosella (Johansson, 1971), S. cf. ruficapitella (Haworth, 1828), S. basiguttella (Heinemann, 1862), Ectoedemia albifasciella (Heinemann, 1871), and the Gracillariidae Caloptilia sp., Acrocercops bronniardellae (Fabricius, 1798), and Phyllonorycterus lautella (Zeller, 1846). Only few of these were we able to rear, but since we did see completed mines, we think it most likely that all of the above can utilise this host. Apart from the lepidopteran leafminers, we also observed in June 2011 many old mines of the leaf-mining weevil Orchestes quercus (Linnaeus, 1758).

During our survey on the “Veluwe” near Wezep, we found larvae and cocoons of Bucculatrix ulmella (identity of mines proven by DNA barcodes) on Q. rubra at a locality where this species is common on indigenous Quercus robur, and where both trees grow intermingled. However, we have no evidence of the presence of B. ulmella on Q. rubra elsewhere. Further observations are needed to determine if both species occur syntopically more widely in Europe.

Quercus rubra has commonly been ignored by entomologists, because it is an exotic tree. This has, no doubt, contributed to the delayed detection of B. ainsliella, which has been present in Europe since at least 1989. Even though the general notion that Q. rubra has a poor entomofauna in Europe is definitely true and can be explained by the taxonomic separation between red and white oaks, it is also clear that there are gaps in our knowledge. Hopefully, with this new knowledge entomologists will also give attention to red oak trees so that a more complete record of insects associated with this species in Europe can be obtained.

Import of Bucculatrix ainsliella

The oldest known records from Europe originate from Amersfoort, province of Utrecht, the Netherlands. The (planted) forests in this area often consist entirely of Quercus rubra. An accidental introduction of B. ainsliella, therefore, could easily have been followed by establishment on its native hostplant. Close to Amersfoort is the former US Air Force Base Soesterberg, only closed in 2008. It is conceivable that moths or cocoons were transported by Air Force aircraft, or by military personal, living in this area. Cocoons of the hibernating generation, spun over virtually any surface in the vicinity of infested red oaks, including parked cars (Gelok et al. 1999), and which are present for more than six months in any year, are the likely source of the intro-
duction. However, it may also be a sampling artefact that our first records are from near Amersfoort, and transport via containers on ships is another potential source of the original introduction. For another North American leaf-mining moth in Europe, Macrosaccus robiniella (Clemens, 1859) (as Phyllonorycter robiniella), it was suggested that either transport by air or by freight containers was the most likely source.
Table 1. Specimens and observations of *Bucculatrix ainsliella* in Europe.

<table>
<thead>
<tr>
<th>Stage, number</th>
<th>Registry #</th>
<th>Province</th>
<th>Locality</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 cocoons, several mines</td>
<td>NL-DR</td>
<td>Boschoord</td>
<td></td>
<td>25-9-2011</td>
</tr>
<tr>
<td>3 adults ep., 4 mines, including 1 larva, 12 cocoons</td>
<td>NL-DR</td>
<td>Havelterberg</td>
<td></td>
<td>18-7-2011</td>
</tr>
<tr>
<td>cocoon with exuviae</td>
<td>NL-DR</td>
<td>Holtinge, Holtingerveld</td>
<td></td>
<td>21-7-2011</td>
</tr>
<tr>
<td>adult</td>
<td>NL-DR</td>
<td>Lhee, Dwingelderveld, Lheederzand</td>
<td></td>
<td>19-8-2011</td>
</tr>
<tr>
<td>cocoons and mines</td>
<td>NL-FR</td>
<td>Burgum</td>
<td></td>
<td>28-10-2011</td>
</tr>
<tr>
<td>cocoons and mines</td>
<td>NL-FR</td>
<td>Leeuwarden, Kleine Wielen</td>
<td></td>
<td>5-10-2011</td>
</tr>
<tr>
<td>cocoons and mines</td>
<td>NL-FR</td>
<td>Leeuwarden, Kleine Wielen</td>
<td></td>
<td>24-10-2011</td>
</tr>
<tr>
<td>cocoon on trunk of Q. rubra</td>
<td>NL-FR</td>
<td>Tytsjerk, Groot Vijversburg estate</td>
<td></td>
<td>24-10-2011</td>
</tr>
<tr>
<td>1 male, 2 females</td>
<td>NL-GE</td>
<td>Beekbergen, Engeland</td>
<td>1-8-2011</td>
<td></td>
</tr>
<tr>
<td>1 female</td>
<td>NL-GE</td>
<td>Beekbergen, Engeland</td>
<td>5-8-2011</td>
<td></td>
</tr>
<tr>
<td>1 adult</td>
<td>NL-GE</td>
<td>Beekbergen, Engeland</td>
<td>9-10-2011</td>
<td></td>
</tr>
<tr>
<td>1 female e.p., 4 cocoons</td>
<td>NL-GE</td>
<td>Bennekom</td>
<td>19-7-2011</td>
<td></td>
</tr>
<tr>
<td>1 adult</td>
<td>NL-GE</td>
<td>Hoenderloo, De Rampe</td>
<td>18-9-2011</td>
<td></td>
</tr>
<tr>
<td>cocoons</td>
<td>NL-GE</td>
<td>Hoenderloo, Hoge Veluwe</td>
<td>30-10-2011</td>
<td></td>
</tr>
<tr>
<td>1 female</td>
<td>NL-GE</td>
<td>Twello</td>
<td>15-7-2003</td>
<td></td>
</tr>
<tr>
<td>1 male</td>
<td>NL-GE</td>
<td>Twello</td>
<td>18-7-2005</td>
<td></td>
</tr>
<tr>
<td>1 male</td>
<td>NL-GE</td>
<td>Twello</td>
<td>16-7-2007</td>
<td></td>
</tr>
<tr>
<td>1 male</td>
<td>NL-GE</td>
<td>Twello</td>
<td>21-8-2010</td>
<td></td>
</tr>
<tr>
<td>1 male</td>
<td>NL-GE</td>
<td>Twello</td>
<td>el 17-9-2009</td>
<td></td>
</tr>
<tr>
<td>1 male</td>
<td>NL-GE</td>
<td>Wezep</td>
<td>15-8-2009</td>
<td></td>
</tr>
<tr>
<td>1 male</td>
<td>RMNH.INS. JCK.7310</td>
<td>NL-GE</td>
<td>Wezep</td>
<td>29-4-2010</td>
</tr>
<tr>
<td>1 male</td>
<td>RMNH.INS. JCK.7513</td>
<td>NL-GE</td>
<td>Wezep</td>
<td>20-8-2010</td>
</tr>
<tr>
<td>1 male</td>
<td>NL-GE</td>
<td>Wezep</td>
<td>21-8-2010</td>
<td></td>
</tr>
<tr>
<td>1 male</td>
<td>NL-GE</td>
<td>Wezep</td>
<td>20-4-2011</td>
<td></td>
</tr>
<tr>
<td>1 male</td>
<td>NL-GE</td>
<td>Wezep</td>
<td>22-4-2011</td>
<td></td>
</tr>
<tr>
<td>cocoons</td>
<td>NL-GE</td>
<td>Zwolse Bos, Wezep-Heerde</td>
<td>18-7-2011</td>
<td></td>
</tr>
<tr>
<td>1 male</td>
<td>RMNH.INS.544410</td>
<td>NL-GE</td>
<td>Wezep, Engelandseweg</td>
<td>27-6-2011</td>
</tr>
<tr>
<td>1 female</td>
<td>RMNH.INS.544411</td>
<td>NL-GE</td>
<td>Wezep, Engelandseweg</td>
<td>27-6-2011</td>
</tr>
<tr>
<td>1 female</td>
<td>RMNH.INS.544412</td>
<td>NL-GE</td>
<td>Wezep, Patrijzenlaan</td>
<td>27-6-2011</td>
</tr>
<tr>
<td>> 250 cocoons, mines</td>
<td>NL-LI</td>
<td>Brunssummerheide, Heikop</td>
<td>15-8-2011</td>
<td></td>
</tr>
<tr>
<td>10 cocoons</td>
<td>NL-LI</td>
<td>Meinweg, Elfenmeer</td>
<td>16-8-2011</td>
<td></td>
</tr>
<tr>
<td>±150 mines, cocoons, several♂♀ ep.</td>
<td>NL-LI</td>
<td>Meinweg, Vlodrop Station</td>
<td>31-7-2011</td>
<td></td>
</tr>
</tbody>
</table>

Table 1. Table continued.

<table>
<thead>
<tr>
<th>Leg</th>
<th>Method</th>
<th>Genitalia slide</th>
<th>Source</th>
<th>Longitude</th>
<th>Latitude</th>
</tr>
</thead>
<tbody>
<tr>
<td>T. Muus</td>
<td></td>
<td></td>
<td>observation</td>
<td>52.90006</td>
<td>6.22525</td>
</tr>
<tr>
<td>T. Muus & S. Corver</td>
<td>ep</td>
<td>TM1159</td>
<td>coll. Muus</td>
<td>52.779</td>
<td>6.195</td>
</tr>
<tr>
<td>J. van Roosmalen</td>
<td>al</td>
<td></td>
<td>coll. Roosmalen, photograph *</td>
<td>52.811</td>
<td>6.248</td>
</tr>
<tr>
<td>J. Ebink</td>
<td></td>
<td></td>
<td>photograph *</td>
<td>52.823</td>
<td>6.412</td>
</tr>
<tr>
<td>G. Sinnema</td>
<td></td>
<td></td>
<td>photograph *</td>
<td>53.196</td>
<td>6.002</td>
</tr>
<tr>
<td>G. Sinnema</td>
<td></td>
<td></td>
<td>photograph *</td>
<td>53.217</td>
<td>5.886</td>
</tr>
<tr>
<td>G. Sinnema</td>
<td></td>
<td></td>
<td>photograph *</td>
<td>53.217</td>
<td>5.886</td>
</tr>
<tr>
<td>L. Knijnsberg, J. van Roosmalen & A. Wijker</td>
<td>al</td>
<td></td>
<td>coll. Roosmalen, photograph *</td>
<td>52.158</td>
<td>5.907</td>
</tr>
<tr>
<td>L. Knijnsberg, J. van Roosmalen & A. Wijker</td>
<td>al</td>
<td></td>
<td>coll. Roosmalen, photograph *</td>
<td>52.158</td>
<td>5.907</td>
</tr>
<tr>
<td>J. van Roosmalen</td>
<td>al</td>
<td></td>
<td>coll. Roosmalen, photograph *</td>
<td>52.158</td>
<td>5.907</td>
</tr>
<tr>
<td>C. Geris</td>
<td>ep</td>
<td></td>
<td>coll. Muus *</td>
<td>52.011</td>
<td>5.681</td>
</tr>
<tr>
<td>L. Knijnsberg, A. Wijker</td>
<td>al</td>
<td></td>
<td>photograph *</td>
<td>52.121</td>
<td>5.911</td>
</tr>
<tr>
<td>W.N. Ellis</td>
<td></td>
<td></td>
<td>coll. Ellis</td>
<td>52.12</td>
<td>5.86</td>
</tr>
<tr>
<td>J. Wolschrijn</td>
<td>JCK744</td>
<td></td>
<td>Coll Wolschrijn</td>
<td>52.2425</td>
<td>6.1084</td>
</tr>
<tr>
<td>J. Wolschrijn</td>
<td>JCK7310</td>
<td></td>
<td>RMNH</td>
<td>52.4544</td>
<td>5.9847</td>
</tr>
<tr>
<td>J. Wolschrijn</td>
<td>JCK7513</td>
<td></td>
<td>Coll Huisman</td>
<td>52.4544</td>
<td>5.9847</td>
</tr>
<tr>
<td>J. Wolschrijn</td>
<td>JCK7515</td>
<td></td>
<td>Coll Huisman</td>
<td>52.4544</td>
<td>5.9847</td>
</tr>
<tr>
<td>J. Wolschrijn</td>
<td>ep</td>
<td></td>
<td>Coll Wolschrijn</td>
<td>52.2425</td>
<td>6.1084</td>
</tr>
<tr>
<td>K.J. Huisman</td>
<td>al</td>
<td>JCK7310</td>
<td>RMNH</td>
<td>52.45017</td>
<td>5.98397</td>
</tr>
<tr>
<td>K.J. Huisman</td>
<td>al</td>
<td>JCK7513</td>
<td>Coll Huisman</td>
<td>52.45017</td>
<td>5.98397</td>
</tr>
<tr>
<td>K.J. Huisman</td>
<td>al</td>
<td>JCK7515</td>
<td>Coll Huisman</td>
<td>52.45017</td>
<td>5.98397</td>
</tr>
<tr>
<td>K.J. Huisman</td>
<td>al</td>
<td></td>
<td>RMNH</td>
<td>52.45017</td>
<td>5.98397</td>
</tr>
<tr>
<td>K.J. Huisman</td>
<td>al</td>
<td></td>
<td>Coll Huisman</td>
<td>52.45017</td>
<td>5.98397</td>
</tr>
<tr>
<td>K.J. Huisman</td>
<td>al</td>
<td></td>
<td>Coll Huisman</td>
<td>52.45017</td>
<td>5.98397</td>
</tr>
<tr>
<td>K.J. Huisman</td>
<td></td>
<td></td>
<td>observation</td>
<td>52.426</td>
<td>6.038</td>
</tr>
<tr>
<td>C. Doorenweerd & E.J. van Nieukerken</td>
<td>ep</td>
<td>JCK7310</td>
<td>RMNH</td>
<td>52.45017</td>
<td>5.98397</td>
</tr>
<tr>
<td>C. Doorenweerd & E.J. van Nieukerken</td>
<td>ep</td>
<td></td>
<td>RMNH</td>
<td>52.45017</td>
<td>5.98397</td>
</tr>
<tr>
<td>C. Doorenweerd & E.J. van Nieukerken</td>
<td>ep</td>
<td></td>
<td>RMNH</td>
<td>52.45529</td>
<td>5.98532</td>
</tr>
<tr>
<td>A. Schreurs</td>
<td>ep</td>
<td></td>
<td>coll Schreurs</td>
<td>50.928</td>
<td>6.006</td>
</tr>
<tr>
<td>A. Schreurs & M. van Stiphout</td>
<td>ep</td>
<td></td>
<td>coll Schreurs</td>
<td>51.18</td>
<td>6.128</td>
</tr>
<tr>
<td>A. Schreurs & R. Seliger</td>
<td>ep</td>
<td></td>
<td>coll. Schreurs & Seliger</td>
<td>51.152</td>
<td>6.155</td>
</tr>
</tbody>
</table>

Method: al – at light, ep – reared from larva or cocoon.
* – details to be found at http://waarneming.nl/soort/view/211390
** – details to be found at http://waarnemingen.be/soort/view/211390
<table>
<thead>
<tr>
<th>Stage, number</th>
<th>Registry #</th>
<th>Province</th>
<th>Locality</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>adults ep, cocoons</td>
<td>NL-LI</td>
<td>Meinweg, Vlodrop Station</td>
<td>2-7-2011</td>
<td></td>
</tr>
<tr>
<td>adult</td>
<td>NL-LI</td>
<td>Meinweg, Vlodrop Station</td>
<td>22-7-2009</td>
<td></td>
</tr>
<tr>
<td>1 female e.p., cocoon on Cyrisus scoparius</td>
<td>NL-LI</td>
<td>Meinweg</td>
<td>ep 15-4-2007</td>
<td></td>
</tr>
<tr>
<td>leafmines</td>
<td>NL-LI</td>
<td>Meinweg, Roermond</td>
<td>4-9-2011</td>
<td></td>
</tr>
<tr>
<td>adult</td>
<td>NL-LI</td>
<td>Sint-Odiliënberg</td>
<td>9-9-2009</td>
<td></td>
</tr>
<tr>
<td>5 cocoons</td>
<td>NL-LI</td>
<td>Vijlenerbosch</td>
<td>13-8-2011</td>
<td></td>
</tr>
<tr>
<td>mines</td>
<td>NL-LI</td>
<td>Wellerlooi, De Hamert</td>
<td>1-8-2011</td>
<td></td>
</tr>
<tr>
<td>cocoons, e.p. 1 adult</td>
<td>NL-LI</td>
<td>Wellerlooi, De Hamert</td>
<td>2-8-2011</td>
<td></td>
</tr>
<tr>
<td>several mines and cocoons</td>
<td>NL-NB</td>
<td>Malpieven</td>
<td>17-7-2012</td>
<td></td>
</tr>
<tr>
<td>several adults</td>
<td>NL-NB</td>
<td>Nuenen</td>
<td>21-7-2010</td>
<td></td>
</tr>
<tr>
<td>several adults</td>
<td>NL-NB</td>
<td>Nuenen</td>
<td>11-7-2010</td>
<td></td>
</tr>
<tr>
<td>several adults</td>
<td>NL-NB</td>
<td>Nuenen</td>
<td>24-5-2011</td>
<td></td>
</tr>
<tr>
<td>several adults</td>
<td>NL-NB</td>
<td>Nuenen</td>
<td>27-6-2011</td>
<td></td>
</tr>
<tr>
<td>several mines and cocoons</td>
<td>NL-NB</td>
<td>Plateaux</td>
<td>18-7-2012</td>
<td></td>
</tr>
<tr>
<td>cocoon</td>
<td>NL-NH</td>
<td>Amstelveen, Gasperplaspar</td>
<td>2011</td>
<td></td>
</tr>
<tr>
<td>1 male</td>
<td>NL-OV</td>
<td>Onna</td>
<td>20-7-2011</td>
<td></td>
</tr>
<tr>
<td>mines, 1 cocoon</td>
<td>NL-OV</td>
<td>Enschede, De Tip</td>
<td>24-7-2012</td>
<td></td>
</tr>
<tr>
<td>adult</td>
<td>NL-OV</td>
<td>Zwolle</td>
<td>19-4-2009</td>
<td></td>
</tr>
<tr>
<td>1 male</td>
<td>NL-UT</td>
<td>Amersfoort-Zuid</td>
<td>28-9-1989</td>
<td></td>
</tr>
<tr>
<td>1 male</td>
<td>NL-UT</td>
<td>Amersfoort-Zuid</td>
<td>30-4-1990</td>
<td></td>
</tr>
<tr>
<td>1 female</td>
<td>NL-UT</td>
<td>Amersfoort-Zuid</td>
<td>5-8-1990</td>
<td></td>
</tr>
<tr>
<td>1 male</td>
<td>NL-UT</td>
<td>Amersfoort-Zuid</td>
<td>15-8-1990</td>
<td></td>
</tr>
<tr>
<td>adults</td>
<td>NL-UT</td>
<td>Baarn, De Vuursche</td>
<td>7-5-2011</td>
<td></td>
</tr>
<tr>
<td>1 mine</td>
<td>NL-UT</td>
<td>Soest - Monnikenbos</td>
<td>19-7-2012</td>
<td></td>
</tr>
<tr>
<td>adult</td>
<td>BE-AN</td>
<td>Balen, Rosselaar</td>
<td>29-7-2010</td>
<td></td>
</tr>
<tr>
<td>adult</td>
<td>BE-AN</td>
<td>Berchem</td>
<td>12-5-2006</td>
<td></td>
</tr>
<tr>
<td>adult</td>
<td>BE-AN</td>
<td>Edegem</td>
<td>11-5-2011</td>
<td></td>
</tr>
<tr>
<td>cocoons</td>
<td>BE-AN</td>
<td>Meerhout</td>
<td>10-9-2011</td>
<td></td>
</tr>
<tr>
<td>adult</td>
<td>BE-AN</td>
<td>Mol, Molse zandputten</td>
<td>27-9-2011</td>
<td></td>
</tr>
<tr>
<td>adult</td>
<td>BE-AN</td>
<td>Mortsel</td>
<td>23-7-2010</td>
<td></td>
</tr>
<tr>
<td>adult</td>
<td>BE-LI</td>
<td>Lommel, Grote Barreel</td>
<td>3-10-2011</td>
<td></td>
</tr>
<tr>
<td>50 cocoons</td>
<td>BE-LI</td>
<td>Zutendaal</td>
<td>8-6-2011</td>
<td></td>
</tr>
<tr>
<td>10 cocoons, heavily parasited</td>
<td>BE-OV</td>
<td>Knesselare, Drongengoedbos</td>
<td>16-9-2011</td>
<td></td>
</tr>
<tr>
<td>adult</td>
<td>BE-WV</td>
<td>Torhout, Groenhove area</td>
<td>30-7-2011</td>
<td></td>
</tr>
<tr>
<td>Several mines and cocoons, 2 ep</td>
<td>DE</td>
<td>Rosenthal</td>
<td>31-7-2011</td>
<td></td>
</tr>
<tr>
<td>cocoons, vacated mines</td>
<td>DE</td>
<td>Elmpt Adler Wald, near Dutch border</td>
<td>15-10-2011</td>
<td></td>
</tr>
<tr>
<td>cocoons, vacated mines, 1 larva</td>
<td>DE</td>
<td>Elmpt, 2 km S, Dutch border pole 938</td>
<td>16-10-2011</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Leg</th>
<th>Method</th>
<th>Genitalia slide</th>
<th>Source</th>
<th>Longitude</th>
<th>Latitude</th>
</tr>
</thead>
<tbody>
<tr>
<td>K.J. Huisman</td>
<td>ep</td>
<td>Coll Huisman</td>
<td>51.152</td>
<td>6.155</td>
<td></td>
</tr>
<tr>
<td>T. Muus</td>
<td>al</td>
<td>coll. Muus</td>
<td>51.152</td>
<td>6.155</td>
<td></td>
</tr>
<tr>
<td>W. Wittland</td>
<td></td>
<td>Tokár 607</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V. Middelman & R. Vos</td>
<td></td>
<td>photograph</td>
<td>51.182</td>
<td>6.046</td>
<td></td>
</tr>
<tr>
<td>E. Clerx</td>
<td>al</td>
<td>photograph</td>
<td>51.143</td>
<td>6.002</td>
<td></td>
</tr>
<tr>
<td>A. Schreurs</td>
<td></td>
<td></td>
<td>50.77</td>
<td>5.953</td>
<td></td>
</tr>
<tr>
<td>W.N. Ellis</td>
<td></td>
<td>coll. Ellis</td>
<td>51.518</td>
<td>6.172</td>
<td></td>
</tr>
<tr>
<td>W.N. Ellis</td>
<td></td>
<td>coll. Ellis</td>
<td>51.512</td>
<td>6.173</td>
<td></td>
</tr>
<tr>
<td>C. Doorenweerd, H. Dries & T. Muus</td>
<td></td>
<td>RMNH</td>
<td>52.18958</td>
<td>5.29524</td>
<td></td>
</tr>
<tr>
<td>C. Nolte</td>
<td>al</td>
<td>photograph</td>
<td>51.47</td>
<td>5.551</td>
<td></td>
</tr>
<tr>
<td>C. Nolte</td>
<td>al</td>
<td>photograph</td>
<td>51.47</td>
<td>5.551</td>
<td></td>
</tr>
<tr>
<td>C. Nolte</td>
<td>al</td>
<td>photograph</td>
<td>51.48</td>
<td>5.56</td>
<td></td>
</tr>
<tr>
<td>C. Nolte</td>
<td>al</td>
<td>photograph</td>
<td>51.48</td>
<td>5.56</td>
<td></td>
</tr>
<tr>
<td>C. Doorenweerd & C. Van Steenwinkel</td>
<td></td>
<td>RMNH</td>
<td>51.27108</td>
<td>5.40085</td>
<td></td>
</tr>
<tr>
<td>T. Hakbijl</td>
<td></td>
<td>RMNH</td>
<td>52.31</td>
<td>4.99</td>
<td></td>
</tr>
<tr>
<td>T. Muus</td>
<td></td>
<td>coll. Muus</td>
<td>52.775</td>
<td>6.149</td>
<td></td>
</tr>
<tr>
<td>J.C. & P.M. Koster</td>
<td></td>
<td>RMNH</td>
<td>52.257</td>
<td>6.969</td>
<td></td>
</tr>
<tr>
<td>G. Veurink</td>
<td>al</td>
<td>photograph</td>
<td>52.523</td>
<td>6.049</td>
<td></td>
</tr>
<tr>
<td>K.N. Nieuwland</td>
<td>al</td>
<td>JCK3157</td>
<td>RMNH</td>
<td>52.13881</td>
<td>5.38087</td>
</tr>
<tr>
<td>K.N. Nieuwland</td>
<td>al</td>
<td>RMNH</td>
<td>52.13881</td>
<td>5.38087</td>
<td></td>
</tr>
<tr>
<td>K.N. Nieuwland</td>
<td>al</td>
<td>RMNH</td>
<td>52.13881</td>
<td>5.38087</td>
<td></td>
</tr>
<tr>
<td>K.N. Nieuwland</td>
<td>al</td>
<td>RMNH</td>
<td>52.13881</td>
<td>5.38087</td>
<td></td>
</tr>
<tr>
<td>L. Knijnsberg, J. van Roosmalen & A. Wijker</td>
<td>al</td>
<td>coll. Roosmalen</td>
<td>photograph*</td>
<td>52.186</td>
<td>5.232</td>
</tr>
<tr>
<td>H. Soetekouw</td>
<td></td>
<td>photograph</td>
<td>52.15</td>
<td>5.335</td>
<td></td>
</tr>
<tr>
<td>Ludwig Jansen</td>
<td>light trap</td>
<td>photograph**</td>
<td>51.172</td>
<td>5.143</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>photograph</td>
<td>51.181</td>
<td>4.425</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>photograph</td>
<td>51.153</td>
<td>4.438</td>
<td></td>
</tr>
<tr>
<td>C. van Steenwinkel</td>
<td></td>
<td>photograph</td>
<td>51.108</td>
<td>5.053</td>
<td></td>
</tr>
<tr>
<td>C. van Steenwinkel</td>
<td>al</td>
<td>photograph</td>
<td>51.215</td>
<td>5.112</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>photograph</td>
<td>51.167</td>
<td>4.45</td>
<td></td>
</tr>
<tr>
<td>H. Dries.</td>
<td>al</td>
<td>photograph</td>
<td>51.23</td>
<td>5.374</td>
<td></td>
</tr>
<tr>
<td>C. Snyers</td>
<td></td>
<td>coll. Snyers</td>
<td>50.933</td>
<td>5.577</td>
<td></td>
</tr>
<tr>
<td>S. Wullaert</td>
<td></td>
<td>coll. Wullaert</td>
<td>51.146</td>
<td>3.454</td>
<td></td>
</tr>
<tr>
<td>T. Vermeulen</td>
<td>light trap</td>
<td>photograph**</td>
<td>51.072</td>
<td>3.134</td>
<td></td>
</tr>
<tr>
<td>A. Scheurs & R. Seliger</td>
<td>ep</td>
<td>coll. Seliger</td>
<td>51.131</td>
<td>6.132</td>
<td></td>
</tr>
<tr>
<td>E.J. van Nieukerken</td>
<td></td>
<td>RMNH</td>
<td>51.2222</td>
<td>6.0749</td>
<td></td>
</tr>
<tr>
<td>E.J. van Nieukerken</td>
<td></td>
<td>RMNH</td>
<td>51.19332</td>
<td>6.16207</td>
<td></td>
</tr>
</tbody>
</table>

Method: al – at light, ep – reared from larva or cocoon.

* – details to be found at http://waarneming.nl/soort/view/211390

** – details to be found at http://waarnemingen.be/soort/view/211390
The fact that we found different COI barcode haplotypes even from specimens at a single locality, suggests that multiple individuals have been imported. With the current rate of transportation of goods and people between Western Europe and North America and the ease with which *B. ainsliella* larvae can attach themselves to almost any surface, in combination with the ideal habitat away from home that has been created in Europe by widespread planting *Q. rubra*, it seems that it was only
Fig. 36. Neighbor-joining tree of DNA barcodes of Bucculatricidae, using uncorrected P distance. The Australian Ogmograptis scribula Meyrick, 1935 is used as outgroup. Red records are Dutch specimens of B. ainsiella, green ones are from North America. The following are also North American species: B. sexnotata Braun, 1927, B. pomfliolita Clemens, 1860, B. polytita Braun, 1963, B. canadensissa Chambers, 1875. The remainder are European species. Details on vouchers of specimens with a “RMNH.INS” registry number can be found in the BOLD project “Lepidoptera of the Netherlands – public [NLLA]" (http://www.barcodinglife.com). Other public sequences are from other projects, and can be recognised here by the added Genbank Accession number.

a matter of time before this American moth established itself in Europe. There are ever-increasing examples of North American micromoths invading and successfully
establishing in Europe. Examples of recent introductions are in Heliozelidae: *Antispila oinophylla* Van Nieukerken & Wagner, 2012 on *Vitis* (van Nieukerken et al. 2012b), a species of *Coptodisca* on *Juglans* (Bernardo et al. 2012); in Gracillariidae: *Parectopa robiniella* (Clemens, 1863) and *Macrosaccus robiniella* both on *Robinia pseudoacacia* (Whitebread 1990), *Phyllocnistis vitegenella* Clemens, 1859 on *Vitis* (Posenato et al. 1997); in Argyresthiidae: *Argyresthia thuiella* (Packard, 1871) on *Thuja* and other Cupressaceae; and in Gelechiidae: *Coleotechnites piceaella* (Kearfott, 1903) on *Picea* (Lopez-Vaamonde et al. 2010).

Risks?

In North America *Bucculatrix ainsliella* is known to have severe outbreaks from time to time. Especially in British Columbia, where it is introduced, the species has become a nuisance in urban areas due to its abundance, especially when prepupae balloon down from trees and make their cocoons everywhere. In natural habitats, outbreaks are probably a natural phenomenon, followed by years of lower densities when parasitoid populations control their numbers. A similar alteration has been observed in the birch leaf skeletoniser *B. canadensisella* on *Betula* species, which underwent several outbreaks that lasted for two to three years (Friend 1927). In Europe, outbreaks are known from the expanding native species *B. thoracella* on *Tilia* (Kuchlein & Frankenhuyszen 1994), and we have observed similarly abundant ballooning larvae from *Tilia* trees in cities in the Netherlands. Although *B. ainsliella* can be common in places in the Netherlands, we have not yet seen an indication of an outbreak or indications of real foliar damage. Many of the northern red oak trees where we found *B. ainsliella* on, were more visibly damaged by caterpillars of indigenous polyphagous caterpillar and beetle species.

We urge forest entomologists and lepidopterists throughout Europe to look for this species (adults, mines, or cocoons) in order to be able to more fully understand its range expansion across the Palaearctic.

Acknowledgements

We are grateful to the many people who provided records or material: Eddy Clerx (Sint-Odiliënberg, Netherlands), Sifra Corver (Aeggst Am Albis, Switzerland), Heidi Dries (Lommel, Belgium), Ewouth Ebink (Leggeloo, Netherlands), Chris Geris (Bennekom, Netherlands), Tom Hakbijl (Naturalis, Leiden, Netherlands), Ludwig Jansen (Ovifat, Belgium), Leo Janssen (Edegem, Belgium), Luc Knijnsberg (Egmond aan den Hoef, Netherlands), P. M. Koster (Nieuw-Venner, Netherlands), Carl Nolte (Nuenen, Netherlands), John van Roosmalen (Alkmaar, Netherlands), Rudi Seliger (Schwalmtal, Germany), George Sinnema (Leeuwarden, Netherlands), Hetty Soetekouw (Amersfoort, Netherlands), Chris Snyers (Wilrijk, Belgium), Carina Van Steenwinkel (Meerhout, Belgium), Zdenko Tokár (Šala, Slovakia), Tom Vermeulen (Daknam, Belgium), Gert Veurink (Zwolle, Netherlands), Arnold Wijk (Egmond aan Zee, Netherlands), Wolfgang Wittland (Dalheim, Germany), Jacques Wolschrijn (Twello, Netherlands), Steve Wullaert (Wielsbeke, Belgium). Kees van Achterberg (Naturalis, Leiden, Netherlands) is acknowledged for identification of the parasitoids. We thank Kees van den Berg (Naturalis, Leiden, Netherlands) for technical assistance.
References

New faunistic records for a number of Microlepidoptera, including description of three new taxa from Agonoxenidae, Depressariidae, and Gelechiidae (Gelechioidea)

JAN ŠUMPICH 1 & JAN SKYVA 2

1 CZ-562 81 Česká Bělá 212, Czech Republic; jansumpich@seznam.cz
2 Buzulucká 3, CZ-160 00 Praha 6, Dejvice, Czech Republic; janskyva@seznam.cz

Received 31 May 2012; reviews returned 8 August 2012; accepted 29 August 2012.

Subject Editor: Lauri Kaila.

Abstract. Faunistic data for 48 species of Microlepidoptera from Europe are provided. A total of 35 records are new for certain European countries. Four species are recorded for the first time in Europe: Spinizophallellus desertus Bidzilya & Karsholt, 2008 (Gelechiidae), Hypsopygia almanalis (Rebel, 1917) (Pyralidae), Pyrausta tithonialis Zeller, 1872, and Mecyna lutulentalis (Lederer, 1858) (both Crambidae). Three new taxa are described: Agonopterix socerbi Šumpich, sp. n. (Depressariidae) from Slovenia, Chrysoclista abchasica gabretica Šumpich, sp. n. (Agonoxenidae) from the Czech Republic, and Eulamprotes graecatella Šumpich & Skyva, sp. n. (Gelechiidae) from Greece. The previously unknown female of Megacrascpedus albovenata Junnilainen, 2010 (Gelechiidae) is also described. Xenopathia novaki (Rebel, 1891) (Blastobasidae) is figured for the first time including genitalia of both sexes.

Introduction

Our collecting trips to various parts of Europe have yielded findings regarding a considerable number of species that are noteworthy from ecological, faunistic or other points of view. As the data available are insufficient for a detailed evaluation of the lepidopteran fauna in the visited areas, we only provide the most interesting findings, a number of which are first country records. Furthermore, we collected several specimens that we could not identify as belonging to any known species. Based on their external appearance and the structure of the genitalia, these specimens differ sufficiently from the currently known taxa that they can be considered as being new to science. Here we describe these taxa.

Material and methods

The great majority of the material examined was collected at light. All the specimens are deposited in our private collections, unless stated otherwise (the list of collections is given below). The type material (including holotypes) is deposited in the collections of the authors of descriptions, and in the future they will be moved to the Czech National Museum in Prague. The nomenclature and the species distributions were taken from the current version of Fauna Europaea (Karsholt & van Nieukerken 2011).
Abbreviations

SU leg. et coll. Jan Šumpich, Česká Bělá, Czech Republic
SK leg. et coll. Jan Skyva, Prague, Czech Republic
LI leg. et coll. Jan Liška, Prague, Czech Republic
NHMW Naturhistorisches Museum Wien, Austria
ZMUC Natural History Museum of Denmark, Copenhagen, Denmark

Results and discussion

TINEOIDEA: TINEIDAE

Elatobia fuliginosella (Lienig & Zeller, 1846)

Distributed in Europe but a rare species in general. First country record for Croatia.

GELECHIOIDEA: DEPRESSARIIDAE

Agonopterix socerbi Šumpich, sp. n. Figs 1–4

Description. A d u l t (Figs 1, 2). Wingspan 15–17 mm. Head rust-coloured, frons ochreous yellow. Antenna grey brown, filiform, in male slightly thicker at base and gradually narrowing to apex. Labial palpi cream white, more or less mottled with brown on outer and upper surface, segment 2 unicolourous light on inner surface. Thorax rust-coloured, mottled with lighter and darker scales. Forewing ground colour rusty with a strong tinge of brick-red; base of forewing and proximal half of costal area lighter, reddish; costa lighter with irregular brown maculation; apex and outer margin of forewing darker, rusty brown; termen with a row of indistinct darker spots; distinct distal white spot edged by dark scales and surrounded by a large dark area; four black and white discocellular spots that might not be obvious in some specimens. Legs yellowish, more or less dusted with grey and brownish scales. Abdomen light, greyish. Hindwings light grey, paler basally. Male genitalia (Fig. 3). Valva very broad at base, gradually narrowing to apex, covered with short hair-like setae; cuiller slightly bent laterally, narrow, very long, with mallet-like apex directed towards top of valva. Tegumen narrow and long; socii relatively small, rounded; gnathos with elongate-oval culcita. Juxta with two narrow, almost pointed tips. Transtilla lobe very broad, square-like. Phallus narrow, slightly curved, with pointed apex.
Female genitalia (Fig. 4). Papillae anales narrow and long, as a whole large. Ostium bursae small, circular; ductus bursae long, very narrow and only very slightly broadening towards corpus bursae; corpus bursae very narrow, oval; signum oval with short spines.
Differential diagnosis. The newly described species is distinctive in having conspicuous brick red colouration, and in combination with its characteristic structure of genitalia (especially in males having long cuiller exceeding the margin of valva) can be easily distinguished from the hitherto known species of the genus *Agonopterix* Hübner, 1825.

Distribution. Only known from southwestern Slovenia.

Life history. Early stages and host plant unknown. We captured the moths at ultraviolet light (fluorescent lamp 8W/12V) in open grassy steppes.

Derivatio nominis. Named after the type locality Socerb near Crni Kal in Slovenia.

Remarks. In the author’s (SU) collection this conspicuous species was kept among unidentified species for a number of years as the author had not succeeded in finding the proper name for this species in the literature available. Collections of some major European museums (e.g., London, Munich) were also examined for this species, and two specimens were eventually found in the Vienna museum (NHMW), misidentified as *A. ferulae* (Zeller, 1847).

GELECHIOIDEA: AUTOSTICHIDAE

Symmoca caliginella Mann, 1867

Material. Slovenia, 1♂, Osp, 26.iv.2002, SU; 3♂, Julijske Alpe, Mangart (1,600 m), 24.vii.1997, LI.

GELECHIOIDEA: AGONOXENIDAE

Chrysoclista abchasica gabretica Šumpich, ssp. n.

Fig. 5, 6

Material. Holotypus ♀, Czech Republic ‘Bohemia mer.[idionalis]’ (CZ) | Šumava M[oun][tain][ain].s. - 1195 m | Smrčina – Seitz,[ova] cesta | 48°45’01”N 13°55’41”E | 19.9.2005 | Jan Šumpich leg.’.

Description. A d u l t (Fig. 5). Wingspan 10.5 mm. Head and thorax grey with metallic shine. Labial palpus covered with brown grey, shiny scales. Antenna filiform, grey brown, paler at apex. Forewing ground colour light orange but with strong admixture of brown scales. Forewing edged with dark scales that form dark areas at base, at apex and at outer third of posterior margin of forewing. A narrow, straight and rather long black streak, admixed with silver scales, extending from base of forewing to costal spot. Costal spot circular, dark, with noticeable admixture of silver scales, other two spots (with very few silver scales) evenly placed at inner margin of the wing. Hindwing brown grey, narrow, pointed at apex. Legs light, dusted with brownish scales.

Male genitalia (Fig. 6). Very similar to those of *Ch. abchasica abchasica*, which are illustrated in Sinev (1986) and Koster & Sinev (2003). Valva broad, evenly broadly rounded at apex. Phallus narrow, moderately curved at 2/3 and ended with five thorn-like protuberances; cornuti present, forming short row of beads. Branches of gnathos ending with strongly sclerotised structures in the form of teeth. Anellus lobes very well developed, shaped similarly to those of *Chrysoclista zagulajevi* Sinev, 1986 but differing in apical structure – in *Ch. zagulajevi* the apex is irregularly toothed, in *Ch. abchasica gabretica* ssp. n. with regular serrated teeth.
Female genitalia. Unknown.

Differential diagnosis. The newly described subspecies is in habitus very similar to *Chrysoclista abchasica abchasica* Sinev, 1986 described from Georgia (Western Transcaucasia), from which it can be distinguished by features of genitalia; the easiest distinguishing feature is markedly different shape of anellus lobes, and also more evenly rounded valva, bigger apical lobes of tegumen and rather different shape of comutus. However, as both taxa are known only from a single specimen and possible variation within populations thus is unknown, we are hesitant to consider the new taxon a new species at this stage.

Distribution. Known only from southern Bohemia (Czech Republic).

Life history. Unknown. The holotype was collected in a climax spruce stand in the highest altitudes of the Bohemian Forest Mts (1,195 m a.s.l.).

Derivatio nominis. The subspecies name is derived from the Latin name of the mountains where the type material was found (Gabreta = Bohemian Forest Mts).

Remarks. After having collected the holotype, an effort has been made in the same locality to obtain further specimens but without any success. In the Czech Republic, species of *Chrysoclista* are very rarely encountered in general: *C. lathamella* (Fletcher, 1936) and *C. splendida* Karsholt, 1997 have been found only as single specimens, for *C. linneella* fewer than ten findings have been published. With respect to these difficulties, the subspecies *gabretica* is thus described from this single specimen, as was the case of the nominotypical subspecies.

GELECHIOIDEA: OECOPHORIDAE

Esperia sulphurella (Fabricius, 1775)

Material. Slovenia, 1♀, Crni kal, 26.iv.2002, SU.

The occurrence in Central Europe is documented only by very old records from Germany, Austria, and Poland (Tokár et al. 2005). The present record is first for Slovenia.
GELECHIOIDEA: COSMOPTERIGIDAE

Pyroderces klimeschi Rebel, 1938

A rare species distributed mainly in Central Europe, with very few published faunistic data. New species for France (known only from Corsica).

GELECHIOIDEA: BLASTOBASIDAE

Xenopathia novaki (Rebel, 1891)
Figs 7–10

Described from a single male taken in the vicinity of Split (Rebel 1891). No further findings have been published until now. As images of the species are not available elsewhere, here we provide photographs of adults (Figs 7, 8), as well as figures of genitalia of both sexes (Figs 9, 10). New species for Greece.

Blastobasis pannonica Šumpich & Liška, 2011

Material. *Russia,* 3♂, Orenburg oblast, Kidriasovo, 20–21.vii.2011, SU.

Recently separated from *Blastobasis phycidella* (Zeller, 1839). The two species often occur in sympathy. The distribution range of both taxa could be more exactly defined only by a thorough review of the existing collection material. First country record.

GELECHIOIDEA: GELECHIIDAE

Megacraspedus albovenata Junnilainen, 2010
Figs 11, 12

Recently described from the southern Urals (Orenburg area; in the current version of Fauna Europaea, the area ‘Russia Central’ is incorrectly given). Soon afterwards recorded also in Central Europe, namely in the Czech Republic (Šumpich et al. 2011); as the female was previously unknown and now females were found among numerous specimens collected in the Czech locality (the vicinity of Znojmo), a description of the female is included here. The present records are first for Slovakia.

Description. *Female* (Fig. 11). Body size and wing colour pattern agree with those described for males in the original species description by Junnilainen & Nupponen (2010). Females only differ in shape of forewing, which is more pointed apically and more arc-shaped anteriorly than in males.
Female genitalia (Fig. 12). Papillae anales broad, large, as long as apophyses anteriores. Apophyses anteriores strong, relatively short, approximately 2.6 times shorter than apophyses posteriores. Ostium bursae triangular, sclerotised on sides, pointed proximally. Ductus bursae slightly broadening towards corpus bursae. Corpus bursae almost spherical; signum square-shaped with irregularly cut-out margins, folded diagonally at about 30° angle and scaly sclerotised on inner side.

Aristotelia decoratella (Staudinger, 1879)

Widespread in Southern Europe. From the Balkan Peninsula reported from Bulgaria, and single records from Greece and Croatia are included in Elsner et al. (1999), where by mistake ‘Spalato’ [= Split], a Croatian locality, was by mistake considered to be Italian. Considering the shortage of publicly available records (the occurrence in Greece and Croatia is not mentioned in the current version of Fauna Europaea), we have added a few of our own findings here.

Metzneria litorrella (Douglas, 1850)

Distributed in Western Europe, also recorded in Russia and Cyprus. First country record for Slovenia.

Monochroa palustrella (Douglas, 1850)

Material. Greece, 3♂, Mesangala, 6.vi.2006, leg. J. Procházka, coll. SK.

Previously known only from more northern parts of Europe, from Great Britain through Central and Northern Europe to Russia. First record from the Balkans, a new species for Greece.

Eulamprotes graecatella Šumpich & Skyva, sp. n.

Material. Holotypus ♀, Greece ‘Hellas’ | Igoumenitsa | 5km west, 10 m | 28.6.2001 | J. Skyva leg.’ coll. SK. – Paratypes: 1♂, 1♀, same data as holotypus, ♀ in coll. SK, ♀ in coll. SU; 1♀, ‘Greece | Plataria | 12 km S Iguminitza, 5 m | 29.vii.1977 | M. Fibiger leg.’, ZMUC; 1♂, ‘Greece | Evro, Kavisos, 100 m | 22.–23. viii.1985 | M. Fibiger leg.’, ‘GU 86/422’ <genitalia slide P. Huemer>, ZMUC.

Figs 13–16

Description. Adult (Figs 13, 14). Wingspan 10 mm in males, 12 mm in females. Head brown-grey. Segment 2 of labial palpus brown, with pale apex; last segment light, on inner and outer side covered with band of brown scales. Antenna brown-grey, filiform. Legs brown, joints paler on tips. Forewing dark grey-brown with four light,
whitish spots (without any shiny silver scales), less distinct in female. First spot connecting costa with hindmargin of wing near wing base, two spots placed on costa (one in middle of wing and one near apex), last spot at inner margin of distal part of the wing. Hindwings, as well as fringes of both wings, brown grey.

Male genitalia (Fig. 15). Uncus narrow, distinctly concave at apex, with two long setae. Valva hammer-shaped apically, apex rounded in cranial direction, elongated in caudal direction. Sacculus small, rounded, covered with tiny setae. Saccus long, broader at base, tapering towards pointed apex. Phallus bulbous, without spines. Bulbus ejaculatorius very long, narrow, moderately broadening to apex. Segment VIII with pair of long coremata.

Female genitalia (Fig. 16). Apophyses posteriores long, 1.6x longer than apophyses anteriores. Ostium bursae narrow, membranous; antrum narrow, long, moderately sclerotised, in lower part with tiny line-like sclerites. Ductus bursae membranous, long, moderately broadening towards corpus bursae, twisted in lower half, distinctly sclerotised at entry of ductus seminalis. Corpus bursae very slightly oval, signum as a pointed spike hidden under half-sphere shelter.

Differential diagnosis. Eulamprotes graecatella sp. n. resembles in wing pattern some other species of Eulamprotes Bradley, 1971 by having white spots on dark ground, e.g., E. wilkella (Linnaeus 1758); however, the new species differs by having a longitudinal spot near base of forewing connecting costa with hindmargin of wing (in other species this spot does not reach the wing margin). The unique features by which it can be distinguished from all other congeneres are the shape of valvae and the apex of uncus with two long setae in the male, and the form of antrum and signum in the female.

Distribution. Greece.

Life history. Early stages and host plant unknown. The moths were taken in a salt marsh by the sea coast at the end of June.

Derivatio nominis. The species name is derived from the name of the country from which it is described, i.e. Greece.

Spiniphallellus desertus Bidzilya & Karsholt, 2008

Recently described from Uzbekistan, Turkmenistan, and Kazakhstan (Bidzilya & Karsholt 2008). New species for Russia as well as for Europe.

Ornativalva heluanensis (Debski, 1913)

Occurring from the Iberian Peninsula to Russia; from the Balkans previously known only from the Croatian coast. New species for Greece.

Gladiovalva aizpuuruai Vives, 1990

Previous published records only from Spain, from where it was described, and from Central Europe (Czech Republic, Slovakia, and Hungary). New species for Greece and Russia.

Xenolechia pseudovulgella Huemer & Karsholt, 1999

Described from Greece and Turkey (Huemer & Karsholt 1999). Present records are the only published data apart from the type localities.

Istrianis femoralis (Staudinger, 1876)

Distributed in Southern and Southeastern Europe, also recorded from Ukraine. New species for Slovenia.
Schneidereria pistaciella Weber, 1957

Described from specimens collected in Syria (Damascus) (Weber 1957). Recently also recorded in Europe, namely in Ukraine, Cyprus, and Greece (Huemer & Karsholt 2001). New species for Croatia.

Altenia elsneriella Huemer & Karsholt, 1999

Previously known only from type localities in Croatia, Greece, and the Republic of Macedonia (Huemer & Karsholt 1999), found also on the Island of Krk (Habeler 2003). Here, additional findings from Croatia and Greece are presented.

Streyella angiinella (Herrich-Schäffer, 1861)

Material. Slovenia, 4♂, 1♀, Podgorje env., Debeli hrib, 8.vii.2006, SK; Spain, 4♂, Almèria, Sierra de los Filabres, Alto del Calar del Gallinero, 17–18.vi.2007, SU. Russia, 1♂, Orenburg oblast, Kidriasovo, 21.vi.2009, SU.

Widespread mainly in Eastern and Southeastern Europe and also in Near East countries. From Western Europe only known from Spain, in Central Europe only known from recent records in Hungary. New species for Slovenia.

Caryocolum klosi (Rebel, 1917)

Distributed largely in Central Europe, also recorded from France, Romania, and Greece (Karsholt 2005). First country record.

Stomopteryx basalis (Staudinger, 1876)

Known from scattered localities in Southern Europe, previously reported from Croatia only from the Island of Krk (Habeler 2001).

Nothris congressariella (Bruand, 1858)

Known from Western, Southern and Southeastern Europe.

Anacampsis populella (Clerck, 1759)

Material. Greece, 1♀, Mesangala, 8.vi.2006, leg. J. Procházka, coll. SK.

Widely distributed throughout Europe but previously not known from Greece. First country record.

Dichomeris rasilella (Herrich-Schäffer, 1854)

Widely distributed but within Europe more common only in its western part (mainly in Spain) and in a limited number of localities in Central Europe (Hungary, northern
Bohemia). Previously not known from Southeastern Europe; new species for Greece and Bulgaria.

TORTRICOIDAEA: TORTRICIDAE

Phtheochroa reisseri (Razowski, 1970)

Described from Crete (Omalos). Later recorded only in southern France (Briançon env.) (Huemer & Luquet 1991) and Croatia (Island of Krk) (Habeler 1998). New species for Bulgaria.

Cochylimorpha hilarana (Herrich-Schäffer, 1851)

Material. Greece, 2♂, 9♀, Piéria, Kalivia Varikou, 18.viii.1996, SK.

In Europe widely distributed but previously no record was published from the Balkans. Concerning the material we examined, the collection date as well as the smaller wing-span, which does not exceed 14 mm, indicate that they likely belong to the second generation (in Central and Northern Europe the species has only one generation). Having compared these Greek specimens with those from the Czech Republic, the Greek moths appear to have a paler colouration, which is particularly obvious in hindwings (they are whitish in both sexes). No demonstrable differences were found in genitalia. New species for Greece.

Pelatea klugiana (Freyer, 1836)

Material. Slovenia, 1♂; Nanos, Strmec (700 m), 25.v.2001, LI. Bulgaria, 1♀; Belogradčik, 22.v.1977, SK.

Distributed from Spain through Central Europe to Russia where it was discovered only recently (Nedoshivina & Zolotuhin 2005). Its presence in the Balkans, namely Croatia, is mentioned only by Razowski (2003). New species for Bulgaria.

Epinotia nigristriana Budashkin & Zlatkov, 2011

Material. Greece, 10♂, 3♀; Thrakia, Kirkı distr., Kassitera env., 8–9.xi.2011, SK et SU.

Very recently described from southwestern Bulgaria, where it was found on dry, rocky steppes (Budashkin & Zlatkov 2011). Our material from Greece came from forests with deciduous oak species (predominantly with *Quercus pubescens*) where the moth was quite abundant despite very low night temperatures. This species has very likely been overlooked due to the very late adult flight (October to November) but locally it may be abundant; that is why a wider distribution can be expected in Southeastern Europe. New species for Greece.

Eucosma caliocrana (Caradja, 1931)

Figs 26–29. Adults of Tortricidae. 26–27. Cochylis hilarana (Herrich-Schäffer, 1851) (Greece). 26. Male (15 mm). 27. Female (12 mm). Fig. 28. Epinotia nigristrana Budashkin & Zlatkov, 2011, male (Greece, 17 mm). Fig. 29. Rhyacionia hafneri (Rebel, 1937), male (Russia, 17.5 mm).

A rare species known from Eastern Europe, with a limited number of publicly available records.

Rhyacionia hafneri (Rebel, 1937)
Fig. 29
Material. Hungary, 2♂, Vértes, Csákberény, 8.v.2003, LI. Russia, 1♀, Cheliabinsk oblast, Satka env., 17.vi.2009, SU.

Very local species with limited information about its distribution range. The occurrence was previously confirmed in Central Europe and the Balkans but the record from the southern Urals indicates that its range is much more wider. New species for Russia.

Rhyacionia maritimana Pröse, 1981

Distributed in Southwestern Europe, with published faunistic data from Corsica (the type area) and Spain. The occurrence in continental France is mentioned only by Razowski (2003) but without faunistic details. As the species is missing in the current checklist of Lepidoptera for France (Karsholt & van Nieukerken 2011) we have included our own findings from the south of the country.
PTEROPHOROIDEA: PTEROPHORIDAE

Capperia polonica Adamczewski, 1951
Previously known from Croatia, Greece, France, Corsica, and Sardinia. First records from Slovenia.

PYRALOIDEA: PYRALIDAE

Hypsopygia almanalis (Rebel, 1917)
Described from Turkey, known also from Cyprus (Slamka 2006). The specimens included herein were collected in coastal dunes and represent first records from Europe.

Stemmatophora brunnealis (Treitschke, 1829)
Widely distributed and generally common Southern European species, which was overlooked in Corsica. New species for this island.

Pyralis lienigialis (Zeller, 1843)
Known from scattered localities in Europe, but with no recent records from Central Europe and the Balkans (except for Romania). New species for Corsica.

Euzophera pulchella Ragonot, 1887
In Europe only known from the Balkans. The first occurrence in Croatia (Island of Krk) was published by Habeler (2003), but this record is not included in the current version of Fauna Europaea.

PYRALOIDEA: CRAMBIDAE

Schoenobius gigantella (Denis & Schiffermüller, 1775)
In Europe widely distributed (Slamka 2008) but previously not known from Sardinia.
Scirpophaga praelata (Scopoli, 1763)
Known from most European countries, particularly from southern parts of continental Europe. New species for Corsica.

Acentria ephemerella (Denis & Schiffermüller, 1775)
Widely distributed, previously not recorded from Corsica.

Euchromius bella (Hübner, 1796)
Material. Slovenia, 1♀, Kostabona env., Kapeli, 10.vii.2009, SK; 1♂, 1♀, Osp, 25.vi.2010, SK.
In Europe known mainly from southern countries, sporadically found also in Central and Eastern Europe. First country record.

Euchromius ramburiellus (Duponchel, 1836)
Material. Montenegro, 1♂, Budva, 4.vii.1966, SK. Greece, 1♂, Igoumenitsa, 23.x.2003, SK.
Distributed largely in southern parts of Europe; in the Balkans previously recorded from Croatia, Romania, and Bulgaria. First country records.

Chilo phragmitella (Hübner, 1905)
In Europe widely distributed but in the Balkans previously known only from the Republic of Macedonia and Croatia. First country record.

Friedlanderia cicatricella (Hübner, 1824)
With a scattered distribution throughout much of Europe except for Scandinavian countries. First country record.

Thopeutis galleriellus (Ragonot, 1892)
In Europe known from its southwestern and eastern part; within the Balkan Peninsula the only finding was previously published from Montenegro from 1917 (Slamka 2008). New species for Greece.

Pyrausta tithonialis Zeller, 1872
Material. Russia, 1♂, Cheliabinsk oblast, Moskovo, 19.vi.2009, SU.
An East Palaearctic species known from Russia, China, Korea, and Japan (Shibuya 1929). In Russia previously found only in its Asian part, with most western localities in Krasnojarsk Region and Altaj Republic [= Красноярский регион, Республика Алтай]
178 ŚUMPICH & SKYVA: New Microlepidoptera records, with description of three new gelechioid taxa

Figs 30–31. Adults of Crambidae. 30. Pyrausta tithonialis Zeller, 1872, male (Russia, 15.5 mm). 31. Mecyna lutulentalis (Lederer, 1858), male (Greece, 27 mm).

(Sinev 2008). This record from the southern Urals is the first one from European Russia as well as from Europe. Genitalia of this specimen will be figured in a forthcoming edition of “Pyraloidea of Europe” (Slamka, in prep.).

Mecyna lutulentalis (Lederer, 1858)

Described from an unspecified number of specimens from Damascus (Syria) (Lederer 1858), the nearest findings being reported from Turkey (Koçak & Kemal 2009). New species for Greece as well as for Europe. Genitalia of these specimens will be figured in a forthcoming edition of “Pyraloidea of Europe” (Slamka, in prep.).

Acknowledgements

The authors are obliged to Mr. Jan Liška for addition of some faunistic data; thanks belong to Mr. Gustav Elsner and Mr. František Slamka for their assistance in determination of some lepidopteran species. We thank G. Elsner for providing valuable information concerning some species of the family Gelechiidae, and our warm thanks belong to Mr. Ole Karsholt, Mr. Sjaak Koster, and Mr. Zdeněk Laštůvka for useful comments on the manuscript. Mr. Petr Kapitola kindly translated the text into English.

References

Symmoca sparsella Joannis, 1891 (Gelechioidae, Autostichidae) new to Europe

LEIF AARVIK

Natural History Museum, University of Oslo, P.O. Box 1172 Blindern, NO-0318 Oslo, Norway; leif.aarvik@nhm.uio.no

Received 15 August 2012; reviews returned 19 September 2012; accepted 20 September 2012. Subject Editor: Lauri Kaila.

Abstract. *Symmoca sparsella* Joannis, 1891 (Autostichidae) is reported from the Greek Island of Crete. This represents the first European record of this species. The adult, male genitalia, and the habitat in Crete, where this moth was found, are illustrated.

Introduction

Symmocinae is the most species-rich of the five subfamilies that make up the family Autostichidae. The current concept of the family was introduced by Hodges (1998), and developed further in the phylogenetic studies by Mutanen et al. (2010) and Kaila et al. (2011). These studies have resulted in the classification applied in the recent version of the website Fauna Europaea (Vives Moreno 2011). Most of the 131 European species of Autostichidae occur in the Mediterranean area (Gozmány 2008; Vives Moreno 2011), 120 of which belong to the subfamily Symmocinae, whereas only 11 species represent the smaller subfamilies Autostichinae, Deoclolinæae, and Holcopogoninae (Vives Moreno 2011). Symmocinae is most diverse in the drier parts of the Palaearctic region, from the Mediterranean area to Mongolia and southern China (Gozmány 2008). The largest genus of the subfamily, *Symmoca* Hübner, (1825), contains 85 species, 34 of which have been found in Europe (Gozmány 2008; Vives Moreno 2011). The majority of Autostichidae feeds on dead plant material (Gozmány 2008; Kaila et al. 2011). The Palaearctic members of the subfamily were monographed by Gozmány (2008), who treated Symmocinae as the family Symmocidae. In the present article, *Symmoca sparsella* Joannis, 1891 is reported from Europe for the first time.

Abbreviation

NHMO Natural History Museum, University of Oslo

Symmoca sparsella Joannis, 1891

Material. Greece, Crete, Chania Province: 1♂, Hora Sfákion [UTM WGS84] 35S KU 4031 9864, 7–13.vi.2009, leg. L. Aarvik (Fig. 1). The genitalia were mounted in euparal on a glass slide numbered NHMO 2018 (Fig. 2). The specimen with the genitalia slide is deposited in NHMO.

Fig. 3. South coast of Crete near Hora Sfakion from where the specimen of Symmoca sparsella was obtained. (Photo: Nini Cecilie Aarvik)

Discussion

The specimen was attracted to light. The habitat from where the moth was obtained (Fig. 3) can be characterised as garrigue, open vegetation of dwarf evergreen shrubs and herbs. The locality is situated on the south coast of Crete and is just above sea level. Dry and desert-like habitats are typical for numerous species of Symmocinae (Gozmány 2008), and in this respect the locality in Crete is also typical. Symmoca sparsella is known from several countries in the Middle East: Syria, Iraq, Lebanon, Israel, Jordan, and Egypt (Gozmány op. cit.).
The south coast of Crete falls into the North African climatic zone, whereas the majority of the island falls into the Mediterranean climatic zone. The south coast thus enjoys significantly more sunny days and higher temperature throughout the year (Wikipedia 2012). It can be expected that the composition of the lepidopteran fauna of the south coast is different from that of the rest of the island.

Externally, Symmoca sparsella resembles several other Symmocinae with dull grey-brown forewing and a pattern of dark dots arranged in four transversal rows. In the male genitalia it is easily recognisable by the presence of two rounded processes of the transtilla and a strongly curved saccus that reaches above the dorsal edge of the valva, as well as the lack of a dorsal process of the valva. The latter structure was termed appendix by Gozmány (op. cit.), where the genitalia of both sexes are figured as well as the adult moth in colour. Based on the appearance of the male genitalia, it appears that the closest relative of S. sparsella is S. huri (Gozmány, 1963), known from Afghanistan. S. huri differs by having a longer saccus and shorter saccus that does not reach the dorsal edge of the valva (compare figures by Gozmány op. cit.). Externally, S. huri differs strongly from S. sparsella by the nearly pattern-less forewing.

Acknowledgements

The author wishes to thank Karsten Sund, Oslo, for taking the photograph of the moth, and Nini Cecilie Aarvik, Ås, Norway, for taking the photograph of the habitat. Two anonymous referees are thanked for constructive suggestions.

References

Redescription of *Nephoterygia austeritella* Amsel, 1965 (Pyralidae: Phycitinae) with description of its hitherto unknown female

HELEN ALIPANAH¹, JAN ASSELBERGS² & MANSOUR SARANI³

¹ Insect Taxonomy Research Department, Iranian Research Institute of Plant Protection (IRIPP), P. O. Box 1454, Tehran 19395, Iran; halipanah@gmail.com
² Neerland 20, 4614 GD Bergen op Zoom, The Netherlands; jef.asselbergs@hetnet.nl
³ Plant Protection Institute, Sistan, Iran; mansour_sarani@yahoo.com

Received 18 April 2012; reviews returned 25 May 2012; accepted 13 September 2012.
Subject Editor: Bernard Landry.

Abstract. *Nephoterygia austeritella* Amsel, 1965 (type locality: Sudan, Nubian Desert, Wadi Halfa) is redescribed. The hitherto unknown female is described based on four specimens collected in the south (provinces of Hormozgan and Fars) and the southeast (province of Sistan and Baluchestan) of Iran. The life history of the species is described for the first time and Syrian mesquite (*Prosopis farcta* (Banks & Solander) J. F. Macbride) is newly reported as its host plant. This is also the first report of this monotypic genus from Iran.

Introduction

The genus *Nephoterygia* and its type species *N. austeritella* were described by Amsel (1965) based on three males collected in Sudan (Nubian Desert: Wadi Halfa), without information on life history. Later, *Nephoterygia austeritella* Amsel was reported from the Canary Islands (Fuerteventura, Jandia, Barranco Esquinzo) and Egypt (Sinai Desert: Sharm El Sheikh) (Asselbergs 2009). However, the female and life history of the species remained unknown and the genus is still monotypic.

In 2011, during a survey in Sistan and Baluchestan province (Zabol region), signs of damage caused by pyralid larvae were detected on *Prosopis farcta* (Banks & Solander) J. F. Macbride (Fabaceae), a plant with the vernacular name of Syrian mesquite. Larvae were observed feeding in fruits and seeds, leaving tunnels through the fruit in which they pupated. After the adult moths had emerged, the males and females were compared to the known phycitine species which revealed a great similarity with male specimens of the type species of the genus *Nephoterygia*, and finally they were identified as *Nephoterygia austeritella* Amsel. Additional material was also discovered in the Hayk Mirzayans Insect Museum (HMIM) of the Iranian Research Institute of Plant Protection (IRRIP), collected in the Fars (Darab) and Hormozgan (Bandar Abbas) provinces. A redescription of the species is provided below together with a description of the female genitalia.

Nota lepidopterologica, 15.11.2012, ISSN 0342-7536
Material and Methods

Genitalia dissections followed Robinson (1976). Photographs were taken using a digital still camera DSC-F717 and a Dino-Eye Microscope Eye-piece camera. Some images are the result of combining multiple images using the software Combine ZP. The terminology of wing venation follows Neunzig (1986, 1990, 1997, 2003) and the remaining terminology follows Horak (1997) and Kristensen (2003). All the material examined is deposited in the HMIM collection.

Nephopterygia austeritella Amsel, 1965

Figs 1–5

Diagnosis. The long, slightly curved and apically sharp pointed process originating from the inner side of the valva and extending well beyond its ventral edge (Fig. 4A), combined with the presence of only one cornutus on the vesica is characteristic for the monotypic genus *Nephopterygia* Amsel.

Redescription. Wingspan 16–23 mm (male), 17–22 mm (female). Forewing length (fringe included) 7.5–10.0 mm (male), 7.5–10.5 mm (female). Head (Fig. 1): frons in female with slightly appressed, dirty cream-coloured scales, appearing nearly cone-shaped (Fig. 1A), in males not clearly cone-shaped; vertex in both sexes with dirty cream-coloured appressed scales extending beyond vertex; male vertex concave between antennal sclerites, with erect and vertically positioned scales in this area (Fig. 1D). Ocelli and chaetosemata present; patagia and tegulae dirty cream-coloured. Labial palpi sexually dimorphic: male labial palpi upcurved, 2nd segment with ventrally projecting scale tuft, 3rd segment short (1/2 of second) and bare; female labial palpi porrect, 2nd segment dorsally with slightly projecting scale tuft, 3rd segment longer than in male (2/3 of second) (Figs 1A, B). Maxillary palpi short in both male and female; proboscis normally developed and scaled basally. Antennae covered dorsally with randomly arranged cream-coloured scales; basal segments sexually dimorphic: in male with long scapus more or less vertically positioned on top of vertex, mesal edge of segments 2–7 forming basal sinus and segments 4–6 with mesal spines growing gradually from 4th to 6th segments; entire sinus covered by developed scale tuft (Fig. 1D); flagellomeres with short cilia in both sexes (1/4 of antennal segment diameter); female antennae unmodified. Abdomen dirty cream coloured. Wings (Fig. 2): Male and female similar in ground colour and pattern of both fore- and hindwings; forewings elongate-subtriangular; costa straight to 2/3 of wing length, then convex towards apex; termen oblique; ground colour varying from dirty-cream with scattered light brownish scales throughout to light greyish brown; antemedian line brownish, whitish edged on the inside, extending from 1/3 on costa to middle of dorsum; postmedian line light brownish, mostly less obvious, from costa close to apex, then slightly wavy to 5/6 on dorsum; discal spot brown; fringe dirty cream-coloured to brown; hindwings dirty cream-coloured with darker suffusion at all margins, especially at apex and costa; fringe dirty cream-coloured with a basal brown line. Wing venation (Fig. 3): Forewing with R_{3+4} and R_{5} with long common
of valvae. Transtilla paired. Phallus stout, broad and slightly shorter than valva; vesica with numerous granulations and a stout cornutus of about 2/5 of the length of phallus. Cuclica with median distally bifurcated plate of variable length; ventral edge of 8th segment flatly dish-shaped with paired tapering lateral plates; two long scale bundles extending from each side of base to just beyond apex of plate.

Female genitalia (Figs 4D–H). Papillae anales subtriangular. Ostium broad, antrum sclerotised, and ductus bursae as a very well-defined, sclerotised tube. Ductus bursae relatively long, as long as corpus bursae, sclerotised and folded over itself at about 2/3. 8th abdominal segment longer than broad, posterior margin straight. Apophyses posteriores slightly longer than apophyses anteriores. Corpus bursae an inverse trapezoid, with distal wall clearly invaginated and with some irregular swellings near distal end; ductus seminalis originating from distally protruding area of corpus bursae. Signa developed as two spiny plates, one of them an elongated oval plate with inwardly directed spines in invaginated distal wall of corpus bursae (Figs 4E, G), the other one larger, circular, with conspicuous larger spines directed inwardly (Fig. 4G).

Life history. In both Sistan Va Baluchestan (Zabol) and Fars (Darab) provinces, the females lay their eggs on the green fruits of *Prosopis farcta* in May. The eggs hatch in June, then the larvae feed on the fruit pericarps and make tunnels within the fruit (Fig. 5). They also feed on the seeds. The adults emerge in July. In all probability, *P. farcta* is the only host plant of *N. austeritella* in Iran although other food plants are not excluded. As far as we know, *Prosopis farcta* is distributed in Algeria, Egypt, Tunisia, Saudi Arabia, Palestine, Israel, Jordan, Lebanon, Syria, Cyprus, Turkey, Afghanistan,
Iran, Iraq, Azerbaijan, Georgia, Kazakhstan, Kyrgyzstan, Tajikistan, Turkmenistan, Uzbekistan, India, and Pakistan (USDA, ARS 2012). As *N. austeritella* is also known from Sudan and the Canary Islands, either the only known food plant occurs there as well, or the species is not monophagous.

Distribution. This species has a disjunct distribution. It is reported from the most western part of the Sahara-Arabian subregion of the Palaearctic region (Canary Islands) and its eastern parts (Egypt) (Amsel 1965; Asselbergs 2009). It is also reported from the East African subregion of the Afro-Tropical region (Sudan) (Amsel 1965), and now from Iran, which is positioned in the Turanian-Persian subregion of the Palaearctic region.

Remarks. This is the first report of *Prosopis farcta* as a host plant for *Nephopterygia austeritella* and this phycitine taxon is newly reported from Iran. *Nephopteryx* Zeller, 1839 is an incorrect subsequent spelling and an incorrect authorship of *Nephopterix* Hübner, (1825) of which the type species is *Tinea (= Nephopterix) angustella* Hübner, 1796 (Fletcher & Nye 1984). Most of the information on species of *Sciota* has appeared in the literature under the name of *Nephopterix* Hübner (or *Nephopteryx*, an unjustified emendation). This occurred as a consequence of Heinrich (1956) and others, erroneously considering *Phycita rhenella* Zincken to be the type species of *Nephopterix* (Fletcher & Nye 1984). Palm (1986), Speidel (1996) and Leraut (1997) have moved the Palaearctic species with the features of *P. rhenella* to *Sciota*. Neunzig (2003) placed the North American species under *Sciota* as well.

Discussion

The disjunct distribution of *Nephopterygia austeritella* is not at all uncommon as can be illustrated by the following other phycitine examples: *Caina deletella* Ragonot is
distributed in the Canary Islands, the United Arab Emirates, South Iraq, and India; Cherchera abatesella Dumont is known from Tunisia, Malta, and the United Emirates; and Pempeliella malacella (Staudinger) is known from South Spain, Egypt, and the United Arab Emirates (Asselbergs 2007, 2010).

These disjunctions can be explained either by the insufficiently explored areas in between or by the absence of proper biotopes. Nephopterygia austeritella can probably be considered a southern Palaearctic faunal element which enters the northern parts of the Afro-Tropical region. This distribution seems to be similar to that of its host plant, Prosopis farcta (USDA, ARS 2012).
Comparing the male genitalia of *N. austeritella* with those of the Old World trifine (Roesler 1973) and quadrifine Acrobasiina (part) (Roesler 1993) and with the Nearctic Phycitinae (Heinrich 1956), does not reveal many evident similarities. The same applies to the female genitalia. There is a certain similarity between the male genitalia of *Nephopterygia* and those of a few species of the Palaeartic *Sciota*, such as *marmorata* Alphéraky and, to a lesser degree, *fumella* Eversmann, because they all share a long process originating from the inner side of the valva.

While the genus *Nephopterix* Hübner, (1825) (= partly *Sciota* Hulst, 1888) seems to be related to *Nephopterygia*, it differs from the latter by the presence of two cornuti on the vesica, the differently sclerotised and unfolded ductus bursae, the lack of a signum in the bursa, and the presence of three scale tufts bilaterally on the 8th sternite. In addition, the 2nd segment of the labial palpus in the female appears to be much broader than in *Sciota*. Therefore, even including the description of the female cannot reveal a closer relationship with any of the other known genera of the subtribe Acrobasiina. At present it seems best to maintain the monotypic genus *Nephopterygia* in its rather isolated position.

Acknowledgements

We express our gratitude to Dr W. Gerald Tremewan (Truro, U.K.) for kindly and carefully checking the original manuscript. We also thank Mr Abbas Mohammadi for collecting some specimens in Fars province (Darab region).
References

On the distribution of *Idaea gelbrechti* Hausmann, 2003 in the Ibero-Maghrebian region (Geometridae: Sterrhinae)

JUAN JOSÉ GUERRERO, ANTONIO S. ORTIZ & ROSA MARIA RUBIO

Departamento de Zoología y Antropología Física. Área de Biología Animal, Facultad de Veterinaria, Universidad de Murcia. Campus de Espinardo. 30071 Murcia, España; juanjogf@um.es

Received 12 July 2012; reviews returned 11 September 2012; accepted 26 September 2012.

Subject Editor: Sven Erlacher.

Abstract. *Idaea gelbrechti* Hausmann, 2003 was described from specimens collected in Morocco, and later on it was discovered in Spain in 2010. This species is very similar to *Idaea aversata* (Linnaeus, 1758) and it might be its sister species. Also, *I. gelbrechti* seems to be one of those species that very often remain undetected or overlooked in public and private collections. New records in Southeastern Iberian Peninsula confirm its Ibero-Maghrebian distribution in habitats characterised by the presence of pine and oak forest and mountain shrubland above 1,100 m in altitude, with a meso and supramediterranean climatic biotype. This species seems to be monovoltine with records from the beginning of July in lower altitude sites through the end of August in Sierra Nevada at 1,700 m.

Introduction

Idaea gelbrechti Hausmann, 2003 was described from specimens collected in Ifrane in the Middle Atlas (Morocco), at an altitude between 1,700 and 1,750 m in an area characterized by the presence of cedar and oak mixed forest. Müller (2010) cited its presence in the Iberian Peninsula from material collected in Sierra Nevada near Puerto de la Ragua above 1,840 m in an area of mountain shrubland surrounded by pine forest.

Hausmann (2004) indicated that *Idaea aversata* (Linnaeus, 1758) can be confused with *Idaea rubraria* (Staudinger, 1901), *Idaea straminata* (Borkhausen, 1794), and *Idaea deversaria* (Herrick-Schäffer, 1847) noting that certain forms of these three species are difficult to identify without observing the hairiness of the abdomen. From the systematic point of view, *I. gelbrechti* appears to be a sister species of *I. aversata*. Moreover, this species seems to be one of those that very often remain undetected or overlooked in collections due to lack of information about North African lepidopteran fauna.

According to Müller (2010), *I. gelbrechti* and *I. aversata* can be separated by observing the color pattern and shape of the wings, as well as other specific features. The background color of the wings of *I. gelbrechti* is paler than in *I. aversata*, varying from ochre colouration in specimens of the Middle Atlas to grayer in the Sierra Nevada ones. Also, specimens of *I. gelbrechti* from the Iberian Peninsula exhibit a dark area between the medial and postmedial lines, which is often the case in *I. aversata* as well. The differences between the two species based on genital structures, as noted by Hausmann (2003) and Müller (2010), are more evident in male genital structures than in the female ones.
The aim of the present study is to extend the recorded range of distribution of *I. gelbrechti* in western Mediterranean basin with new records and to add new biological data.

Material and Methods

Male and female genitalia were prepared using the classical method as described by Fibiger (1997) with minor modifications.

Results

After Müller (2010) recorded *Idaea gelbrechti* in Spain, the specimens in private and public collections were checked paying special attention to those identified as *Idaea aversata* from southern Iberian Peninsula. *I. aversata* was recorded in southeastern Iberian Peninsula from Albacete (Lencina et al. 2009), Alicante and Castellón (Dominguez in litt. 1991), Cuenca (Ortiz et al. 2009, 2010b) and Murcia (Ortiz et al. 2010a). Specimens of *I. aversata* from this Iberian area were found in private collections of C. Abad, A. Albaladejo, F. Lencina, and J. L. Palacios, but not in collections from Museo Nacional de Ciencias Naturales in Madrid, Department of Zoology and Physical Anthropology from Murcia University, or in other private collections. The locations of new records are shown in Fig. 1.

Habitat preferences of *I. gelbrechti* are diverse but always located above 1,100 m in altitude. The mean altitude of the recording sites is 1,400 m. The original locality for description in Morocco is an area characterized by the presence of cedar and oak mixed forest (Hausmann 2003). In the Iberian Peninsula all records are located in the Baetic Mountains. The first record was cited from Sierra Nevada where the habitat is characterized by mountain shrubland with *Juniperus sabina* L. and *Juniperus communis hemisphaerica* (C. Presl) Nyman surrounded by *Pinus sylvestris* L. New records from Subbaetic Mountains are located in areas with mixed forest of *Pinus pinaster* Ait., *P. nigra mauretanica* Maire & Peyerimh, *Quercus rotundifolia* Lam., *Q. faginea* Lam., and *Acer opalus granatense* (Boiss.), and riparian forest (*Populus* spp. and *Salix* spp.) with shrubland (*Genista* spp., *Berberis* spp., *Cytisus* spp., *Lavandula* spp., *Prunus* spp., etc); in Bajil there is an oak forest of *Quercus rotundifolia* Lam. with typical undergrowth (*Arbutus unedo* L., *Phillyre angustifolia* L., *Pistacea* spp., *Lonicera* spp., etc). In all cases no grasses or cultivated land were found in the vicinity. This Subbaetic Mountainous region is characterized by meso and supramediterranean climatic biotype.
Fig. 1. Map of distribution of *Idaea gelbrechti* in the Western Mediterranean Basin; 1. Type locality; 2. First record in Iberian Peninsula; 3. New records. Map source: The Earth Observatory located at NASA Goddard Space Flight Center.

I. gelbrechti seems to be a monovoltine species with records from the beginning of July in lower altitude sites (1,100 to 1,480 m) to the end of August in Sierra Nevada at 1,700 m, without records at the Sierra Nevada site from March to the beginning of July and from September to November (J. Gelbrecht, pers. comm.).

Discussion

The presence of new records of *Idaea gelbrechti* in the Baetic Mountain System confirms that this species has an Ibero-Maghrebian distribution as suggested by Müller (2010).

Interestingly, *I. gelbrechti* has not been recorded in other mountainous areas of the southern Iberian Peninsula, for example, the ones located in Murcia (Sierra Espuña:
Calle et al. 2007; Sierra Pila and Sierra Carrascoy: unpublished data) and Almería (Sierra de María: unpublished data), where intensive sampling has been carried out for a long time. This absence may be due to a more thermophilus regime of these last-mentioned regions – *I. gelbrechti* seems to prefer colder biotopes and is thus found in other mountains of southern Iberian Peninsula such as Sierra Baza, Sierra de Filabres, and Sierra de Ronda, and possibly also in Rif and Tellian Mountains, where similar climatic conditions are met.

In relation to morphological characters, Müller (2010) notes that specimens of *I. gelbrechti* from the Iberian Peninsula exhibit a dark area between the medial and post-medial lines, although Gelbrecht (pers. comm.) bred 42 specimens of *I. gelbrechti* from the locality of the first Iberian record from a single female and the result was 33 specimens with this dark area between the medial and postmedial lines, whereas nine specimens did not exhibit this character. This finding reinforces the necessity of using the genital structures to differentiate specimens of *I. gelbrechti* as Hausmann (2003) and Müller (2010) suggested.

Acknowledgements

Thanks are due to Carmelo Abad, Aquilino Albaladejo, Francisco Lencina, José Luis Palacios, Manuel Garre, and Francisco Javier Pérez López for allowing access to their collections, and to Mercedes Paris for data from the Entomology collections of Museo Nacional de Ciencias Naturales in Madrid. We also thank our colleagues Dr. José A. de la Calle, Dr. Axel Hausmann, and Dr. José Serrano for their comments and suggestions with specials thanks to Dr. Jörg Gelbrecht for the last records, life cycle contributions, and other comments. At the end, our colleague John Girdley provided linguistic help.

References

Eupithecia Curtis, 1825 of Afghanistan (Geometridae: Larentiinae)

VLADIMIR MIRONOV & **ULRICH RATZEL**

1. Zoological Institute RAS, Universitetskaya nab. 1, RU-199034, Saint Petersburg, Russia; pugs@zin.ru
2. Neureuter Hauptstraße 48A, 76149 Karlsruhe, Germany; wild.ratzel@t-online.de (volunteer at the Staatliches Museum für Naturkunde Karlsruhe, Germany)

Received 28 November 2011; reviews returned 14 June 2012; accepted 9 July 2012.
Subject Editor: Sven Erlacher.

Abstract. In this paper 49 species of the genus *Eupithecia* Curtis, 1825 (Lepidoptera, Geometridae) are recorded for the fauna of Afghanistan. The type specimens of the majority of these species were studied. In case of *Eupithecia ochroviitata* Christoph, 1887 it was necessary to designate a lectotype. The following three new species are described: *Eupithecia tabestana* sp. n., *Eupithecia fredi* sp. n. and *Eupithecia naumannii* sp. n. Five taxa are synonymised: *Eupithecia linariaoides* Mironov, 1989 syn. n. is a synonym of *Eupithecia mirificata* Brandt, 1938; *Eupithecia denotata* f. difficilis Dietze, 1911 syn. n., synonym of *Eupithecia nigrolinea* (Warren, 1896); *Eupithecia eberti* Vojnits, 1978 syn. n. synonym of *Eupithecia obtinens* Brandt, 1941; *Eupithecia subomnigera* Vojnits, 1988 syn. n. synonym of *Eupithecia ishinganica* Viidalepp, 1988; *Eupithecia procera* Vojnits, 1982 syn. n., synonym of *Eupithecia exactata* Staudinger, 1882. A total of 42 species are recorded as new for the fauna of Afghanistan.

Introduction

The genus *Eupithecia* includes nearly 1400 known species distributed worldwide. It is one of the most species-rich genera of the family Geometridae but has hardly been studied in Afghanistan until now. Only two representatives of the genus have been described from this large Asian country by Vojnits (1988): *E. convallata terricolor* Vojnits, 1988 and *E. xanthomixta* Vojnits, 1988, and two species, *E. egregiata* Mironov & Ratzel, 2008 and *E. nigrolinea* Warren, 1896, have recently been mentioned for Afghanistan (Mironov et al. 2008c). However, *Eupithecia* of the adjacent territories has been investigated fairly well, e.g., Turkmenistan, Uzbekistan, and Tajikistan (Staudinger 1892; Dietze 1904, 1908; Viidalepp 1988, 1996; Mironov 1990, 1991), Iran (Bytinski-Salz & Brandt 1937; Brandt 1938, 1941; Schwingenschuss 1939; Vojnits 1978, 1982a, 1982b, 1988), northern Pakistan and Kashmir (Mironov et al. 2008a, 2008b, 2008c). For this
area about 170 species of *Eupithecia* have been recorded. In Europe, for comparison, there are 128 species (Mironov 2003).

The first time a few specimens from Afghanistan were collected in 1941 and 1942 by Fred Brandt, whose material is now deposited in the collection of his brother Wilhelm Brandt in NHRS (Stockholm). The greater part of Afghanistan *Eupithecia* was collected later by †H. G. Amsel (SMNK), G. Ebert, M. Müller (SMNK), †C. Naumann (ZFMK), †F. Kasy (NHMW) and †A. & E. Vartian (Vienna) from 1956 to 1972. The majority of this material has remained undetermined.

The main component of the material we used for this paper comes from the large collection of Irano-Afghanian Lepidoptera of the Museum of Natural History Karlsruhe (SMNK). Unfortunately, it is still unclear where the material collected by H. G. Amsel during the “Deutsche Afghanistan Expedition” in 1956 is deposited. After this manuscript was already in review, in March 2012 we found undetermined material of *Eupithecia* from Afghanistan in the large collection of the ZSM, collected by G. Ebert in 1961 and K. Omoto in 1963. From this material we included the important species;
however, 50 of about 130 of these specimens belong to the *innotata*-species group, and because of their worn condition we decided to exclude them from this study.

Nearly all localities of collected *Eupithecia* in Afghanistan mentioned in this work are illustrated on a map (Fig. 1). This map only provides an overview and not the exact positions of the localities.

Methods

This paper is essentially a faunistic list and constitutes a revision of the species of *Eupithecia* found in Afghanistan. We have been able to locate and examine almost all of the original type material used by K. Dietze, O. Staudinger, O. Bohatsch (MNHU, Berlin), G. F. Hampson, W. Warren, E. P. Wiltshire, H. Inoue (BMNH, London), S. Alphéraky, H. Christoph (ZISP, Saint Petersburg), W. Petersen (IAET, Tartu; MNHU, Berlin), W. Brandt (NHRS, Stockholm), E. Schütze (ZSM, Munich; SMNS, Stuttgart), R. Pinker (NHMW, Vienna), A. M. Vojnits (HNHM, Budapest; MNHU, Berlin; ZFMK, Bonn; SMNK, Karlsruhe; ZISP, Saint Petersburg) and J. Viidalepp (IAET, Tartu; ZISP, Saint Petersburg). Likewise, we examined the types of 73 species-level taxa from the 87 (84%) that are mentioned in this paper. Most of the types that we did not examine are early-described species with lost (syn)types such as, for example, *E. venosata* (Fabricius, 1787), *E. simpliciata* (Haworth, 1809), *E. subnotata* (Hübner, 1813), *E. centaureata* (Denis & Schiffermüller, 1775).

Space prevents the inclusion of genitalia figures for all species treated, but we have aimed in this paper to illustrate not only the new species described, but also other species which have not been figured in recent publications. The sequence of species in this work follows the groups into which the genus *Eupithecia* is divided by different authors (e.g., Mironov 2003).

Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMNH</td>
<td>The Natural History Museum, London, United Kingdom</td>
</tr>
<tr>
<td>IAET</td>
<td>Institute of Agriculture and Environment, Estonian Agricultural University, Tartu, Estonia</td>
</tr>
<tr>
<td>IZCAS</td>
<td>Institute of Zoology, Chinese Academy of Sciences, Beijing, China</td>
</tr>
<tr>
<td>MNHU</td>
<td>Museum für Naturkunde, Berlin, Germany</td>
</tr>
<tr>
<td>NHMW</td>
<td>Naturhistorisches Museum Wien, Austria</td>
</tr>
<tr>
<td>NHRS</td>
<td>Naturhistoriska Riksmuseet, Stockholm, Sweden</td>
</tr>
<tr>
<td>SMNK</td>
<td>Staatliches Museum für Naturkunde Karlsruhe, Germany</td>
</tr>
<tr>
<td>HNHM</td>
<td>Hungarian Natural History Museum, Budapest, Hungary</td>
</tr>
<tr>
<td>ZFMK</td>
<td>Zoologisches Forschungsinstitut und Museum Alexander Koenig, Bonn, Germany</td>
</tr>
<tr>
<td>ZISP</td>
<td>Zoological Institute, Russian Academy of Sciences, Saint-Petersburg, Russia</td>
</tr>
<tr>
<td>ZMMU</td>
<td>Zoological Museum, Moscow State University, Russia</td>
</tr>
<tr>
<td>ZSM</td>
<td>Zoologische Staatssammlung München, Germany</td>
</tr>
</tbody>
</table>
Systematics

Eupithecia olgae Mironov, 1986

Afghanistan is a new country for the distribution area of this Central Asian species. It has been known from Uzbekistan, Kyrgyzstan, Tajikistan, Pakistan, and India (Jammu & Kashmir), southeastern regions of Kazakhstan, China (Tibet, Qinghai, Gansu, Shanxi), and Mongolia. This species is mentioned here as first because it belongs to the haworthiata species-group with plate-like, membranous uncus in the male genitalia.

Eupithecia dalhousiensis Mironov & Galsworthy, 2008

A very large species (wingspan 23–37 mm) from the Eupithecia abietaria group (Inoue 1979), which is similar to two other allied Asian species: E. gigantea Staudinger, 1897 and E. interrubrescens (Hampson, 1902). This species was described and has hitherto been known from Western Himalayas (northern Pakistan and northern India). It was not previously recorded from Afghanistan.

Remarks. E. dalhousiensis was described in 1919 by Strand as “ab.” (aberration) of interrubrescens Hampson. Later it was recognized as a separate species (Mironov et al. 2008a).

Eupithecia mirificaata Brandt, 1938

In our opinion E. mirificata, described from Iran and E. linariatoides from Tajikistan are conspecific. The male and female genitalia were illustrated in Mironov (1989b) as E. linariatoides.

Remarks. Neither the holotype nor paratype (allotype) of this species (E. mirificata) have an abdomen or labels with information about genitalia slides. However, there is a series of this species from Afghanistan in current material. Eupithecia mirificata appears to be closely related to E. linariata, and therefore further investigation of the biology of the early stages and DNA barcoding should be done in the future to clarify the status of this species.

Eupithecia minusculata Alphéraky, 1883

A widespread desert or xerophilous species, ranging from Spain in the west through North Africa (Algeria, Tunisia, Libya) and Mid-East eastward to Mongolia; north to the lower part of the River Volga. It is distributed in Central Asia in Turkmenistan, Uzbekistan, Tajikistan, Afghanistan, southern Kazakhstan, and northwestern China (Xinjiang). Not previously recorded from Afghanistan. The male and female genitalia were described and illustrated by Wiltshire (1985) for the first time as *E. penultimaria*.

Eupithecia venosata (Fabricius, 1787)

Phalaena venosata Fabricius, 1787: Mantissa Insectorum 2: 209. Syntype(s) lost, Austria.

Eupithecia hilariata Dietze, 1908

Eupithecia nigrilinea (Warren, 1896)

Riksmuseet, Loan no 366/06 (NHRS); 1q, NE Afghanistan, Gebirge Badakshan, Sarekanda, 2800 m, 21.vii.1953, J. Klapperich, Ratzel slide no. GU24911/2w (SMNK); 1σ, E Afghanistan, Sarobi, 1100 m, 17.x.1961, leg. G. Ebert, Ratzel slide no. GU13312/3w; 1σ, Hazaradjat, Koh-i-Baba, Pandjao Umgeb., 2500 m, 26.vi.—1.vii.1961, leg. G. Ebert, Ratzel slide no. GU13312/4m (ZSM); 15σ, 2q, SE Afghanistan, Safed Koh, S-Seite, Kotkai, 2350 m, 14—23.vi.1966, 21.vi.—1.vii.1969, G. Ebert leg., Vojnits slides nos 16959σ, 16960σ, 16961σ, 16962σ, 16966σ, 17545σ, 17548σ, 17549σ, 17550σ, 1902σ, 1940σ, 19542σ, 19543σ, 19544σ, 19545σ, 19696σ, 16965σ, 4σ, 3q, same locality, 20—25.vi, 4.vii, 1967, 5, 28.vi, 2.vii.1968, M. Müller leg., Vojnits slides nos 16955σ, 16979σ, 17564σ, 17566σ, 16975q, 16976q, 19546q; 1σ, Prov. Paktia, same locality, 16—17.vi.1971, UV-Li, Ebert & Naumann; 1σ, 2q, E Afghanistan, Salang-Pass, N-Seite (Khinjan), 2100 m, 5—11.vi.1966, G. Ebert leg., Vojnits slides nos 19536σ, 17872q, 19495q; 1σ, 4q, C Afghanistan, Koh-i-Baba, S-Seite, Panjao, 2650 m, 20—22.vi.1966, G. Ebert leg., Vojnits slides nos 17779q, 17780q, 19490q, 19511q, 19519q (SMNK); 1σ, 4q, C Afghanistan, Koh-i-Baba, N-Seite, Band-i-Amir, 2900 m, 24—26.vi.1966, G. Ebert leg., Vojnits slides nos 19521σ, 19487q, 19515q, 19552q (SMNK; coll. Ratzel); 2q, E Afghanistan, Salang-Nord, 2100 m, vic. Khindjan, 13.vi.1970, leg. Naumann, Nr. 1067, Ratzel slides nos GU25408/3w, GU25404/4w; 1σ, 1q, NE Afghanistan, Wakhan-Tal, 3300 m, Zemestani Baharak, 23., 24.vii.1971, UV-Li, Ebert & Naumann, coll. Nr. 261 and 262; 1q, same locality, 3450 m, Darrah-e-Shaur, 25.vii.1971, UV-Li, Ebert & Naumann, coll. Nr. 263 (SMNK); 4q, same locality, 3400 m, Kotal-e-Dalez, W-Seite, 28.vii.1971, UV-Li, Ebert & Naumann, coll. Nr. 271 (SMNK; coll. Ratzel).

This is mainly a mountainous Central Asian species which has been recorded hitherto from Uzbekistan, Tajikistan, Kyrgyzstan, northern Pakistan, Jammu & Kashmir, India (Himachal Pradesh), Nepal, and was also found in the mountains of northern Thailand. It was recorded for the fauna of Afghanistan by Mironov et al. (2008c). *E. nigrilinea* is a univoltine summer species, present in habitats from about 1700 m up to about 4500 m above sea-level. The male genitalia were described and illustrated in Inoue (2000), the female in Vojnits (1981) and Viidalepp (1988) as *E. ingrata*.

Eupithecia barteli Dietze, 1908

Syntypes 1σ, 2q (coll. K. Dietze and R. Pi"ungeler in MNHU), [Kazakhstan]: Uralsk.

Eupithecia arshtae Viidalepp, 1988: Fauna pyadenits gor Srednej Azii [Geometridae fauna of the Central Asian mountains]: 124, pl. 2, fig. 21; text-pl. 28, figs 2, 3, 6—8. Holotype σ (ZISP), Tadzh. SSR [Tajikistan]: SW Pamirs, Khorog, botanical garden, 2300 m (treated as subsp. of *Eupithecia barteli* Dietze, 1908 in Mironov 1990).

Afghanistan: 1q, cent., Bamian, 31.vi.1963, Kasy & Vartian, Vojnits slide no. 15139q (HNHM); 1σ, C Afghanistan, Koh-i-Baba, S-Seite, Panjao, 2650 m, 20—22.vi.1966, G. Ebert leg., Vojnits slide no. 19520σ (SMNK).

This species is found in Tajikistan, Kyrgyzstan, Jammu & Kashmir, India (Himachal Pradesh), Nepal, and China (Shaanxi, Yunnan) from about 1300 m up to about 3000 m above sea-level, and its range extends to the southeast of European Russia and north-western Kazakhstan in the north. A new species for the fauna of Afghanistan. *E. barteli* is a medium-sized species with distinctive broad and obtuse wings. The presence of a distinct and relatively large, black discal dot and light, ochreous medial area behind this discal dot on the forewing are very good characters to distinguish this species from...
any other in this area. The male genitalia are very similar to those of other species of the *tripunctaria* group, but the female genitalia can be easily recognized by the large globular corpus bursae with elongated and narrow, S-shaped ductus bursae with numerous longitudinal striations and a row of short spines (Mironov 2003).

Eupithecia vetula Mironov & Ratzel, 2008

Material. Holotype ♂, Pakistan, Azad Jammu & Kashmir, Thunian, 2300—2700 m, 25—30.viii.2004, leg. V. Gurko, Ratzel slide no GU18505/3m (SMNK). – Paratypes: 8♂, 24♀, same locality, Ratzel slides nos GU18505/1m, GU18505/2w, GU21505/1w, GU21505/2w, GU22505/2w, GU25505/1w, GU25505/3w, GU27505/1m (SMNK, coll. Ratzel, BMNH); 1♀, SW Himalaja, Indus-Kohistan, Kaghantal, Naran, 3200—3400 m, 16.vii.—5.viii.1977, leg. De Freina, Ratzel slide GU4507/4w (SMNS); 1♀, Himalaya Mts., Kaghan valley, Tathabaya, 73°26'E, 34°36'N, 2200 m, 1.v.1998, leg. Gy. M. László & G. Ronkay; 2♀, Himalaya Mts., Valley of Indus, in between Chilas and Dassu, Motel Barseen, 1100 m, 10.x.1998, leg. Gy. M. László & G. Ronkay (HNHM). 1♀, India, Bhmital, distr. Nainital, Kumaon-Himalaja, 1500 m, 10—22. ix.1986, leg. A. Hauenstein (ZFMK).

Eupithecia: A new species to be reported from Afghanistan.

Eupithecia conjunctiva Hampson, 1895

Eupithecia conjunctiva Hampson, 1895: Fauna of British India (Moths) 3: 400. Holotype ♀ (BMNH), [India]: Dharmasālā.

Material. Holotype ♀, India, Dharmasālā 87—59, *Eupithecia conjunctiva* Hmpsns. type ♀, BM Geom. slide no. 20315 (BMNH). SE **Afghanistan**: 1♀ Safed Koh, S-Seele, Kotkai, 2350 m, 2.viii.1967, M. Müller leg., Vojnits slide no. 19501♀ (HNHM), 1♂, same data, 1.vi.1968, Vojnits slide no. 17540♂ (SMNK).

This species of the *lariciata* group is found in northern Pakistan, Jammu and Kashmir, northern India (Punjab, Sikkim), and Nepal from about 1100 m to about 3000 m above sea-level. A new species for the fauna of Afghanistan. The male genitalia were described and illustrated in Inoue (2000) for the first time.

Eupithecia karnaliensis Inoue, 2000

Eupithecia karnaliensis Inoue, 2000: Tinea 16 (Suppl. 1): 34, pl. 165, fig. 21; figs 1299, 1339. Holotype ♂ (coll. Owada; Tokyo), [Nepal]: [Karnali], Jullya, 2690 m.

A small mountainous species from the *propagata* group. The similarity and differences of *E. karnaliensis* to and from the allied species *E. caduca* Vojnits, 1984 were described
in detail in Mironov et al. (2008c). The male and female genitalia were described and illustrated in Inoue (2000). This little-known species had so far been recorded only from Great Western Himalaya Mts (Jammu & Kashmir) and Nepal at an altitude of about 2200 m up to about 3200 m above sea-level. First records for Afghanistan.

Eupithecia mustangata Schütze, 1961

Eupithecia mustangata Schütze, 1961: Veröffentlichungen der zoologischen Staatsammlung München 6: 181, pl. 29, figs 4, 9; pl. 31, fig. 4; pl. 32, fig. 1. Holotype ♂ (ZSM), [Nepal]: Mustangbhot, 29°11′N, 83°58′E, Muktinath, 3500 m.

This very variable species in size, depth of colour, and the breadth of transverse lines was previously known only from the mountains of northern Pakistan, Jammu & Kashmir, northern India (Himachal Pradesh), and Nepal from about 2100 m up to about 4300 m above sea-level. It is now newly recorded from Afghanistan. The male and female genitalia were described and illustrated in Schütze (1961a).

Eupithecia pamirica Viidalepp, 1988

This little-known, small species, which is common in the mountainous areas of Central Asia at altitudes from about 1800 m up to about 3500 m above sea-level, has been recorded from Tajikistan (Darvazsky Mts., Ghissarsky Mts., SW Pamirs), Kyrgyzstan (Tchatal Nature Reserve), and Pakistan (Deosai Mts., Great West Himalaya Mts.,
Karakoram Mts.). These are new records for Afghanistan. The details of the male and female genitalia were described and illustrated by Viidalepp (1988).

Eupithecia tabestana Mironov & Ratzel, sp. n.
Figs 2, 3, 17, 21

Description. Wingspan 15.0–17.0 mm; length of forewing 8.0–9.0 mm. Labial palpi short, about two times shorter than diameter of eye, covered with light brown scales. Frons, vertex, and notum almost unicolorous, yellowish white. Forewing narrow, elongated, with straight costal margin, almost straight, oblique termen and pointed apex; evenly unicolorous, pale yellowish grey, irrorated by numerous light brown scales; transverse lines invisible except very narrow, light brown, oblique antei- and postmedial; discal dot absent. Hindwing narrow, elongated, paler, also unicolorous yellowish grey, irrorated with light brown scales, with more or less visible, light brown, medially right angled onto costa postmedial transverse line only; discal dot invisible; terminal lines on all wings brown; fringe pale, yellowish grey, almost dirty white, slightly chequered light brown. Abdomen unicolorous, yellowish white.

Male genitalia (Fig. 17). Uncus medium-length, narrow, biapial. Valve shaped like a lemon segment, relatively small, narrow, with almost parallel dorsal and ventral margins; apex rounded; sacculus weakly sclerotized. Vinculum short, medium width, semicircular. Papillae on the anterior arms of the labides small, covered with sparse setae at apices. Phallus small, slim, much shorter than length of valve. Vesica armed with one small piece near ductus ejaculatorius base, one elongated and narrow, oblique plate-like cornutus, one heavily-sclerotized horn-like cornutus and two apical horn-like cornuti of original shape. Sternite A8 small, elongated, with almost parallel lateral margins, slightly asymmetrical basal lobes and two short, narrow, spine-like, sclerotized and diverging apical rods.

Female genitalia (Fig. 21). Bursa copulatrix small, ovate-oblong, membranous, with four patches of spines: the basal patch with very small and almost invisible spines, two elongated lateral patches of larger and longer spines, and one transverse patch of very small, short spines from base of ductus seminalis to base of colliculum. Ductus bursae indistinguishable from corpus bursae. Ductus seminalis very broad, broadly attached to the middle of corpus bursae. Colliculum collar-like, small and relatively short. Antron membranous. Tergite A8 small, trapezoid. Anterior and posterior apophysae short and narrow. Papillae anales small, short, rounded, covered with short setae.

Diagnosis. This species appears to belong to the *fletcherata* group and is externally very similar to *E. anemica* Viidalepp, 1988, but clearly distinguished from it by the complete absence of medial transverse lines and discal dots on forewings. The male genitalia of *E. tabestana* have a longer uncus, longer valve with broader apex, straight horn-like cornutus and two different apical cornuti on the vesica of phallus than in *E.*
anemica; the apical rods of the eighth sternite are straight and divering (in *E. anemica* they are pincers-like). The female genitalia of *E. tabestana* can be distinguished from those of *E. anemica* by the broader ductus seminalis, smaller medial patches of spines in the corpus bursae, and also trapezoid eighth tergite.

Distribution. East Afghanistan, northern Pakistan, and central Nepal.

Eupithecia obtinens Brandt, 1941

Brandt has described only the habitus of this species. The male genitalia were described and illustrated by Schütze (1961b) on the basis of slide A898♂ for the first time. However, Schütze treated this species as *E. sutiliata* Christoph, 1877 and synonymised the species name *E. obtinens* with this later in the text erroneously. In fact, two type-specimens (lectotype male and paralectotype female) of *E. sutiliata* are deposited, respectively, in the collections of ZISP (Saint Petersburg) and BMNH (London), from where Schütze did not study any material. Later on, the male genitalia of *E. obtinens* were described and illustrated by Vojnits (1978) again as *E. eberti*. The female genitalia of *E. obtinens* were previously unknown. We therefore include a description and illustration of the female genitalia.

Female genitalia (Fig. 22). Bursa copulatrix relatively large, pouch-like, evenly tapered to colliculum, with characteristic heavily sclerotized, rounded proterubrance on one side near base, and with patch of longer spines in this proterubrance; corpus bursae about one half covered with slim spines. Ductus bursae not distinctly separated from corpus, with one or two patches of small spines near base of colliculum. Ductus seminalis narrow, slightly broadened basally, attached to medium part of corpus bursae opposite of heavily sclerotized basal sack. Colliculum collar-like, rather short and broad. Antrum short and broad, membranous. Tergite A8 rectangular, with rounded posterior corners. Anterior and posterior apophyses very narrow, medium length, tapered apically. Papillae anales narrow, short, rounded, covered with medium-sized setae.
Eupithecia assectata Dietze, 1904

This is a very variable species, forewings varying from pale grey unicolorous almost without pattern to specimens with dark grey colouration and very distinct blackish transverse lines on the forewings. According to structure of the female and male genitalia, especially rows of horn-like cornuti on the vesica, this species belongs to the *fletcherata* group and at least appears related to *E. obtinens* Brandt, 1941. The male and female genitalia were described and illustrated in De Laever (1960) and afterwards in Viidalepp (1988). This is a Central Asian mountainous species distributed in Uzbekistan, Tajikistan, Kyrgyzstan, Afghanistan, and Kashmir at altitude from about 2350 m up to about 3750 m above sea-level. First records for Afghanistan.

Eupithecia fredi Mironov & Ratzel, sp. n.

Figs 6, 7, 18, 23

Material. Holotype ♀, Afghanistan, Pagman-Gebirge, 25 km NW of Kabul, ca. 2500 m, 17.vi.1941, leg. Fred Brandt, Vojnits slide no. 17031♂ (SMNK). – Paratypes: 9♂, 3♀, same data, Vojnits slides nos 17027♂, 17028♂, 17030♂, 17034♂, 17035♂, 17036♂, 17037♂, 17038♂, 17029♀, 17032♀, 17033♀ (SMNK); 1♂ and 1♀ in ZISP; 1♂, SE Afghanistan, Safed Koh, S-Seite, Khotai, 2350 m, 1.x.1967, M. Müller leg., Vojnits slide no. 16969♂ (SMNK).

Description. Wingspan 18.0–22.5 mm; length of forewing 9.0–11.5 mm. Labial palpi equal or shorter than diameter of eye, covered with mixture of light brown and grey scales. Frons, vertex, patagia, and notum pale grey with scattered brown scales. Forewing narrow, elongated, with straight costal margin, curved near apex only, almost straight, oblique termen and pointed apex; ground colour brownish grey; transverse lines oblique, slightly wavy posteriorly, right or sharply angled onto costa; medial line usually more sinuate, oblique, and sharply angled onto costa, terminal area with almost straight or slightly wavy, oblique whitish subterminal line; discal dot usually invisible. Hindwing ovoid, almost unicolorous, brownish grey but lighter than forewing; terminal area slightly darker; transverse lines indistinct except ante- and postmedial at anal margin; discal dot invisible. Fringe on all wings distinctly chequered brownish grey and dirty white.
Male genitalia (Fig. 18). Uncus narrow, elongated, biapical. Valve medium-sized, with almost straight and parallel costal and ventral margins; ventral margin with obtuse process placed near apex of valva; apex of valva very narrowly rounded; sacculus rather sclerotized (see remarks). Vinculum short, broad, semicircular. Papillae on the anterior arms of the labides medium-sized, covered with short setae at apices. Phallus large, broad, almost equal to valval length. Vesica armed with one elongated plate-like cornutus and some horn-like, heavily sclerotized cornuti, which group into two rows (one longer than other with one much larger and longer cornutus). Sternite A8 short and broad, with two broad, sharply tapered and slightly apically divering arms; basal emargination relatively narrow and deep; apical hollow membranous, narrow and deep.
Female genitalia (Fig. 23). Bursa copulatrix pouch-like, relatively small, short and broad, sclerotized, with numerous longitudinal wrinkles, armed with two patches of spines (one basal along anterior wall of bursa of slim spines with much larger some lateral spines on both sides, and other smaller, oblique patch of small spines near base of colliculum). Ductus bursae indistinct from corpus. Ductus seminalis narrow, slightly broadened at base, attached to medium part of corpus bursae. Colliculum collar-like, short and very broad. Antrum short and broad, membranous. Tergite A8 rectangular. Anterior and posterior apophyses short and narrow. Papillae anales relatively small, short and narrow, tepered apically, covered with long and medium-sized setae.

Diagnosis. This species appears to belong to the *fletcherata* group. It is externally similar to *E. assectata* Dietze, 1904, but can be distinguished from it by the narrower forewing with more pointed apex and more oblique termen. There are no significant differences in the colouration and pattern of the wings between these species. The male genitalia of the new species are most similar to those of *E. assectata*, but can be distinguished from it by the narrower basal part of uncus, with longer and narrower apical part, very different shape of valva with straight ventral margin almost parallel to dorsal margin, the presence of a short and obtuse process on ventral margin near the apex, which is narrower in the new species than in *E. assectata*. The cornuti on the vesica of *E. fredi* are larger on the whole, with one very large cornutus, which slightly shorter than the phallus of *E. assectata*. The sternite A8 broader, with longer apical arms and deeper basal and membranous apical emargination than in the male of *E. assectata*. The female genitalia of *E. fredi* can be easily separated from those of *E. assectata* by the more sclerotized corpus bursae with longer, numerous longitudinal wrinkles, broader colliculum, the presence of two patches of much larger and longer marginal spines in the spiniferous area and narrower anterior and posterior apophyses.

Distribution. East Afghanistan.

Etymology. This species is named in honour of the German lepidopterologist Fred Brandt. He was one of the first collectors of Lepidoptera in Afghanistan. There is an interesting story about his collecting of material of *Eupithecia fredi*. Speaking Farsi fluently, in the 1930s F. Brandt was very active in Iran, where he found a lot of new species of Geometridae and Noctuidae. These were described by his brother Wilhelm Brandt, living in Helsinki, Finland. At that time the two of them had a good working relationship with the well-known British lepidopterist E. P. Wiltshire CBE and they dedicated several species to him (e.g. *Idaea wiltshirei* Brandt, 1938 and *Xanthorhoe wiltshirei* Brandt, 1941). Shortly afterwards, as the political climate changed, they found themselves standing on the opposing sides. Fred Brandt visited Afghanistan during the Second World War in the years 1941 and 1942. He was there on an official mission of the German Abwehr (Foreign Intelligence Service). In the night of 18/19 July 1941, together with Dr. M. Oberdörffer, a medical doctor and specialist in tropical medicine, they came under fire in Logar near Kabul (the so called “Logar incident”). Fred Brandt was badly injured, and his partner died. Four weeks before this, Brandt remarkably found time to collect moths in the Paghman area! The main part of the type series of *Eupithecia fredi* was collected there in that period. Nearly all other specimens from this collecting event were lost.
Remarks. All Vojints slides of genitalia in the type-series of this species were boiled for too long, and unfortunately this left crucial details barely, if at all, visible.

Eupithecia nepalata Schütze, 1961

Eupithecia nepalata Schütze, 1961: Veröffentlichungen der zoologischen Staatsammlung München 6: 179, pl. 29, figs 1, 6; pl. 30, figs 1, 1a, 1b, 2. Holotype σ (ZSM), Nepal: Mustangbhot, 29°11’n, Br. 83°58’०.L., Kehami, 3700 m.

A Central Asian mountainous species, which is externally similar to the common *E. relaxata* Dietze, 1904. It had hitherto been recorded from Tajikistan, northern provinces of Pakistan and India, and from Nepal. It has not been previously recorded from Afghanistan.

Eupithecia thermosaria Hampson, 1903

Eupithecia costipicta Warren, 1893

This is a rare Asian mountainous species, which belongs to the subfuscata group and is distributed in Jammu & Kashmir, Nepal, India (Sikkim), and Central China (Hubei, Hunan) from about 2300 m up to about 3500 m above sea-level. Not hitherto known from Afghanistan.

Eupithecia vivida Vojnits & De Laevers, 1978

Eupithecia producta Vojnits, 1981: Annales Historico-Naturales Musei Nationalis Hungarici 73: 222, fig. 3. Holotype ♀ (SMNK), India (north): Kumaon Bhimtal (Nainital), 1450 m. [Junior primary homonym of Eupithecia producta Bastelberger, 1911; Peru.]

A single small Afghanian specimen of the second or third generation is damaged (without right hindwing and abdomen). The pattern on the forewings is characteristic for E. vivida. It is a new species for the fauna of this country.
Eupithecia infecunda Vojnits, 1981

This little-known and rare Asian species was described on the basis of a single female from the western Pakistani province Swat. Two Afghanian specimens are worn but with well-visible distinctive postmedial transverse lines on all wings. The male of _E. infecunda_ is unknown.

Eupithecia incurvaria Hampson, 1903

Eupithecia propoxydata Schütze, 1961: Veröffentlichungen der zoologischen Staatssammlung München 6: 182, pl. 29, fig. 5: pl. 32, figs 2, 2a, 2b. Holotype ♂ (ZSM), Nepal: Manangbhot, 28°40’N, 84°01’E, Sabzi-Chu, 3500 m (syonymised in Mironov et al. 2008b).

This species was originally described by Hampson on the basis of two females from Kashmir. It is found in northern Pakistan, Jammu & Kashmir, Nepal, and India (Sikkim) ranging from about 1400 m up to about 3500 m above sea-level. A new species for the fauna of Afghanistan. The male genitalia were described and illustrated in Schütze (1961a) as _E. propoxydata_. The female genitalia are described and illustrated for the first time here.

Female genitalia (Fig. 24). Bursa copulatrix small, rounded, almost completely covered with slim spines; marginal spines longer than other. Ductus bursae broad, sclerotized, sharply tapering to colliculum, spineless, but with longitudinal wrinkles. Ductus seminalis broad, membranous, with some small dentates on the inside. Colliculum collar-like, short and narrow. Antrum bowl-shaped, heavily sclerotized, broad and relatively short. Tergite A8 broad, rectangular. Anterior apophyses very short, slightly broadened and flattened at apices; posterior apophyses narrow, medium-sized. Papillae anales relatively small, short, rounded.

Eupithecia innotata (Hufnafel, 1767)

A very common West Palaearctic species ranging from Spain in the west to western Siberia in the east. However, it has not been previously recorded from Afghanistan or Central Asia on the whole.

Eupithecia parallelaria Bohatsch, 1893

Material. Lectotype (designated by Vojnits) ♀, Type ♀; Iris 1893, v. parallelaria Bohatsch, Origin., Zool. Mus. Berlin, Vojnits slide no. 13574♀ (coll. R. Püngeler in MNHU). E **Afghanistan**: 1♂, Nuristan, Bashgal, 18 km E of Kamu, 1500 m, 29.70 [sic!] 1970, leg. C. Naumann, Coll. Nr. 1147, Ratzel slide no. GU25408/5m; 1♂, Sarobi, 18.x.1957, Frau Dr. Wegner leg.; 3♂, 2♀, same locality, 15., 22.x.5., 13.xi.1961, ML, Ratzel slides nos GU13408/2m, GU13408/3m (SMNK); 1♀, same locality, 19.x.1961 (ZSM).

There is a series of small specimens of the second generation in the Afghan material in SMNK and ZSM. A new species for the fauna of Afghanistan. The male and female genitalia were described and illustrated by Vojnits (1988).

Eupithecia praesignata Bohatsch, 1893

This Central Asian species was previously known from Uzbekistan, Tajikistan, Kyrgyzstan, north-western China (Xinjiang), Jammu & Kashmir, and India (Ladakh Mts.), and is new for Afghanistan. The habitus was illustrated in Dietze (1910). The male and female genitalia were described and illustrated in Vojnits (1982b).

Eupithecia mitigata Dietze, 1906

Eupithecia tshimganica Viidalepp, 1988

A distinctive, pale, yellowish or yellow-grey species from the innotata group. Some known specimens of this species are without a distinct wing pattern. E. tshimganica was previously known from Uzbekistan and Tajikistan. First records for Afghanistan. E. subommigera was synonymised here on the basis of the external similarity of the holotype. There are also additional specimens (males and females) of this species in the collection of ZISP from Tien-Shan Mts.

Eupithecia relaxata Dietze, 1904

Eupithecia spartioides

Holotype \(\sigma \), Koh-i-Baba, S-Seite, Panjao, 2650 m, 20–22.vii.1966, G. Ebert leg. Vojnits slide nos 17774\(\sigma \), 19517\(\sigma \); 4\(\sigma \), 3\(\varphi \), same locality, N-Seite, Band-i-Amir, 2900 m, 24–26.vii.1966, Vojnits slides nos 17767\(\sigma \), 17886\(\sigma \), 19499\(\sigma \), 19516\(\sigma \) 17765\(\varphi \), 17770\(\varphi \), 17778\(\varphi \); 1\(\sigma \), 1\(\varphi \), E Afghanistan, Salang-Pass, N-Seite (Khjinian), 2100 m, 5–11.vii.1966, G. Ebert leg., Vojnits slides nos 17783\(\sigma \), 19496\(\sigma \); 6\(\varphi \), SE Afghanistan, Safed Koh, S-Seite, Kotkai, 2350 m, 1–3., 6, 9.ix.1967, M. Müller leg., Vojnits slides nos 16971\(\varphi \), 16973\(\varphi \), 16974\(\varphi \), 16991\(\varphi \), 19513\(\varphi \); 1\(\varphi \), E Afghanistan, Pr. Kunar, Nuristan, ob(eres) Lindai Sin-Tal, vic. Barg e Matal, Dandizenor Mts., 3100 m, 13–14.vii.1970, leg. Naumann, Coll.-Nr. ZMK 93 (SMNK); 1 ex., Prov. Kadaghan, Salang Paß, Nordseite, 69°L 35°40’B, 11–12.vi.1971, leg. Vartian (HNHM); 6\(\sigma \), 30 \(\varphi \), NE Afghanistan, Wakhan-Tal, 3300 m, Zemestani Baharak, 10, 23, 24.vii.1971, UV-Li, Ebert & Naumann, coll. Nr. 242, 261, 262, Ratzel slide no. GU31209/3w; 1\(\sigma \), 9\(\varphi \), same locality, 3450 m, Darrah-e-Shaur, 25.vii.1971, UV-Li, Ebert & Naumann, coll. Nr. 263; 3\(\sigma \), 19\(\varphi \), same locality, 3400 m, Kotal-e-Dalez, W-Seite, 27., 29.vii.1971, UV-Li, Ebert & Naumann, coll. Nr. 269 and 272; 7\(\sigma \), 1\(\varphi \), same locality, Sargaz, 2930 m, 11.viii.1971, UV-Li, Ebert & Naumann, coll. Nr. 290 (SMNK).

This handsome, distinctive and common Central Asian species of the \textit{innotata} group is distributed in Turkmenistan (Kopet-Dagh Mts.), Iran, Tajikistan (Pamirs Mts.), Kazakhstan, Kyrgyzstan (Tien-Shan Mts.), Pakistan (Baltistan), Jammu & Kashmir, India (Ladakh Range), north-western China (Xinjiang), and Mongolia (Mongol Altai Mts.). First records for Afghanistan. It is a bivoltine species with the second generation being smaller than the first. The larvae of \textit{E. relaxata} have been found in scrub woodland on \textit{Amygdalus spartioides} (Rosaceae) in Iran (Wiltshire 1952). The male and female genitalia were described and illustrated in \textit{De Laever} (1960) for the first time as \textit{E. costisignata}. Later on, Vojnits (1982b) described and illustrated the male and female genitalia of this species also under the name \textit{E. costisignata} but without the eighth sternite of the males. He described this species as a new one under the name \textit{pamiri} again in another publication (Vojnits 1988).

Eupithecia lindti Viidalepp, 1988

Eupithecia lindti Viidalepp, 1988: Fauna pyaenides gor Srednej Azii [Geometridae fauna of the Central Asian mountains]: 113, pl. 1, fig. 16; text-pl. 24, figs 1–4. Holotype \(\sigma \) (IAET), Uzb. SSR [Uzbekistan]: Chimgan spa.

Eupithecia hangayorum Vojnits, 1988: Annales Historico-Naturales Musei Nationalis Hungarici 80: 84, pl. 1, figs 1–2 (nce pl. 2, figs 15–16); pl. 6, figs 45–48. Holotype \(\varphi \) (ZISP), [Tajikistan]: Darwaz occid., Chazret-scho Mts., fl. Don Duschkan, 2200 m (syonymised in Mironov et al. 2008c).

Material. Holotype \(\varphi \), Uzbekistan, kur. Chimgan, 26.vi–1.vii.1981, at light, leg. A. Lindt (IAET). – Holotype of \textit{E. hangayorum} [hangayae on the label] \(\varphi \), Tajikistan, Darwaz occid., Mts. Chazret-Scho, fl. Don Duschkan, 25.vii.1959, 2200 m, leg. A. A. Bundel, Vojnits slide no. 17748\(\varphi \) (ZISP). – Paratypes of \textit{E. hangayorum} [hangayae on the label]: 1\(\varphi \), Tajikistan, Mts. Darwaz, cliv. Merid., fl. Wischarvi, 1800 m, 3.viii.1958, A. Bundel, Vojnits slide no. 17691\(\varphi \); 1\(\varphi \), Pamir occid., fl. Obi-Chingou, Mionadu, 6.vii.1959, 2200 m, A. Bundel, Vojnits slide no. 17674\(\varphi \); 1\(\varphi \), vic. Stalinabad, Khorangonskoe gorge, 12.viii.1951, Vojnits slides nos 17629\(\varphi \), 17638\(\varphi \); 1\(\varphi \), vic. Dzhirgatal, Dzhul-Terek Pass, 2400 m, 13.vii.1953, Bundel, Vojnits slide no. 17671\(\varphi \) (ZISP). Afghanistan: 1\(\sigma \), Pagman-Gebirge (Kabul), ca. 3000 m, Juni–Juli 1942, coll. Brandt, R. M. prep. 4914, 7467 E94+, \textit{E. afghanata} Schü., Präp. Nr. S 1205\(\sigma \) det. E. Schütze, Kassel, Holotypus \textit{Eup. afghanata} Schütze (undescribed), \(\varphi \), E. Schütze. Kassel, Naturhistoriska Riksmuseet Stockholm, Loan no 361/06; 1\(\varphi \), same data, R. M. prep. 4915, 7468 E94+, \textit{E. afghanata} Schü., Präp. Nr. S 1222\(\varphi \) det. E. Schütze, Kassel, Paratypos \textit{Eupith. afghanata} Schütze, \(\sigma \), E. Schütze, Kassel, Naturhistoriska Riksmuseet Stockholm, Loan no 362/06 (NRHS); 1\(\varphi \), same data, 100/57, R. M. prep. 4905, 7469 E94+, spec. ?, \textit{Eup. kabulata} Schü., Präp. Nr. S 1204\(\varphi \) det. E. Schütze, Kassel, Holotypus \textit{Eupith. kabulata} Schü. (undescribed), E. Schütze, Kassel, Naturhistoriska Riksmuseet...
This large species is very similar to the Iranian *E. mahomedana* Brandt, 1938, but is smaller and darker on the whole. Forewings with more pointed apex and almost straight oblique termen; all wings with transverse lines more distinct, almost straight and more oblique, discal dots usually larger and more conspicuous than in *E. mahomedana*. The male genitalia are very similar to those of *E. mahomedana* without any obvious diagnostic differences. The female genitalia can be distinguished from those of *E. mahomedana* by the absence of longitudinal membranous gap dividing in half the main spinferous area. *E. lindii* was previously known from the mountains of Uzbekistan, Tajikistan, and northern provinces of Pakistan and India. It is a new species for the fauna of Afghanistan.

Eupithecia convallata terricolor Vojnits, 1988

Material. Paratype: 1♂, Afghanistan, 10 km NW v. Kabul, 1900 m, 29.v.1965, Kasy & Vartian, Vojnits slide nos 15627♂ (HNHM), 9♂, 4♀, E Afghanistan, Sarobi, 1100 m, 7, 15–16, 19, 21, 24–25, 27, 29.iv.1961, leg. G. Ebert, Ratzel slides nos 12312/3m, 12312/6w, 12312/7w, 13312/1w (ZSM).

This species was originally described from Iran by W. Brandt (1938). Later, Vojnits (1988) described a new subspecies *terricolor* from Afghanistan, which can be distinguished from the nominate subspecies by the less developed wing pattern, broader and less wavy basal, ante- and postmedial transverse lines in the forewing, and the presence of a large light blotch along the anal margin in the medial area between ante- and postmedial lines, also a broader and more distinct oblique postmedial transverse line in the hindwing. One female is externally different from the others. It is larger, with distinct discal dots in both pairs of wings and a dark basal area in the forewing. The holotype of this Afghan subspecies is deposited in the collection Vartian (Vienna) and, unfortunately, we did not have a chance to study it. We have not seen current material of *E. convallata terricolor* from Afghanistan.

Eupithecia xanthomixta Vojnits, 1988

A dark, motley, originally coloured and variable species from the *graphata* group which was described on the basis of a relatively large series of specimens. The male and female genitalia were briefly described and badly illustrated (especially the phallus and female genitalia) in Vojnits (1988).

Eupithecia naumanni Mironov & Ratzel, sp. n.
Figs 11, 12, 19, 25

Description. Wingspan 20.5–25.0 mm; length of forewing 11.5–13.5 mm. Labial palp short and obtuse, length about one half of diameter of eye, covered with light brown scales with grey tips. Frons and vertex covered with mixture of brown and light grey scales. Notum and abdomen with dominant ash grey scales. Forewing rather elongate, with straight costal margin curving near apex, oblique termen and pointed apex; ground colour brownish grey; transverse lines brown; basal and antemedial oblique, sharply angled onto costa; medial line usually oblique, touching discal dot and sharply or right angled from discal dot onto costa; medial area between antemedial and medial lines usually darker than the rest of the wing; postmedial line slightly wavy, evenly curved onto costa; terminal area often darker, especially in apical part; discal dot relatively small, black, rounded or slightly elongated. Hindwing ovoid, similar in colour, transverse lines distinct only along anal margin; terminal area usually slightly darker, with wavy inner border and a series of dark dashes on the veins; discal dot paler, brownish, rounded or slightly elongated and more or less distinct; fringe on all wings chequered pale grey and brownish grey.

Male genitalia (Fig. 19). Uncus medium-sized, rather narrow, biapical. Valve shaped like a segment of orange fruit; dorsal margin slightly arched near base; ventral margin parallel to dorsal at basal half and evenly curved and tapering to apex; apex narrowly rounded; sacculus lightly sclerotized. Vinculum rather narrow and short, tapering anteriorly. Papillae on the anterior arms of the labides medium length and width, slightly curved, covered with short setae at apices. Phallus stout, large and broad, shorter than length of valve. Vesica covered with numerous denticules, larger on one side and armed with a long and narrow, V-shaped, plate-like cornutus typical for the males of the "*graphata*" species-group. Sternite A8 peg-like, elongated, with stronger sclerotized margins near apex; basal emargination relatively broad and deep.

Female genitalia (Fig. 25). Bursa copulatrix large, ovoid-oblong, membranous, about one half covered with slim spines, which are larger posteriorly; the border of
spiniferous area oblique. Ductus bursae tapering to colliculum, heavily sclerotized, with distinct oblique border from corpus bursae and chain of small spines along this border between base of ductus bursae and colliculum. Ductus seminalis broadened in basal part; attached to the middle of corpus bursae at right side. Colliculum collar-like, rather medium-sized, slightly elongated and inclined to one side. Antrum short and broad, membranous. Tergite A8 rectangular, broader than long, with rounded posterior corners. Anterior and posterior apophyses medium length and thickness, tapering to apices. Papillae anales relatively large, broad, rounded, covered with short setae.

Diagnosis. This species belongs to the *graphata* group. It is similar to *E. xanthomixta* Vojnits, 1988, but the new species is usually larger, ground colour pale greyish brown,
wing pattern less distinct, postmedial transverse line more evenly curved near costa and not bordered by blackish shading, hindwing darker with indistinct transverse lines. The male and female genitalia are very similar to those of *E. xanthomixta*. The male genitalia can be distinguished by the larger valva with more arched dorsal margin and broader apex than in *E. xanthomixta*. The female genitalia of these two species appear identical.

Distribution. East Afghanistan.

Etymology. This species is named in honour of the German zoologist and lepidopterologist Prof. Dr. Clas Naumann (1939–2004), the former Director of the “Zoologisches Forschungsinstitut und Museum Alexander Koenig”, Bonn, Germany (ZFMK). Many times he visited Afghanistan and collected most part of the type series of this new species *Eupithecia naumannii*.

Remarks. Unfortunately, the majority of paratypes of this species are very worn. We believe that the *graphata* group includes mainly recently-diverged species because the male and female genitalia of many species in this group are very similar. Some species of the *graphata* group can be distinguished from each other by external features only, such as ground colour and wing pattern (Schütze 1958).

Eupithecia simpliciata (Haworth, 1809)

Phalaena simpliciata Haworth, 1809: Lepidoptera Britannica (2): 359. Syntype(s) (BMNH ?), [Great Britain].

Geometra subnotata Hübner, 1813: Sammlung Europäischer Schmetterlinge 5 Geometrae (2), pl. 89, fig. 458. Syntype(s) lost, [Europe] (synonymised in Herrich-Schäffer 1848; as *Eupithecia subnotatataria* [sic] (Hübner, 1813).

This is a widespread species, ranging from Western Europe to northwestern China (Xinjiang) from close to sea level to about 3300–3400 m above sea-level in Tajikistan (Viidalepp 1988, as *E. inculta*) and Afghanistan from where it was not hitherto known until now.

Remarks. The widely used names for this species (*E. simpliciata* and *E. subnotata*) were used as two bona species in “Geometrid Moths of the World: A catalogue (Lepidoptera, Geometridae)” by Scoble et al. (1999) despite the very old synonymisation of these taxa by Herrich-Schäffer (1848).

Eupithecia centaureata (Denis & Schiffermüller, 1775)

Eupithecia oblongata f. obscura Dietze, 1910: Biologie der Eupithecien 1: pl. 70, fig. 132; ibidem (1913), 2: 63. Synotypes 6, at least 4♀ (coll. K. Dietze in MNHU), [Krygyzstan]: Alai Mts.; [Kazakhstan]: Ural; [Italy]: southern Tyrol.

Eupithecia centaureata dagestani Vojnits, 1977: Acta Zoologica Academiae Scientiarum Hungaricae 23 (1-2): 229, fig. 2. Holotype ♂ (ZFMK), [Russia]: Dage(h)estan, Petrovsk-port [= Makhachkala].

Holotype ♂ (ZFMK, now in HNHM), China: Shantung Province, Tai-shan, 1550 m (synonymised in Mironov & Galsworthy 2007).

This is one of the most easily recognizable species among the Palaearctic representatives of the genus. The male and female genitalia were described and illustrated in Petersen (1910) for the first time and in many other publications later.

E. centaureata is a widespread and relatively common species, it ranges from the Atlantic coast of Ireland, Portugal, and Morocco across Europe and the greater part of Asia to the Far East of Russia (Primamurje) and the Pacific coast of the Chinese province Guangdong, as well as Taiwan. It had not been recorded for the fauna of Afghanistan until now.

Eupithecia nachadira Brandt, 1941

Eupithecia nachadira Brandt, 1941: Mitteilungen der Münchener entomologischen Gesellschaft 31 (3): 877, pl. 29, fig. 23. Lectotype ♂ (designated in Mironov 2003; NHRS), [Iran]: Kouh-i Taftan, 2500–2800 m.

E. nachadira was described and hitherto only recorded from Iran. It belongs to the *centaureata* group and was not previously recorded from Afghanistan. The male genitalia were described and illustrated in Mironov (2003) for the first time.

Remarks. The type specimens of *E. nachadira* were not designated by Brandt with labels “holotype” and “paratype”. In addition, all syntypes mentioned above are without abdomens and only two have information about genitalia slides made by Vojnits.
Eupithecia repetita Vojnits, 1981

It was not surprising that this species occurs in Afghanistan, because it was described from the western provinces of Pakistan. According to the structure of the male and female genitalia (Vojnits 1981), it is a representative of the centaureata group with striking external appearance. The holotype of E. repetita was illustrated by Mironov et al. (2008c) for the first time.

Eupithecia subtilis Dietze, 1910

Eupithecia subtilis Dietze, 1910: Biologie der Euphcheden I: pl. 79, figs 870, 871; pl. 80, fig. 900. Lectotype ♀ (designated in Mironov et al. 2008c, coll. K. Dietze in MNHU), Hycan(ia) [Iran]: Schahkhu.

This is a representative of the centaureata species-group. E. subtilis is known from Iran, Uzbekistan, Kyrgyzstan, Tajikistan, and Pakistan. It occurs in from about 1500 m up to about 3500 m above sea-level. A new species for the fauna of Afghanistan. The female genitalia were described and illustrated in Viidalepp (1988) as E. tomu. The male genitalia of E. subtilis will be described in our forthcoming paper treating material from Tajikistan and Iran.

Eupithecia egregiata Mironov & Ratzel, 2008

This species from the *centaureata* group was described on the base of a small series of specimens (one male holotype and four female paratypes) from Pakistan and Afghanistan (one female). We have not seen additional material of this species from Afghanistan.

Eupithecia decipiens Petersen, 1910

[Eupithecia] decipiens Petersen, 1910: Deutsche entomologische Zeitschrift, Iris 22 (4): 279, pl. 26, fig. 104. Syntypes †, ‡ (coll. K. Dietze in MNHU), [Iran]: Schahkuh.

E. decipiens is a little-known and rare Asian species which was described from northern Iran and previously known only from Iran, Uzbekistan (coll. IAET), and Kyrgyzstan (Viidalepp 1988), occurring from about 1500 m up to about 2900 m above sea-level. This is a new species for the fauna of Afghanistan.

This species is unlikely to be confused with any other Asian representative of the genus. The triangular forewings with almost straight margins, narrow apex and distinctive dark, oblique, narrow medial band between antemedial and medial transverse lines, which is sharply angled from R vein onto costa, make this an easy species to identify. According to the structure of the male and female genitalia this species belongs to the *centaureata* group. The details of the male and female genitalia were described and illustrated in Petersen (1910).

Eupithecia mekrana Brandt, 1941

[Eupithecia] mekrana Brandt, 1941: Mitteilungen der Münchener entomologischen Gesellschaft 31 (3): 877, pl. 29, fig. 24. Lectotype † (designated in Mironov 2003, NHRS), [Iran]: Baloutchistan, Bender Tchahbahar.

Eupithecia mekrana khorassana Brandt, 1941: Mitteilungen der Münchener entomologischen Gesellschaft 31 (3): 877. Lectotype † (designated in Mironov 2003, NHRS), [Iran]: Khorassan, Kouh i Binaloud (Meced), 2500 m.

Eupithecia mekranam miralis Wiltshire, 1986: in Büttiker & Krupp, Fauna of Saudi Arabia 8: 280, fig. 102, gen. figs 18, 19. Holotype † (BMNH), [Saudi Arabia]: UAE (“Trucial Oman”), Masafi.

This small yellowish or pale ochreous species is distributed from steppen chalk hills in Orenburg province in the southeastern European Russia in the north (Mironov 2003) to Saudi Arabia in the south (Wiltshire 1986). It is known also in the eastern provinces of Turkey, in Armenia, Azerbaijan, and Iran. A new species for the fauna of Afghanistan. The male and female genitalia were described and illustrated by Vojnits (1982a) under names *E. idoea*, *E. stulta*, and *E. commenticia* – three synonyms of the same species in one publication.

Remarks. The full type series of this species was not marked by Brandt with original labels “holotype”, “paratype” or “syntype”. There are additional labels only with inscription “mekrania” by pencil.

Eupithecia variostrigata Alphäraký, 1876

Eupithecia variostrigata Alphäraký, 1876: Horae Societatis entomologicae Rossicae 10: 40. Holotype ♂ (not traced), Russia: Taganrog.

A new species for the fauna of Afghanistan. It is a widespread western Palaeartic species occurring from Spain in the west to western Pamirs in the east. The holotype of _E. variostrigata_, which was illustrated by Dietze (1906, 1910), could not be found in any of the studied museum collections.

Eupithecia subpulchra Alphäraký, 1883

Eupithecia subpulchra Alphäraký, 1883: Horae Societatis entomologicae Rossicae 17 (3/4): 221, pl. 8, fig. 75. Holotype ♂ (not traced), [China]: Ili (region), Kouldjà [= Kuldja] [Yining (Gulja)].

Material. **Afghanistan**: 1♀, Salang-Pass, N-Seite, (Khinjan), 2100 m, 5–11.vii.1966, G. Ebert leg., Vojnits slide no. 19553♂; 1♀, NE Afghanistan, Prov. Badakhshan, 1750 m, 12 km NE of Baharak: Pejuji, 27.vi.1971, UV-Li, Ebert & Naumann, coll. Nr. 224, Ratzel slide no. GU25408/1w (SMNK).

This handsome species from the _gueneata_ group was described on the basis of a single male specimen from northwestern China. It was also known from Turkmenistan, Uzbekistan, and southern Kazakhstan. Not previously recorded from Afghanistan. The details of the male genitalia were described and illustrated by Petersen (1910) for the
first time on the basis of one specimen from the Dietze collection. Habitus of the type specimen of *E. subpulchrumata* from Saint-Petersburg Museum was illustrated by Dietze (1906, 1910). However, Alphéraky’s type was not found in the Dietze collection in MNHU nor some other European museums, such as ZISP and BMNH. The details of the bursa copulatrix were described and illustrated in Viidalepp (1988) from a specimen from southern Kazakhstan.

Eupithecia vulgata (Haworth, 1809)

This is a widespread and common Palaearctic species ranging from the Atlantic coast of Ireland and Portugal in the west across Europe, Mid-East and Central Asia to the Far East of Russia (Priamurje) and Korea in the east. Not hitherto known from Afghanistan.

The specimens from Central Asia externally do not differ from European specimens except that they are usually darker, blackish grey or brown coloured. Both male and female genitalia of adults from Afghanistan and adjacent areas are very similar to those from European specimens. The details of the male and female genitalia were described and illustrated in Petersen (1910) for the first time and after that in many other publications of European authors.

Eupithecia ochrovittata Christoph, 1887

Eupithecia ochrovittata Christoph, 1887: in N. M. Romanoff, Mémoires sur les Lépidoptères 3: 7, pl. 1, fig. 3. Lectotype ♀, herewith designated to stabilize nomenclature (ZISP), [Armenia]: Erivan.

This rare species of *Eupithecia* was previously only recorded from Transcaucasia (Georgia and Armenia). The finding of *E. ochrovittata* in Afghanistan was quite unexpected. The single Afghanian specimen is smaller (wingspan 17.5 mm) than the transcaucasic specimens. It is worn but with visible distinctive dark costal margins, distinct small discal dots and the rest of the surface colour in the forewings, as well as with pale, dirty white hindwings. The type specimen of this species was figured in the third volume of Romanoff’s series of book (1887) and afterwards illustrated by Dietze (1906, 1910).
as well. The male of *E. ochrovittata* was previously unknown. We therefore include a description and illustration of the male genitalia.

Male genitalia (Fig. 20). Uncus relatively small, short and narrow, biapical. Valva shaped like a lemon segment slightly arched near base of dorsal margin, with evenly curved ventral margin and broadly rounded, rather obtuse apex; sacculus slightly sclerotized. Vinculum short and narrow, tapering anteriorly. Papillae on the anterior arms of the labides medium-sized, covered with short setae at apices. Phallus slim, short and narrow, narrowing anteriorly, shorter than valval length. Vesica covered with numerous denticules and armed with one horse-shoe-shaped comutus. Sternite A8 peg-like, evenly tapered to apex and sclerotized near it; basal emargination relatively shallow.
Eupithecia exactata Staudinger, 1882

Eupithecia exactata f. modesta Dietze, 1910: Biologie der Eupithecien I, pl. 73, fig. 380. Holotype ♂ (coll. K. Dietze in MNHU), [China]: Aksu, Makan-Wüste [Korla, Sai-chin on the label].

This is a common Asian mountainous species, widespread in northern Iran (Shahkuh Mts.), Kyrgyzst., Tajikst., Pakistan/India (Jammu & Kashmir), southeastern regions of Kazakhstan, northwestern provinces of China (Xinjiang), and in Mongolia. Not previously recorded from Afghanistan. The male and female genitalia were described and illustrated in De Laevers (1956) for the first time.

Eupithecia nephelata Staudinger, 1897

This pale-coloured Central Asian species has previously been recorded from Kyrgyzst., Tajikst., Pakistan/India (Jammu & Kashmir), western China (Xinjiang), and Mongolia. It is a new species for the fauna of Afghanistan. The moth is externally rather similar to the preceding species and was illustrated in Dietze (1910) and later in
Mironov et al. (2008c). The male and female genitalia were described and illustrated by De Laever (1956) for the first time.

Eupithecia marginata Staudinger, 1892

E. marginata is a western Asian species ranging from Cyprus in the west through North Caucasus (Daghestan), Armenia, Azerbaijan, Iran, Uzbekistan, Tajikistan, and Kyrgyzstan to southeastern Kazakhstan (Tien-Shan Mts.) and northwestern province of China (Xinjiang) in the east. Not previously recorded from Afghanistan.

This species is especially very similar to the British nominate subspecies of *E. vulgata* (Haworth, 1809). Based on the structure of the male and female genitalia, it belongs to the *semigraphata* group (Schütze 1956). The female genitalia were described and illustrated in Petersen (1910) for the first time, and after that the genitalia of both sexes were pictured in the publications of De Laever (1956) and Viidalepp (1988).

Eupithecia exicterata Mironov & Ratzel, 2008

This species, which is similar externally to *E. icterata* f. *subfulvata* (Haworth, 1809), was recently described on the basis of a large series, including 16 specimens from the western Himalayas (Pakistan and India). A single worn female was found in the Afghananian material of *Eupithecia* in SMNK.

Acknowledgements

We are grateful to Dr. R. Trusch, M. Falkenberg and G. Ebert (SMNK, Karlsruhe), Dr. A. Hausmann (ZSM, Munich) and Dr. W. Mey (MNHU, Berlin) for their always kind support of both authors when visiting respectively the Staatliches Museum für Naturkunde Karlsruhe, Germany, Zoologische Staatssammlung
München, Germany and Museum für Naturkunde, Zentralinstitut der Humboldt-Universität zu Berlin, Germany. We are grateful also to Dr. L. Ronkay (HNHM, Budapest), Dr. J. Viidalepp (IAET, Tartu) and Dr. D. Stüning (ZFMK, Bonn) for kind support of the first author when visiting respectively the Termeszetudományi Múzeum Allattara (Hungarian Natural History Museum), Budapest, Hungary, Institute of Agriculture and Environment, Estonian Agricultural University, Tartu, Estonia, Zoologisches Forschungsinstitut und Museum Alexander Koenig, Bonn, Germany. We are grateful to Dr. B. Gustafsson (NHRs, Stockholm) for generous loan of type-material and to Dr. A. Hausmann (ZSM, Munich), Dr. S. Gaal-Haszler (NHMW, Vienna) and Dr. L. Ronkay (HNHM, Budapest) for loan of material. Thanks are also due to the Deutsche Forschung Gemeinschaft (DFG grants nos 436 RUS 17/99/02; STU 498/2–1 and TR 1086/1–1) which enabled Dr. V. Mironov to do extensive studies on Asian Eupitheciini in ZFMK (Bonn), MNHU (Berlin) and SMNK (Karlsruhe) in 2003, 2009 and 2011, and to the Royal Society, London, who provided a grant to enable Dr. V. Mironov to work in BMNH (London) in 2006. We acknowledge Dr. L. Kaila (Finnish Museum of Natural History, Helsinki) and an anonymous reviewer for helpful comments on the manuscript.

References

Mohammadian, H. 2006. Biological Diversity of Lepidoptera in Iran (Geographic Distribution of 2200 species). Shabpareh Publ.: Iran, Tehran, 392 pp.

Nota lepidopterologica index to volume 35 by taxon and author names, with publication dates

Publication dates

Contents

Bartsch, D. 2012 (15.xi.). Revision of types of several species of Bembecia Hübner, 1819 from northern Africa and southwestern Europe (Sesiidae). 35(2): 125–133.

Nieukerken, E. J. van; Doorenweerd, C.; Ellis, W. N.; Huisman, K. J. (Hans); Koster, J. C. (Sjaak); Mey, W.; Muus, T. S. T. & Schreurs, A. 2012 (15.xi.). Bucculatrix ainsliella Murtfeldt, a new North American invader already widespread on northern red oaks (Quercus rubra) in Western Europe (Bucculatricidae). 35(2): 135–159.

Nupponen, K. 2012 (15.xi.). Redescription of Pelochrista maculiferana (Kennel, 1900), bona sp., with notes on eight poorly known species of leafrollers from the Volgo-Ural region (Lepidoptera: Tortricidae). 35(2): 115–124.

Book reviews. 35(1) (25.iv.): 108; 35(2) (15.xi.): 134.

Index of taxonomical changes

anikini sp. n. (Plebejus) – Yakovlev 2012 (25.iv.): 35(1): 74
astragali (Joannis, 1909) (Bembecia), stat. rev. – Bartsch 2012 (15.xi.): 35(2): 129
centralasiae (Obraztsov, 1949)(ssp. of Laspeyresia pamira), stat. n., bona sp. – Zlatkov & Budashkin 2012 (25.iv.): 35(1): 103
dmitrievae ssp. n. (Hyponephele lycaon) – Yakovlev 2012 (25.iv.): 35(1): 83
eberti Vojnits, 1978 (Eupithecia), syn. n. of Eupithecia obtinens Brandt, 1941 – Mironov & Ratzel 2012 (15.xi.): 35(2): 208
elegantana Budashkin & Zlatkov (Cydia centralasiae), ssp. n. – Zlatkov & Budashkin 2012 (25.iv.): 35(1): 104
fredi sp. n. (Eupithecia) – Mironov & Ratzel 2012 (15.xi.): 35(2): 209
Gabretica Šumpich ssp. n. (Chrysoclista abechasica) – Šumpich, J. & Skyva 2012 (15.xi.): 35(2): 164
germanii sp. n. (Plebejus) – Yakovlev 2012 (25.iv.): 35(1): 75
graecatella sp. n. (Eulamprotes) – Šumpich, J. & Skyva 2012 (15.xi.): 35(2): 168
igueri Bettag & Bläsius, 1998 (Bembecia), syn. n. of Bembecia astragali (Joannis, 1909) – Bartsch 2012 (15.xi.): 35(2): 129
intexta Kuznetsov, 1962 (Laspeyresia), syn. n. of Cydia centralasiae (Obraztsov, 1949) – Zlatkov & Budashkin 2012 (25.iv.): 35(1): 103
kerzhneri ssp. n. (Hyponephele lycaon) – Yakovlev 2012 (25.iv.): 35(1): 83
linariatoides Mironov, 1989 (Eupithecia), syn. n. of Eupithecia mirificata Brandt, 1938 – Mironov & Ratzel 2012 (15.xi.): 35(2): 200
maculiferana (Kennel, 1900) (Epiblema), bona sp., comb. n., now: Pelochrista – Nupponen 2012 (15.xi.): 35(2): 117
mediterranella sp. n. (Apatetris (s. l.)) – Nel & Varenne 2012 (25.iv.): 35(1): 28
naumannii sp. n. (Eupithecia) – Mironov & Ratzel 2012 (15.xi.): 35(2): 219
nomada ssp. n. (Erebia chastilovi) – Yakovlev 2012 (25.iv.): 35(1): 82
ochrovittata Christoph, 1887 (Eupithecia), LT – Mironov & Ratzel 2012 (15.xi.): 35(2): 226
przevalskii sp. n. (Erebia) – Yakovlev 2012 (25.iv.): 35(1): 80
sapozhnikovi sp. n. (Neolycaena) – Yakovlev 2012 (25.iv.): 35(1): 65
shadzat ssp. n. (Plebejus idas) – Yakovlev 2012 (25.iv.): 35(1): 72
socerbi Šumpich sp. n. (Agonopterix) – Šumpich, J. & Skyva 2012 (15.xi.): 35(2): 162
subonnigera Vojnits, 1988 (Eupithecia) syn. n. of Eupithecia tshimganica Viidalepp, 1988 – Mironov & Ratzel 2012 (15.xi.): 35(2): 200
suffuscana Zlatkov & Budashkin, sp. n. (Cydia) – Zlatkov & Budashkin 2012 (25.iv.): 35(1): 101
tabestana sp. n. (Eupithecia) – Mironov & Ratzel 2012 (15.xi.): 35(2): 206
transcaucasica Budashkin & Zlatkov, sp. n. (Cydia) – Zlatkov & Budashkin 2012 (25.iv.): 35(1): 100
tunetana Le Cerf, 1920 (var. of Diposphacia megillaeformis), syn. n. of Bembecia sirphiformis (Lucas, 1849) – Bartsch 2012 (15.xi.): 35(2): 126
weigi sp. n. (Eupithecia) – Mironov & Ratzel 2012 (25.iv.): 35(1): 20
Nota lepidopterologica wird als wissenschaftliche Zeitschrift von der Societas Europaea Lepidopterologica (SEL) herausgegeben und den Mitgliedern der SEL zugesandt. Autoren, die Manuskripte für die Publikation in der Nota lepidopterologica einreichen möchten, finden die jeweils gültigen Autorenrichtlinien auf der Homepage der SEL unter http://www.soceurlep.eu. Der Verkauf von Einzelheften und älteren Jahrgängen von Nota lepidopterologica erfolgt durch das Antiquariat Goecke & Evers (Inh. Erich Bauer), Sportplatzweg 5, 75210 Keltern, Deutschland. E-Email: books@insecta.de (www.insecta.de, www.goeckeevers.de); der Buchhandelspreis beträgt € 100.00 pro Band. Die Mitgliedschaft bei der SEL steht Einzelpersonen und Vereinen nach Maßgabe der Satzung offen. Der Aufnahmeantrag ist an den Mitgliedssekretär Willy De Prins, Dorpstraat 401 B, 3061 Leefdaal, Belgien; e-mail: willy.de.prins@telenet.be zu richten. Das Antragsformular ist im Internet auf der Homepage der SEL erhältlich. Der Mitgliedsbeitrag ist jährlich am Jahresanfang zu entrichten. Er beträgt für Einzelpersonen € 35.00 bzw. für Vereine € 45.00. Die Aufnahmegebühr beträgt € 2.50. Die Zahlung wird auf das SEL-Konto 19 56 50 507 bei der Postbank Köln (BLZ 370 100 50) erbeten (IBAN: DE63 3701 0050 0195 6505 07; BIC: PBNKDEFF). Mitteilungen in Beitragsangelegenheiten werden an den Schatzmeister Dr. Robert Trusch, Staatliches Museum für Naturkunde, Erbprinzenstr. 13, 76133 Karlsruhe, Germany; e-mail: trusch@smnk.de erbeten. Adressenänderungen sollten umgehend dem Mitgliedssekretär oder dem Schatzmeister mitgeteilt werden.

Published by the Societas Europaea Lepidopterologica (SEL), Nota lepidopterologica is a scientific journal that members of SEL receive as part of their membership. Authors who would like to submit papers for publication in Nota lepidopterologica are asked to take into consideration the relevant instructions for authors available on the SEL homepage at http://www.soceurlep.eu. Single and back issues of Nota lepidopterologica can be obtained from Antiquariat Goecke & Evers (Prop. Erich Bauer). Sportplatzweg 5, 75210 Keltern, Germany, E-Mail: books@insecta.de (www.insecta.de, www.goeckeevers.de); price € 100.00 per volume. The membership is open to individuals and associations as provided for by the statutes of SEL. Applications for membership are to be addressed to the Membership Secretary Willy De Prins, Dorpstraat 401 B, 3061 Leefdaal, Belgium; e-mail: willy.de.prins@telenet.be. The application form is available on the SEL homepage. The annual subscription is to be paid at the beginning of the year. It is 35.00 € for individuals or 45.00 € for associations. The subscription fee is 2.50 €. Dues should be paid to SEL account no. 19 56 50 507 at Postbank Köln (Cologne) (bank code 370 100 50; IBAN: DE63 3701 0050 0195 6505 07; BIC: PBNKDEFF) or to local treasures as mentioned on the website. Communications related to membership contributions should be sent to the Treasurer Dr Robert Trusch, Staatliches Museum für Naturkunde, Erbprinzenstr. 13, 76133 Karlsruhe, Germany; e-mail: trusch@smnk.de. Changes of addresses should be immediately communicated to the Membership Secretary or the Treasurer.

Publié par la Societas Europaea Lepidopterologica (SEL), Nota lepidopterologica est un périodique scientifique envoyé à tous les membres de la SEL. Les auteurs qui désirent publier des manuscrits dans la revue sont priés de tenir compte des Instructions aux auteurs disponibles sur le site Web de la SEL: http://www.soceurlep.eu. Les ventes de numéros supplémentaires ou d’anciens numéros de Nota lepidopterologica, ainsi que les ventes de numéros aux personnes n’étant pas membres de la SEL sont sous la responsabilité de Antiquariat Goecke & Evers (Erich Bauer, prop.). Sportplatzweg 5, 75210 Keltern, Allemagne. courriel: books@insecta.de (www.insecta.de, www.goeckeevers.de); en librairie, le prix est de € 100.00 le volume. Tel que prévu dans ses statuts, les individus de même que les associations peuvent devenir membres de la SEL. Les demandes d’adhésion doivent être envoyées au Secrétaire responsable des adhésions, Willy De Prins, Dorpstraat 401 B, 3061 Leefdaal, Belgique; courriel: willy.de.prins@telenet.be. Le formulaire d’adhésion est disponible sur le site Web de la SEL. L’adhésion se paie au début de l’année. Elle est de 35 € pour les individus et de 45 € pour les associations. Les frais d’adhésion sont de 2,50 €. Les paiements peuvent être envoyés au compte de la SEL: no. 19 56 50 507, Postbank Köln [Cologne] (code bancaire 370 100 50; IBAN: DE63 3701 0050 0195 6505 07; BIC: PBNKDEFF) ou au trésorier local tel que mentionné sur le site Web. Toute question en rapport avec l’adhésion doit être envoyée au Trésorier, Dr. Robert Trusch, Staatliches Museum für Naturkunde, Erbprinzenstr. 13, 76133 Karlsruhe, Germany; courriel: trusch@smnk.de. Tout changement d’adresse doit être mentionné immédiatement au Secrétaire responsable des adhésions ou au Trésorier.