A TEXT-BOOK OF ZOOLOGY
TEXT-BOOK OF ZOOLOGY

BIOL. DEPT.
UNIV. TORONTO.

BY

T. JEFFERY PARKER, D.Sc., F.R.S.
PROFESSOR OF BIOLOGY IN THE UNIVERSITY OF OTAGO, DUNEDIN, N.Z.

AND

WILLIAM A. HASWELL, M.A., D.Sc., F.R.S.
PROFESSOR OF BIOLOGY IN THE UNIVERSITY OF SYDNEY, N.S.W.

IN TWO VOLUMES
VOL. I

WITH ILLUSTRATIONS

London
MACMILLAN AND CO., LIMITED
NEW YORK: THE MACMILLAN COMPANY
1897

All rights reserved
Richard Clay and Sons, Limited,
London and Bungay.
PREFACE

In spite of its bulk, the present work is strictly adapted to the needs of the beginner. The mode of treatment of the subject is such that no previous knowledge of Zoology is assumed, and students of the first and second years should have no more difficulty in following the accounts of the various groups than is incidental to the first study of a complex and unfamiliar subject.

There can be little doubt that the study of Zoology is most profitably as well as most pleasantly begun in the field and by the sea-shore, in the Zoological Garden and the Aquarium. In a very real sense it is true that the best zoologist is he who knows the most animals, and there can certainly be no better foundation for a strict and scientific study of the subject than a familiarity with the general appearance and habits of the common members of the principal animal classes. But Zoology as a branch of academical study can hardly be pursued on the broad lines of general natural history, and must be content to lose a little in breadth of view—at least in its earlier stages—while insisting upon accurate observation, comparison, and induction, within the limited field of Laboratory and Museum work.

A not uncommon method of expounding the science of Zoology is to begin the study of a given group by a definition the very terms of which it is impossible that the student should understand; then to take a general survey of the group, illustrated by casual references to animals and to structures of which it is highly unlikely he has ever heard; and, finally, to descend to a survey of the more important forms included in the group. It will probably be generally agreed that, from the teacher's point of view, this method begins at the wrong end, and is hardly more rational than
it would be to deliver a course on the general characteristics of English Literature, suitably illustrated by "elegant extracts," to a class of students who had never read a single English poet or essayist.

There can be no question as to the vast improvement effected in zoological teaching by the practice of preceding the study of a given group as a whole by the accurate examination of a suitable member of it. With the clear mental image of a particular animal, in the totality of its organisation, the comparison of the parts and organs of other animals of like build becomes a profitable study, and the danger of the comparative method—that the student may learn a great deal of the systems of organs in a group without getting a clear conception of a single animal belonging to it—is much diminished.

The method of "types" has, however, its own dangers. Students are, in their way, great generalisers, and, unless carefully looked after, are quite sure to take the type for the class, and to consider all Arthropods but crayfishes and cockroaches, and all Mollusces but mussels and snails, as non-typical. For this reason a course of Zoology which confines itself entirely or largely to "types," or, as we prefer to call them,\(^1\) examples, is certain to be a singularly narrow and barren affair, and to leave the student with the vaguest and most erroneous ideas of the animal kingdom as a whole. This is especially the case when the number of examples is small, each of the Phyla being represented by only one or two forms.

In our opinion every group which cannot readily and intelligibly be described in terms of some other group should be represented, in an elementary course of Zoology, by an example. We have, therefore, in the majority of cases, described, in some detail, an example of every important class, and, in cases where the diversity of organisation is very great—as in Crustacea and Fishes—two or more examples are taken. The student is thus furnished with a brief account of at least one member—usually readily accessible—of all the principal groups of animals.

By the time the example has been studied, a definition of the class and of its orders will convey some idea to the mind, and will

\(^1\) Following a suggestion for which we are indebted to Dr. Alexander Hill, Master of Downing College, Cambridge.
serve to show which of the characters already met with are of distinctive importance, and which special to the example itself. In order to bring out this point more clearly, to furnish a connection between the account of the example and that of the class as a whole, and to give some idea of the meaning of specific, generic, and family characters, we have introduced, after the classification, a paragraph giving the systematic position of the example, sometimes in more, sometimes in less detail.

Following the table of classification with its brief definitions comes the general account of the group. This is usually treated according to the comparative method, the leading modifications of the various parts and organs being described seriatim. In a few cases this plan has been abandoned and the class described order by order, but this is done only when the deviations from the type are so considerable as to lead us to think the comparative method unsuitable for beginners. On the other hand, when all the classes of the phylum present a very uniform type of structure, the phylum is studied comparatively as a whole. The description of each group usually ends with some account of its ethology and distribution, and with a discussion of its affinities and of the mutual relationships of its various sub-divisions.

We have done our best to make the space devoted to each group proportional to its complexity and range of variation, and to subdue the natural tendency to devote most attention to the more recently investigated classes, or to those in which we ourselves happen to be especially interested. A few lesser groups have been put into small type, partly to economise space, partly because they seem to us to be of minor importance to the beginner.

Following out the plan of deferring the discussion of general questions until the facts with which they are connected have been brought forward, we have placed the sections on Distribution, on the Philosophy of Zoology, and on the History of Zoology at the end of the book. We have, however, placed a general account of the structure and physiology of animals immediately after the Introduction, and one on the Craniate Vertebrata before the description of the classes of that division, but it will be obvious that these deviations from the strictly inductive method were inevitable in order to avoid much needless repetition.

After a good deal of consideration we have decided to omit all
references to the literature of the subject in the body of the work. Anything like consistent historical treatment would be out of place in an elementary book; and the introduction of casual references to particular discoveries, while they might interest the more advanced reader by giving a kind of personal colouring to the subject, could hardly fail, from their necessarily limited character, to be misleading to the beginner, and to increase rather than diminish his difficulties. We have, therefore, postponed all reference to the history of the science to the concluding Section, in which the main lines of progress are set forth, and have given, as an Appendix, a guide to the modern literature of Zoology. The latter is intended merely to indicate the next step to be taken by the student who wishes to acquire something more than a mere text-book knowledge. 1

The various Sections have been written by the authors in fairly equal proportions, but the work of each has been carefully read and criticised by the other, and no disputed point has been allowed to stand without thorough discussion. We are, therefore, jointly and severally responsible for the whole work.

A very large proportion of the figures have been specially drawn and engraved for the book. Those in which no source is named are from our own drawings, with the exception of Figs. 571, 572, 1017, 1018, 1019, 1022, 1059, 1063, and 1071, for which we are indebted to Mrs. W. A. Haswell. Figs. 1002 bis, 1005 bis, are from photographs kindly taken for us by Mr. A. Hamilton. Many blocks have been borrowed from well-known works, to the authors and publishers of which we beg to return our sincere acknowledgments. All the new figures have been drawn by Mr. M. P. Parker.

We have received generous assistance from Professors Arthur Dendy, G. B. Howes, Baldwin Spencer, and J. T. Wilson, and from

1 In this connection we cannot resist the pleasure of quoting two passages, exactly expressing our own views, from the preface to Dr. Waller's Human Physiology, which came under our notice after the above paragraph was in type:—

"I have given a Bibliography after some hesitation, feeling that references to original papers are of no use to junior students, and must be too imperfect to be satisfactory to more advanced students. . . . Attention has been paid to recent work, but I have felt that the gradually-formed deposit of accepted knowledge must be of greater intrinsic value than the latest 'discovery' or the newest theory. An early mental diet in which these items are predominant is an unwholesome diet; their function in elementary instruction is that of condiments, valuable only in conjunction with a foundation of solid food."
Mr. J. P. Hill and Dr. Arthur Willey. Professor W. N. Parker has very kindly read the whole of the proof-sheets and favoured us with many valuable suggestions, besides acting as referee in numerous minor difficulties which would otherwise have cost a delay of many weeks.

It is a mere truism to say that a text-book can never really reflect the existing state of the science of which it treats, but must necessarily be to some extent out of date at the time of publication. In the present instance, the revises of the earlier pages, giving the last opportunity for any but minor alterations, were corrected in the latter part of 1895, and the sheets passed for press in the middle of 1896. We are, therefore, fully alive to the fact that much of our work already needs a thorough revision, and can console ourselves only by reflecting that "to travel hopefully is a better thing than to arrive, and the true success is to labour."

We may mention, in conclusion, that, whatever may be the merits or demerits of the book, it enjoys the distinction of being unique in one respect. The two authors have been separated from one another, during the greater part of their collaboration, by a distance of 1200 miles, and the manuscript, proofs, and drawings have had to traverse half the circumference of the globe in their journeys between the authors on the one hand, and the publishers, printers, artist, and engravers on the other. It will, therefore, be readily believed that all persons concerned have had every opportunity, during the progress of the work, of exercising the supreme virtue of patience.
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>v</td>
</tr>
<tr>
<td>List of Illustrations in Vol. I.</td>
<td>xvii</td>
</tr>
<tr>
<td>Table of the Classification of the Animal Kingdom</td>
<td>xxxi</td>
</tr>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
</tbody>
</table>

SECTION I

The General Structure and Physiology of Animals

1. Amoeba | 10 |
2. The Animal Cell | 10 |
3. The Ovum: Maturation, Impregnation, and Segmentation: the Germinal Layers | 14 |
4. Tissues | 18 |
5. Organs | 21 |
6. The Reproduction of Animals | 29 |
7. Symmetry | 38 |
8. The Primary subdivisions or Phyla of the Animal Kingdom | 39 |

SECTION II

Phylum Protozoa

<table>
<thead>
<tr>
<th>Class I. Rhizopoda</th>
<th>43</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Example of the Class—Amoeba proteus</td>
<td>44</td>
</tr>
<tr>
<td>2. Classification and General Organisation</td>
<td>44</td>
</tr>
<tr>
<td>Systematic position of the Example</td>
<td>45</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Class II. Mycetozoa</th>
<th>61</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Example of the Class—Didinium difforme</td>
<td>61</td>
</tr>
<tr>
<td>2. General Remarks</td>
<td>63</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Class III. Mastigophora</th>
<th>63</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Example of the Class—Euglena viridis</td>
<td>63</td>
</tr>
<tr>
<td>2. Classification and General Organisation</td>
<td>63</td>
</tr>
<tr>
<td>Systematic Position of the Example</td>
<td>63</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Class IV. Sporozoa</th>
<th>75</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Example of the Class—Monocystis agilis</td>
<td>75</td>
</tr>
<tr>
<td>2. Classification and General Organisation</td>
<td>76</td>
</tr>
</tbody>
</table>
Phylum Protozoa—continued.

Class V. Infusoria

1. Example of the Class—Paramecium caudatum
 Systematic Position of the Example
 Further Remarks on the Protozoa

SECTION III

Phylum and Class Porifera

1. Example of the Class—Spongion gelatinosum
2. Distinctive Characters and Classification
 Systematic Position of the Example
3. General Organisation

SECTION IV

Phylum Coelenterata

Class I. Hydrozoa

1. Example of the Class—Obelia
2. General Structure and Classification
 Systematic Position of the Example
3. Additional Remarks

Class II. Scyphozoa

1. Example of the Class—Aurelia aurita
2. General Structure and Classification
 Systematic Position of the Example
3. Additional Remarks

Class III. Actinozoa

1. Example of the Class—Tealia crassicarnis
2. Distinctive Characters and Classification
 Systematic Position of the Example
3. General Organisation

Class IV. Ctenophora

1. Example of the Class—Hormiphora plumosa
2. Distinctive Characters and Classification
 Systematic Position of the Example
3. General Organisation
 Appendix to Ctenophora—Ctenoplana and Celoplana
 The Relationships of the Coelenterata
 Appendix to the Coelenterata
 The Mesozoa
 Salinella
 Trichoplax

SECTION V

Phylum Platyhelminthes

1. Examples of the Phylum
 i. Planaria or Dendrocoelum
 ii. Distomum hepaticum
 iii. Taenia solium

PAGE

79
79
82
82
92
96
102
103
105
118
118
130
132
155
156
163
164
171
172
172
180
183
183
198
198
207
208
209
212
213
216
216
219
220
221
222
222
226
231
CONTENTS

Phylum Platyhelminthes—continued.
2. Distinctive Characters and Classification .. 237
 Systematic Position of the Examples ... 238
3. General Organisation ... 239
4. Distribution, Mode of Occurrence, and Mutual Relationships 263
 Appendix to Platyhelminthes—Class Nemertinea .. 268

SECTION VI

Phylum Nemathelminthes ... 275
Class I. *Nematoda* ... 275
 1. Example of the Class—*Ascaris lumbricoides* .. 275
 2. Distinctive Characters and Classification .. 281
 Systematic Position of the Example ... 282
 3. General Organisation ... 283
Class II. *Acanthocephala* .. 289
Class III. *Chaetognatha* ... 293
 Appendix to Nemathelminthes .. 296
 Family *Chatosomaidae* .. 296
 " *Echinoderidae* ... 296
 " *Desmoscolecidae* .. 296
Affinities and Mutual Relationships of the Nemathelminthes 297

SECTION VII

Phylum Trochoselminthes ... 298
Class I. *Rotifera* .. 299
 1. Example of the Class—*Brachionus rubens* .. 299
 2. Distinctive Characters and Classification .. 303
 Systematic Position of the Example ... 304
 3. General Organisation ... 304
Class II. *Dinophylea* .. 310
Class III. *Gastrotricha* .. 311

SECTION VIII

Phylum Molluscoida ... 313
Class I. *Polyzoa* .. 313
 1. Example of the Class—*Bugula avicularia* .. 314
 2. Distinctive Characters and Classification .. 319
 Systematic Position of the Example ... 320
 3. General Organisation ... 321
Class II. *Phoronida* ... 328
Class III. *Brachiopoda* ... 331
 1. Example of the Class—*Magellania lenticularis* 331
 2. Distinctive Characters and Classification .. 337
 Systematic Position of the Example ... 338
 3. General Organisation ... 338
 Mutual Relationships of the Classes of the Molluscoida 343
CONTENTS

SECTION IX

Phylum Echinodermata

1. Examples of the Phylum
 i. *Asterias rubens* and *Anthea flarescens*
 ii. *Strongylocentrotus* or *Echinus*
 iii. *Cucumaria* or *Colochirus*
 iv. *Antedon rosacea*

2. Distinctive Characters and Classification
 Systematic Position of the Examples

3. General Organisation

SECTION X

Phylum Annulata

Class I. *Chaetopoda*

1. Examples of the Class
 i. *Nereis dumetillii*
 ii. *Lumbricus*

2. Distinctive Characters and Classification
 Systematic Position of the Examples

3. General Organisation

Appendix to Chaetopoda—Class *Myzostomida*

Class II. *Gephyrea*

1. Example of the Class—*Sipunculus nudus*

2. Distinctive Characters and Classification
 Systematic Position of the Example

3. General Organisation

Class III. *Archi-annelida*

Class IV. *Hirudinea*

1. Examples of the Class—*Hirudo medicinalis* and *H. quinquestriata*

2. Distinctive Characters and Classification
 Systematic Position of the Examples

3. General Organisation
 General Remarks on the Annulata

SECTION XI

Phylum Arthropoda

Class I. *Crustacea*

1. Examples of the Class
 i. *Aptos* or *Lepidurus*
 ii. *Astacus fluviatilis*

2. Distinctive Characters and Classification
 Systematic Position of the Examples

3. General Organisation
 Appendix to Crustacea—Class *Trilobita*

Class II. *Onychophora*

Class III. *Myriapoda*

1. Distinctive Characters and Classification

2. General Organisation
CONTENTS

Phylum Arthropoda—continued.

Class IV. Insecta
1. Example of the Class—*Periplaneta americana* ... 571
2. Distinctive Characters and Classification 583
 Systematic Position of the Example 587
3. General Organisation .. 588

Class V. Arachnida
1. Example of the Class—*Enecorporio or Buthus* 604
2. Distinctive Characters and Classification 611
3. General Organisation .. 613

Appendix to the Arachnida—the *Pycnogonida, Linguatulida, and Tardigrada* 624

Relationships of the air-breathing Arthropoda 627

SECTION XII

Phylum Mollusca

Class I. Pelecypoda
1. Examples of the Class—*Anodonta* and *Unio* 631
2. Distinctive Characters and Classification 645
 Systematic Position of the Examples 647
3. General Organisation .. 647

Class II. Amphineura
1. Distinctive Characters and Classification 663
2. General Organisation .. 663

Class III. Gastropoda
1. Example of the Class—*Triton nodiferus* 671
2. Distinctive Characters and Classification 682
 Systematic Position of the Example 685
3. General Organisation .. 685

Appendix to the Gastropoda—
 A. Class Scaphopoda .. 705
 B. Rhodope .. 707

Class IV. Cephalopoda
1. Examples of the Class .. 708
 i. *Sepia culturata* .. 708
 ii. *Nautilus pompilius* .. 725
2. Distinctive Characters and Classification 736
 Systematic Position of the Examples 737
3. General Organisation .. 737

General Remarks on the Mollusca 751
<table>
<thead>
<tr>
<th>FIG.</th>
<th>LIST OF ILLUSTRATIONS</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Amoeba proteus</td>
<td>10</td>
</tr>
<tr>
<td>2.</td>
<td>Amoeba polypodia, fission</td>
<td>13</td>
</tr>
<tr>
<td>3.</td>
<td>Diagrams illustrating Karyokinesis</td>
<td>17</td>
</tr>
<tr>
<td>4.</td>
<td>Ovum of Sea-urchin</td>
<td>18</td>
</tr>
<tr>
<td>5.</td>
<td>Maturation and fertilisation of ovum</td>
<td>19</td>
</tr>
<tr>
<td>6.</td>
<td>Segmentation of ovum</td>
<td>20</td>
</tr>
<tr>
<td>7.</td>
<td>Gastrula</td>
<td>21</td>
</tr>
<tr>
<td>8.</td>
<td>Various forms of epithelium</td>
<td>22</td>
</tr>
<tr>
<td>9.</td>
<td>Diagram to illustrate structure of glands</td>
<td>23</td>
</tr>
<tr>
<td>10.</td>
<td>Gelatinous connective tissue</td>
<td>24</td>
</tr>
<tr>
<td>11.</td>
<td>Reticular connective tissue</td>
<td>24</td>
</tr>
<tr>
<td>12.</td>
<td>Fatty tissue</td>
<td>25</td>
</tr>
<tr>
<td>13.</td>
<td>Hyaline cartilage</td>
<td>25</td>
</tr>
<tr>
<td>14.</td>
<td>Fibro-cartilage</td>
<td>25</td>
</tr>
<tr>
<td>15.</td>
<td>Bone</td>
<td>26</td>
</tr>
<tr>
<td>16.</td>
<td>Unstriped Muscle</td>
<td>27</td>
</tr>
<tr>
<td>17.</td>
<td>Striped Muscle</td>
<td>27</td>
</tr>
<tr>
<td>18.</td>
<td>Nerve cells</td>
<td>28</td>
</tr>
<tr>
<td>19.</td>
<td>Nerve fibres</td>
<td>28</td>
</tr>
<tr>
<td>20.</td>
<td>Various forms of spermatozoa</td>
<td>28</td>
</tr>
<tr>
<td>21.</td>
<td>Viscera of Frog</td>
<td>31</td>
</tr>
<tr>
<td>22.</td>
<td>Bones of human arm with biceps muscle</td>
<td>35</td>
</tr>
<tr>
<td>23.</td>
<td>Nervous system of Frog</td>
<td>36</td>
</tr>
<tr>
<td>24.</td>
<td>Hydra</td>
<td>39</td>
</tr>
<tr>
<td>25.</td>
<td>Diagram of axes of body</td>
<td>40</td>
</tr>
<tr>
<td>26.</td>
<td>Radial symmetry</td>
<td>40</td>
</tr>
<tr>
<td>27.</td>
<td>Amoeba, various species</td>
<td>45</td>
</tr>
<tr>
<td>28.</td>
<td>Prototomoea primitiva</td>
<td>47</td>
</tr>
<tr>
<td>29.</td>
<td>Quadrula, Hyalosphenia, Arcella, and Diﬀugia</td>
<td>47</td>
</tr>
<tr>
<td>30.</td>
<td>Chlamydomyxa labyrinthuloides</td>
<td>48</td>
</tr>
<tr>
<td>31.</td>
<td>Labyrinthula vitellina</td>
<td>49</td>
</tr>
<tr>
<td>32.</td>
<td>Microgromia socialis</td>
<td>50</td>
</tr>
<tr>
<td>33.</td>
<td>Platoom stereocum</td>
<td>51</td>
</tr>
<tr>
<td>34.</td>
<td>Various forms of Foraminifera</td>
<td>52</td>
</tr>
<tr>
<td>35.</td>
<td>Shells of Foraminifera</td>
<td>53</td>
</tr>
<tr>
<td>36.</td>
<td>Hastigerina murray</td>
<td>54</td>
</tr>
<tr>
<td>FIG.</td>
<td>ILLUSTRATION</td>
<td>PAGE</td>
</tr>
<tr>
<td>-----</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>37.</td>
<td>Actinophrys sol</td>
<td>55</td>
</tr>
<tr>
<td>38.</td>
<td>Actinosphaerium eichhornii</td>
<td>56</td>
</tr>
<tr>
<td>39.</td>
<td>Various forms of Heliozoa</td>
<td>57</td>
</tr>
<tr>
<td>40.</td>
<td>Lithocircus annularis</td>
<td>58</td>
</tr>
<tr>
<td>41.</td>
<td>Thalassoplanctna brevispicula</td>
<td>59</td>
</tr>
<tr>
<td>42.</td>
<td>Aulactinium actinastrum</td>
<td>60</td>
</tr>
<tr>
<td>43.</td>
<td>Actinomma asteracanthion</td>
<td>60</td>
</tr>
<tr>
<td>44.</td>
<td>Collozoa inermé</td>
<td>61</td>
</tr>
<tr>
<td>45.</td>
<td>Didymium difforme</td>
<td>62</td>
</tr>
<tr>
<td>46.</td>
<td>Euglena viridis</td>
<td>64</td>
</tr>
<tr>
<td>47.</td>
<td>Various forms of Flagellata</td>
<td>66</td>
</tr>
<tr>
<td>48.</td>
<td>Hematococcus pluvialis</td>
<td>68</td>
</tr>
<tr>
<td>49.</td>
<td>Pandorina morum</td>
<td>69</td>
</tr>
<tr>
<td>50.</td>
<td>Volvox globator</td>
<td>70</td>
</tr>
<tr>
<td>51.</td>
<td>Heteromita rostrata</td>
<td>71</td>
</tr>
<tr>
<td>52.</td>
<td>Various forms of Choanodagellata</td>
<td>72</td>
</tr>
<tr>
<td>53.</td>
<td>Various forms of Dinodagellata</td>
<td>74</td>
</tr>
<tr>
<td>54.</td>
<td>Noctiluca miliaris</td>
<td>74</td>
</tr>
<tr>
<td>55.</td>
<td>Monoecystis agilis</td>
<td>75</td>
</tr>
<tr>
<td>56.</td>
<td>Gregarina</td>
<td>77</td>
</tr>
<tr>
<td>57.</td>
<td>Eimeria and Coccidium</td>
<td>78</td>
</tr>
<tr>
<td>58.</td>
<td>Myxidium and Myxobolus</td>
<td>78</td>
</tr>
<tr>
<td>59.</td>
<td>Sarcoecystis miescheri</td>
<td>79</td>
</tr>
<tr>
<td>60.</td>
<td>Parameecium caudatum</td>
<td>80</td>
</tr>
<tr>
<td>61.</td>
<td>conjugation</td>
<td>81</td>
</tr>
<tr>
<td>62.</td>
<td>Various forms of Ciliata</td>
<td>85</td>
</tr>
<tr>
<td>63.</td>
<td></td>
<td>86</td>
</tr>
<tr>
<td>64.</td>
<td>Vorticella</td>
<td>87</td>
</tr>
<tr>
<td>65.</td>
<td>Zoothamnium arbuscula</td>
<td>88</td>
</tr>
<tr>
<td>66.</td>
<td>Opalina ranarum</td>
<td>89</td>
</tr>
<tr>
<td>67.</td>
<td>Various forms of Tentaculifera</td>
<td>91</td>
</tr>
<tr>
<td>68.</td>
<td>Diagram showing the mutual relationships of the Protozoa</td>
<td>94</td>
</tr>
<tr>
<td>69.</td>
<td>Sycon gelatinosum</td>
<td>97</td>
</tr>
<tr>
<td>70.</td>
<td>magnified</td>
<td>97</td>
</tr>
<tr>
<td>71.</td>
<td>transverse section</td>
<td>98</td>
</tr>
<tr>
<td>72.</td>
<td>vertical section</td>
<td>99</td>
</tr>
<tr>
<td>73.</td>
<td>pore membrane</td>
<td>100</td>
</tr>
<tr>
<td>74.</td>
<td>apopyle</td>
<td>100</td>
</tr>
<tr>
<td>75.</td>
<td>External form of various Sponges</td>
<td>106</td>
</tr>
<tr>
<td>76.</td>
<td>Ascteta primordialis</td>
<td>107</td>
</tr>
<tr>
<td>77.</td>
<td>Diagrams of canal system of various Sponges</td>
<td>108</td>
</tr>
<tr>
<td>78.</td>
<td>Vertical Section of Spongilla</td>
<td>109</td>
</tr>
<tr>
<td>79.</td>
<td>Cells of ectoderm of Sponge</td>
<td>110</td>
</tr>
<tr>
<td>80.</td>
<td>Skeleton of various Sponges</td>
<td>111</td>
</tr>
<tr>
<td>81.</td>
<td>Various forms of Sponge Spicules</td>
<td>112</td>
</tr>
<tr>
<td>82.</td>
<td>Development of Sycon raphanus</td>
<td>114</td>
</tr>
<tr>
<td>83.</td>
<td>Obelia</td>
<td>120</td>
</tr>
<tr>
<td>84.</td>
<td>vertical section of polype</td>
<td>122</td>
</tr>
<tr>
<td>85.</td>
<td>Nematocysts of Hydra</td>
<td>123</td>
</tr>
<tr>
<td>FIG.</td>
<td>Illustration</td>
<td>Page</td>
</tr>
<tr>
<td>------</td>
<td>--------------</td>
<td>------</td>
</tr>
<tr>
<td>86.</td>
<td>Tentacle of Eucopella</td>
<td>124</td>
</tr>
<tr>
<td>87.</td>
<td>Obelia, medusa</td>
<td>125</td>
</tr>
<tr>
<td>88.</td>
<td>Diagram of medusa</td>
<td>126</td>
</tr>
<tr>
<td>89.</td>
<td>Derivation of medusa from polype</td>
<td>127</td>
</tr>
<tr>
<td>90.</td>
<td>Projections of polype and medusa</td>
<td>128</td>
</tr>
<tr>
<td>91.</td>
<td>Development of zoophyte</td>
<td>130</td>
</tr>
<tr>
<td>92.</td>
<td>Bougainvillea ramosa</td>
<td>134</td>
</tr>
<tr>
<td>93.</td>
<td>Various forms of Leptolineae</td>
<td>135</td>
</tr>
<tr>
<td>94.</td>
<td>Hydra</td>
<td>136</td>
</tr>
<tr>
<td>95.</td>
<td>Protohydra leuckartii</td>
<td>137</td>
</tr>
<tr>
<td>96.</td>
<td>Various forms of leptoline Meduse</td>
<td>139</td>
</tr>
<tr>
<td>97.</td>
<td>Diagram illustrating formation of sporosac by degeneration of medusa</td>
<td>140</td>
</tr>
<tr>
<td>98.</td>
<td>Early development of Eucoppe</td>
<td>141</td>
</tr>
<tr>
<td>99.</td>
<td>Two Trachymedusae</td>
<td>142</td>
</tr>
<tr>
<td>100.</td>
<td>Two Narcomedusae</td>
<td>143</td>
</tr>
<tr>
<td>101.</td>
<td>Aeginura, tentaculocyst</td>
<td>143</td>
</tr>
<tr>
<td>102.</td>
<td>Larva of Aeginopsis</td>
<td>144</td>
</tr>
<tr>
<td>103.</td>
<td>Millepora alcicornis, skeleton</td>
<td>145</td>
</tr>
<tr>
<td>104.</td>
<td>Millepora, diagram of structure</td>
<td>146</td>
</tr>
<tr>
<td>105.</td>
<td>Stylaster sanguineus, skeleton</td>
<td>147</td>
</tr>
<tr>
<td>106.</td>
<td>Halistemma tergestinum</td>
<td>148</td>
</tr>
<tr>
<td>107.</td>
<td>Diagram of a Siphonophore</td>
<td>150</td>
</tr>
<tr>
<td>108.</td>
<td>Development of Halistemma</td>
<td>151</td>
</tr>
<tr>
<td>109.</td>
<td>Physalia</td>
<td>152</td>
</tr>
<tr>
<td>110.</td>
<td>Diphyes campanulata</td>
<td>153</td>
</tr>
<tr>
<td>111.</td>
<td>Porpita pacifica</td>
<td>154</td>
</tr>
<tr>
<td>112.</td>
<td>Graptolites</td>
<td>155</td>
</tr>
<tr>
<td>113.</td>
<td>Aurelia aurita, dorsal and ventral views</td>
<td>157</td>
</tr>
<tr>
<td>114.</td>
<td>" " side view and vertical section</td>
<td>159</td>
</tr>
<tr>
<td>115.</td>
<td>" " portion of umbrella with tentaculocyst</td>
<td>160</td>
</tr>
<tr>
<td>116.</td>
<td>" " development</td>
<td>162</td>
</tr>
<tr>
<td>117.</td>
<td>Tessera princeps</td>
<td>165</td>
</tr>
<tr>
<td>118.</td>
<td>Lucernaria</td>
<td>166</td>
</tr>
<tr>
<td>119.</td>
<td>Periclopa quadrigata</td>
<td>167</td>
</tr>
<tr>
<td>120.</td>
<td>Charybdea marsupialis</td>
<td>168</td>
</tr>
<tr>
<td>121.</td>
<td>Nausithoe</td>
<td>169</td>
</tr>
<tr>
<td>122.</td>
<td>Pilema pulmo</td>
<td>170</td>
</tr>
<tr>
<td>123.</td>
<td>Pelagia noctiluca, development</td>
<td>171</td>
</tr>
<tr>
<td>124.</td>
<td>Tealia crassicornis, dissection and transverse section</td>
<td>173</td>
</tr>
<tr>
<td>125.</td>
<td>Diagrammatic sections of Sea-anemone</td>
<td>175</td>
</tr>
<tr>
<td>126.</td>
<td>Calia crassicornis, section of tentacle</td>
<td>177</td>
</tr>
<tr>
<td>127.</td>
<td>Nematocysts of Sagartia</td>
<td>177</td>
</tr>
<tr>
<td>128.</td>
<td>Section of mesenteric filament of Sagartia</td>
<td>178</td>
</tr>
<tr>
<td>129.</td>
<td>Transverse sections of embryos of Actinia</td>
<td>180</td>
</tr>
<tr>
<td>130.</td>
<td>Zoanthus sociatus</td>
<td>184</td>
</tr>
<tr>
<td>131.</td>
<td>Hartea elegans</td>
<td>184</td>
</tr>
<tr>
<td>132.</td>
<td>Corallium rubrum</td>
<td>185</td>
</tr>
<tr>
<td>133.</td>
<td>Astraea pallida</td>
<td>185</td>
</tr>
<tr>
<td>FIG.</td>
<td>Illustration Description</td>
<td>Page</td>
</tr>
<tr>
<td>-----</td>
<td>--------------------------</td>
<td>------</td>
</tr>
<tr>
<td>134.</td>
<td>Pennatula sulcata</td>
<td>186</td>
</tr>
<tr>
<td>135.</td>
<td>Tubipora musica</td>
<td>186</td>
</tr>
<tr>
<td>136.</td>
<td>Edwardsia claparedii</td>
<td>187</td>
</tr>
<tr>
<td>137.</td>
<td>Cirripathes anguina</td>
<td>188</td>
</tr>
<tr>
<td>138.</td>
<td>Fenja mirabilis</td>
<td>189</td>
</tr>
<tr>
<td>139.</td>
<td>Minyas</td>
<td>189</td>
</tr>
<tr>
<td>140.</td>
<td>Alcyonium palmatum</td>
<td>190</td>
</tr>
<tr>
<td>141.</td>
<td>Gorgonia verrucosa</td>
<td>191</td>
</tr>
<tr>
<td>142.</td>
<td>Structure of simple coral</td>
<td>193</td>
</tr>
<tr>
<td>143.</td>
<td>Dendrophyllia and Madrepora</td>
<td>194</td>
</tr>
<tr>
<td>144.</td>
<td>Adamsia palliata</td>
<td>196</td>
</tr>
<tr>
<td>145.</td>
<td>Hormiphora plumosa</td>
<td>198</td>
</tr>
<tr>
<td>146.</td>
<td>Dissection and transverse section</td>
<td>199</td>
</tr>
<tr>
<td>147.</td>
<td>Diagrammatic sections</td>
<td>201</td>
</tr>
<tr>
<td>148.</td>
<td>Section of branch of tentacle</td>
<td>202</td>
</tr>
<tr>
<td>149.</td>
<td>Sense-organ</td>
<td>203</td>
</tr>
<tr>
<td>150.</td>
<td>Ovum of Lampetia</td>
<td>204</td>
</tr>
<tr>
<td>151.</td>
<td>Segmentation of oosperm in Ctenophora</td>
<td>204</td>
</tr>
<tr>
<td>152.</td>
<td>Development of Ctenophora</td>
<td>205</td>
</tr>
<tr>
<td>153.</td>
<td>Development of Callianira</td>
<td>206</td>
</tr>
<tr>
<td>154.</td>
<td>(later stages)</td>
<td>206</td>
</tr>
<tr>
<td>155.</td>
<td>Three Cydippida</td>
<td>209</td>
</tr>
<tr>
<td>156.</td>
<td>Deiopea kalokmenota</td>
<td>210</td>
</tr>
<tr>
<td>157.</td>
<td>Cestus veneris</td>
<td>210</td>
</tr>
<tr>
<td>158.</td>
<td>Berœa forskålii</td>
<td>211</td>
</tr>
<tr>
<td>159.</td>
<td>Ctenoplana kowalevskii</td>
<td>212</td>
</tr>
<tr>
<td>160.</td>
<td>Sections of embryos of Actinia and Berœa</td>
<td>214</td>
</tr>
<tr>
<td>161.</td>
<td>Diagram illustrating the mutual relationships of the Coelenterata</td>
<td>215</td>
</tr>
<tr>
<td>162.</td>
<td>Dicyema paradoxum with infusoriform embryos</td>
<td>217</td>
</tr>
<tr>
<td>163.</td>
<td>Vermiform embryo</td>
<td>217</td>
</tr>
<tr>
<td>164.</td>
<td>Embryo</td>
<td>218</td>
</tr>
<tr>
<td>165.</td>
<td>Rhopalura giardii, male</td>
<td>218</td>
</tr>
<tr>
<td>166.</td>
<td>Female</td>
<td>218</td>
</tr>
<tr>
<td>167.</td>
<td>Development</td>
<td>219</td>
</tr>
<tr>
<td>168.</td>
<td>Salinella, longitudinal section</td>
<td>219</td>
</tr>
<tr>
<td>169.</td>
<td>Transverse</td>
<td>219</td>
</tr>
<tr>
<td>170.</td>
<td>Trichoplax adherens</td>
<td>220</td>
</tr>
<tr>
<td>171.</td>
<td>Planaria, digestive and excretory systems</td>
<td>223</td>
</tr>
<tr>
<td>172.</td>
<td>Nervous system</td>
<td>223</td>
</tr>
<tr>
<td>173.</td>
<td>Reproductive system</td>
<td>225</td>
</tr>
<tr>
<td>174.</td>
<td>Transverse section of a Planarian</td>
<td>226</td>
</tr>
<tr>
<td>175.</td>
<td>Distomum hepaticum</td>
<td>226</td>
</tr>
<tr>
<td>176.</td>
<td>Section of integument</td>
<td>227</td>
</tr>
<tr>
<td>177.</td>
<td>Internal organisation</td>
<td>228</td>
</tr>
<tr>
<td>178.</td>
<td>Terminal part of reproductive apparatus</td>
<td>229</td>
</tr>
<tr>
<td>179.</td>
<td>Development</td>
<td>230</td>
</tr>
<tr>
<td>180.</td>
<td>Tenia solium</td>
<td>232</td>
</tr>
<tr>
<td>181.</td>
<td>Head</td>
<td>233</td>
</tr>
<tr>
<td>182.</td>
<td>Transverse section</td>
<td>233</td>
</tr>
</tbody>
</table>
LIST OF ILLUSTRATIONS

<table>
<thead>
<tr>
<th>FIG.</th>
<th>Description</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>183.</td>
<td>T. solium, proglottis</td>
<td>234</td>
</tr>
<tr>
<td>184.</td>
<td>" " ripe proglottis</td>
<td>236</td>
</tr>
<tr>
<td>185.</td>
<td>" " development</td>
<td>236</td>
</tr>
<tr>
<td>186.</td>
<td>Various Planarians</td>
<td>240</td>
</tr>
<tr>
<td>187.</td>
<td>Gunda segmentata</td>
<td>241</td>
</tr>
<tr>
<td>188.</td>
<td>Digeneic Trematodes</td>
<td>242</td>
</tr>
<tr>
<td>189.</td>
<td>Gyrodactylus and Polystomum</td>
<td>243</td>
</tr>
<tr>
<td>190.</td>
<td>Temnocephala</td>
<td>244</td>
</tr>
<tr>
<td>191.</td>
<td>Actinodactylella</td>
<td>245</td>
</tr>
<tr>
<td>192.</td>
<td>Tetrarhynchus</td>
<td>246</td>
</tr>
<tr>
<td>193.</td>
<td>T. echinococcus</td>
<td>246</td>
</tr>
<tr>
<td>194.</td>
<td>Ligula</td>
<td>247</td>
</tr>
<tr>
<td>195.</td>
<td>Caryophylleus</td>
<td>247</td>
</tr>
<tr>
<td>196.</td>
<td>Amphiptyches</td>
<td>247</td>
</tr>
<tr>
<td>197.</td>
<td>Archigetes</td>
<td>247</td>
</tr>
<tr>
<td>198.</td>
<td>Section of body-wall of a Triclad</td>
<td>248</td>
</tr>
<tr>
<td>199.</td>
<td>Parenchyma of Flat-worm</td>
<td>249</td>
</tr>
<tr>
<td>200.</td>
<td>Diagram of Rhabdocoele</td>
<td>251</td>
</tr>
<tr>
<td>201.</td>
<td>" " Polyclad</td>
<td>251</td>
</tr>
<tr>
<td>202.</td>
<td>" " Triclad</td>
<td>252</td>
</tr>
<tr>
<td>203.</td>
<td>Flame-cell</td>
<td>253</td>
</tr>
<tr>
<td>204.</td>
<td>Reproductive organs of Mesostomum ehrenbergii</td>
<td>256</td>
</tr>
<tr>
<td>205.</td>
<td>Development of a Polyclad</td>
<td>257</td>
</tr>
<tr>
<td>206.</td>
<td>Müller's larva</td>
<td>258</td>
</tr>
<tr>
<td>207.</td>
<td>A Cysticercoid</td>
<td>260</td>
</tr>
<tr>
<td>208.</td>
<td>" with head evaginated</td>
<td>261</td>
</tr>
<tr>
<td>209.</td>
<td>Cyst of T. echinococcus</td>
<td>262</td>
</tr>
<tr>
<td>210.</td>
<td>Scolex</td>
<td>262</td>
</tr>
<tr>
<td>211.</td>
<td>Scolex</td>
<td>262</td>
</tr>
<tr>
<td>212.</td>
<td>Process of budding in Microstomum</td>
<td>263</td>
</tr>
<tr>
<td>213.</td>
<td>Diagram of the relationships of the Platyhelminthes and Nemertinea</td>
<td>267</td>
</tr>
<tr>
<td>214.</td>
<td>Diagram of Nemertine</td>
<td>268</td>
</tr>
<tr>
<td>215.</td>
<td>Tetrastrongylus</td>
<td>269</td>
</tr>
<tr>
<td>216.</td>
<td>Anterior portion of Nemertine</td>
<td>270</td>
</tr>
<tr>
<td>217.</td>
<td>Proboscis of Hoplonemertean, retracted</td>
<td>270</td>
</tr>
<tr>
<td>218.</td>
<td>" " everted</td>
<td>270</td>
</tr>
<tr>
<td>219.</td>
<td>Transverse section of Nemertine</td>
<td>271</td>
</tr>
<tr>
<td>220.</td>
<td>Vascular and excretory systems of Nemertine</td>
<td>271</td>
</tr>
<tr>
<td>221.</td>
<td>Pilidium</td>
<td>272</td>
</tr>
<tr>
<td>222.</td>
<td>Ascaris lumbricoides</td>
<td>276</td>
</tr>
<tr>
<td>223.</td>
<td>" " transverse section</td>
<td>277</td>
</tr>
<tr>
<td>224.</td>
<td>" " muscle fibres</td>
<td>278</td>
</tr>
<tr>
<td>225.</td>
<td>" " dissection of female</td>
<td>279</td>
</tr>
<tr>
<td>226.</td>
<td>Nervous system of Nematoda</td>
<td>280</td>
</tr>
<tr>
<td>227.</td>
<td>Ascaris lumbricoides, dissection of male organs</td>
<td>281</td>
</tr>
<tr>
<td>228.</td>
<td>Body-wall of platynurian Nematode</td>
<td>283</td>
</tr>
<tr>
<td>229.</td>
<td>Dohruins duodenalis</td>
<td>284</td>
</tr>
<tr>
<td>230.</td>
<td>Transverse section of Gordius</td>
<td>284</td>
</tr>
<tr>
<td>FIG.</td>
<td>PAGE</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>231.</td>
<td>Oxyuris</td>
<td>285</td>
</tr>
<tr>
<td>232.</td>
<td>Gordius, anatomy</td>
<td>286</td>
</tr>
<tr>
<td>233.</td>
<td>Development of Ascaris nigrovenosa</td>
<td>287</td>
</tr>
<tr>
<td>234.</td>
<td>Trichina spiralis</td>
<td>288</td>
</tr>
<tr>
<td>235.</td>
<td>Two species of Echinorhynchus</td>
<td>290</td>
</tr>
<tr>
<td>236.</td>
<td>Echinorhynchus gigas, dissection of male</td>
<td>291</td>
</tr>
<tr>
<td>237.</td>
<td>" " female</td>
<td>291</td>
</tr>
<tr>
<td>238.</td>
<td>" " female organs</td>
<td>292</td>
</tr>
<tr>
<td>239.</td>
<td>Sagitta hexaptera</td>
<td>293</td>
</tr>
<tr>
<td>240.</td>
<td>" " bipunctata, transverse sections</td>
<td>294</td>
</tr>
<tr>
<td>241.</td>
<td>" " head</td>
<td>294</td>
</tr>
<tr>
<td>242.</td>
<td>" hexaptera, eye</td>
<td>295</td>
</tr>
<tr>
<td>243.</td>
<td>Development of Sagitta</td>
<td>295</td>
</tr>
<tr>
<td>244.</td>
<td>A trochosphere</td>
<td>298</td>
</tr>
<tr>
<td>245.</td>
<td>Brachionus rubens, female</td>
<td>300</td>
</tr>
<tr>
<td>246.</td>
<td>" " pharynx</td>
<td>301</td>
</tr>
<tr>
<td>247.</td>
<td>" " male and female, with attached eggs</td>
<td>302</td>
</tr>
<tr>
<td>248.</td>
<td>Diagram of a Rotifer</td>
<td>303</td>
</tr>
<tr>
<td>249.</td>
<td>Typical forms of Rotifera</td>
<td>305</td>
</tr>
<tr>
<td>250.</td>
<td>" "</td>
<td>307</td>
</tr>
<tr>
<td>251.</td>
<td>" " mastax</td>
<td>308</td>
</tr>
<tr>
<td>252.</td>
<td>Dinophilus gyrociatius</td>
<td>310</td>
</tr>
<tr>
<td>253.</td>
<td>Chaetonotus maximus</td>
<td>311</td>
</tr>
<tr>
<td>254.</td>
<td>" " anatomy</td>
<td>311</td>
</tr>
<tr>
<td>255.</td>
<td>Bugula avicularia</td>
<td>315</td>
</tr>
<tr>
<td>256.</td>
<td>Development of Bugula</td>
<td>317</td>
</tr>
<tr>
<td>257.</td>
<td>" "</td>
<td>318</td>
</tr>
<tr>
<td>258.</td>
<td>Plumatella</td>
<td>322</td>
</tr>
<tr>
<td>258bis.</td>
<td>Cristatella</td>
<td>323</td>
</tr>
<tr>
<td>259.</td>
<td>Lophopus</td>
<td>324</td>
</tr>
<tr>
<td>260.</td>
<td>Pedicellina</td>
<td>327</td>
</tr>
<tr>
<td>261.</td>
<td>Phoronis australis</td>
<td>328</td>
</tr>
<tr>
<td>262.</td>
<td>" " free end</td>
<td>329</td>
</tr>
<tr>
<td>263.</td>
<td>" " internal organisation</td>
<td>329</td>
</tr>
<tr>
<td>264.</td>
<td>" " development</td>
<td>330</td>
</tr>
<tr>
<td>265.</td>
<td>Magellania flavescens, shell</td>
<td>332</td>
</tr>
<tr>
<td>266.</td>
<td>" " lenticularis, anatomy</td>
<td>334</td>
</tr>
<tr>
<td>267.</td>
<td>" flavescens, lophophore</td>
<td>335</td>
</tr>
<tr>
<td>268.</td>
<td>" " muscular system</td>
<td>335</td>
</tr>
<tr>
<td>269.</td>
<td>Terebratula, nervous system, &c.</td>
<td>336</td>
</tr>
<tr>
<td>270.</td>
<td>Typical Brachiopods</td>
<td>339</td>
</tr>
<tr>
<td>271.</td>
<td>" " anatomy</td>
<td>340</td>
</tr>
<tr>
<td>272.</td>
<td>Development of Cistella</td>
<td>341</td>
</tr>
<tr>
<td>273.</td>
<td>" "</td>
<td>342</td>
</tr>
<tr>
<td>274.</td>
<td>Lophophore of embryo Brachiopod</td>
<td>343</td>
</tr>
<tr>
<td>275.</td>
<td>Diagrams of phylactolhematous Polyzoons</td>
<td>344</td>
</tr>
<tr>
<td>276.</td>
<td>Starfish, ventral aspect</td>
<td>347</td>
</tr>
<tr>
<td>277.</td>
<td>" " vertical section of arm</td>
<td>349</td>
</tr>
<tr>
<td>278.</td>
<td>" " ambulacleral system</td>
<td>350</td>
</tr>
<tr>
<td>FIG.</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>279.</td>
<td>Starfish, portion of vertical section of arm</td>
<td>351</td>
</tr>
<tr>
<td>280.</td>
<td>" " diagrammatic sections</td>
<td>352</td>
</tr>
<tr>
<td>281.</td>
<td>Asterias rubens, digestive system</td>
<td>353</td>
</tr>
<tr>
<td>282.</td>
<td>Astropecten, section of stone-canal</td>
<td>354</td>
</tr>
<tr>
<td>283.</td>
<td>Anthenea flavescens, dissection from dorsal aspect</td>
<td>355</td>
</tr>
<tr>
<td>284.</td>
<td>" " lateral dissection</td>
<td>356</td>
</tr>
<tr>
<td>285.</td>
<td>" " dorsal surface</td>
<td>357</td>
</tr>
<tr>
<td>286.</td>
<td>" " ventral surface</td>
<td>357</td>
</tr>
<tr>
<td>287.</td>
<td>Asterina gibbosa, development</td>
<td>359</td>
</tr>
<tr>
<td>288.</td>
<td>" " "</td>
<td>360</td>
</tr>
<tr>
<td>289.</td>
<td>" " "</td>
<td>360</td>
</tr>
<tr>
<td>290.</td>
<td>" " "</td>
<td>361</td>
</tr>
<tr>
<td>291.</td>
<td>" " exigua, young after metamorphosis</td>
<td>361</td>
</tr>
<tr>
<td>292.</td>
<td>Apical system of young Starfish</td>
<td>362</td>
</tr>
<tr>
<td>293.</td>
<td>Strongylocentrotus</td>
<td>364</td>
</tr>
<tr>
<td>294.</td>
<td>Corona of Sea-urchin</td>
<td>365</td>
</tr>
<tr>
<td>295.</td>
<td>Apical disc of Sea-urchin</td>
<td>365</td>
</tr>
<tr>
<td>296.</td>
<td>Echinus, lantern of Aristotle</td>
<td>366</td>
</tr>
<tr>
<td>297.</td>
<td>Sea-urchin, anatomy, lateral view</td>
<td>367</td>
</tr>
<tr>
<td>298.</td>
<td>" " oral view</td>
<td>368</td>
</tr>
<tr>
<td>299.</td>
<td>Cucumaria planci</td>
<td>369</td>
</tr>
<tr>
<td>300.</td>
<td>Anatomy of a Holothurian</td>
<td>371</td>
</tr>
<tr>
<td>301.</td>
<td>Antedon</td>
<td>373</td>
</tr>
<tr>
<td>302.</td>
<td>" " disc</td>
<td>374</td>
</tr>
<tr>
<td>303.</td>
<td>" " transverse section of pinnule</td>
<td>375</td>
</tr>
<tr>
<td>304.</td>
<td>" " sagittal section</td>
<td>376</td>
</tr>
<tr>
<td>335.</td>
<td>Anthenea, ventral view</td>
<td>385</td>
</tr>
<tr>
<td>306.</td>
<td>Ophioglypha lacertosa</td>
<td>386</td>
</tr>
<tr>
<td>307.</td>
<td>Astrophyton arborescens</td>
<td>387</td>
</tr>
<tr>
<td>308.</td>
<td>Strongylocentrotus</td>
<td>388</td>
</tr>
<tr>
<td>309.</td>
<td>Diagram of spine of Sea-urchin</td>
<td>389</td>
</tr>
<tr>
<td>310.</td>
<td>Pedicellaria of Arbacia punctulata</td>
<td>389</td>
</tr>
<tr>
<td>311.</td>
<td>Hemipneustes radiatus</td>
<td>390</td>
</tr>
<tr>
<td>312.</td>
<td>Clypeaster sub-depressus</td>
<td>390</td>
</tr>
<tr>
<td>313.</td>
<td>Antedon</td>
<td>391</td>
</tr>
<tr>
<td>314.</td>
<td>Metacrinus interruptus</td>
<td>392</td>
</tr>
<tr>
<td>315.</td>
<td>Development of Echinodermens</td>
<td>397</td>
</tr>
<tr>
<td>316.</td>
<td>" " Antedon</td>
<td>398</td>
</tr>
<tr>
<td>317.</td>
<td>Diagram to illustrate the relationships of the classes of Echinodermata</td>
<td>402</td>
</tr>
<tr>
<td>318.</td>
<td>Nereis dumerilli</td>
<td>404</td>
</tr>
<tr>
<td>319.</td>
<td>" " parapodium</td>
<td>405</td>
</tr>
<tr>
<td>320.</td>
<td>" " setae</td>
<td>405</td>
</tr>
<tr>
<td>321.</td>
<td>" " anatomy</td>
<td>407</td>
</tr>
<tr>
<td>322.</td>
<td>" " transverse section</td>
<td>408</td>
</tr>
<tr>
<td>323.</td>
<td>" " nervous system</td>
<td>410</td>
</tr>
<tr>
<td>324.</td>
<td>" " eye</td>
<td>411</td>
</tr>
<tr>
<td>325.</td>
<td>" " dumerilli, nephridium</td>
<td>412</td>
</tr>
<tr>
<td>326.</td>
<td>" " development</td>
<td>414</td>
</tr>
<tr>
<td>FIG.</td>
<td>Description</td>
<td>PAGE</td>
</tr>
<tr>
<td>------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>327</td>
<td>Nereis development</td>
<td>415</td>
</tr>
<tr>
<td>328</td>
<td>Lumbricus agricola</td>
<td>418</td>
</tr>
<tr>
<td>329</td>
<td>... setae</td>
<td>419</td>
</tr>
<tr>
<td>330</td>
<td>... transverse section</td>
<td>419</td>
</tr>
<tr>
<td>331</td>
<td>... herculeus, sagittal section</td>
<td>420</td>
</tr>
<tr>
<td>332</td>
<td>... nervous system</td>
<td>422</td>
</tr>
<tr>
<td>333</td>
<td>... nephridium</td>
<td>423</td>
</tr>
<tr>
<td>334</td>
<td>... agricola, reproductive organs</td>
<td>424</td>
</tr>
<tr>
<td>335</td>
<td>... development</td>
<td>426</td>
</tr>
<tr>
<td>336</td>
<td>Polynoe setosisima</td>
<td>429</td>
</tr>
<tr>
<td>337</td>
<td>Vermilia coespitosa</td>
<td>430</td>
</tr>
<tr>
<td>338</td>
<td>Seae of various Polychaeta</td>
<td>431</td>
</tr>
<tr>
<td>339</td>
<td>Section of setigerous sac of an Oligochaete</td>
<td>431</td>
</tr>
<tr>
<td>340</td>
<td>Polynoe extenuata, anterior end</td>
<td>432</td>
</tr>
<tr>
<td>341</td>
<td>Tubifex</td>
<td>433</td>
</tr>
<tr>
<td>342</td>
<td>Terebella</td>
<td>434</td>
</tr>
<tr>
<td>343</td>
<td>Aphrodit, enteric canal</td>
<td>436</td>
</tr>
<tr>
<td>344</td>
<td>Saccocirrus, transverse section</td>
<td>438</td>
</tr>
<tr>
<td>345</td>
<td>Diagram illustrating development of gonad of Polychaeta</td>
<td>441</td>
</tr>
<tr>
<td>346</td>
<td>Spirorbis lavis</td>
<td>444</td>
</tr>
<tr>
<td>347</td>
<td>Eupomatus, development of trochosphere</td>
<td>445</td>
</tr>
<tr>
<td>348</td>
<td>Autolytus cornutus, budding</td>
<td>446</td>
</tr>
<tr>
<td>349</td>
<td>Serpule with their tubes</td>
<td>447</td>
</tr>
<tr>
<td>350</td>
<td>Myzostomum</td>
<td>448</td>
</tr>
<tr>
<td>351</td>
<td>... anatomy</td>
<td>450</td>
</tr>
<tr>
<td>352</td>
<td>Sipunculus nudus, anterior extremity</td>
<td>451</td>
</tr>
<tr>
<td>353</td>
<td>... ... tentacular fold</td>
<td>452</td>
</tr>
<tr>
<td>354</td>
<td>... ... anatomy</td>
<td>453</td>
</tr>
<tr>
<td>355</td>
<td>... ... nervous system</td>
<td>453</td>
</tr>
<tr>
<td>356</td>
<td>Bonellia viridis, female</td>
<td>456</td>
</tr>
<tr>
<td>357</td>
<td>Echiurus</td>
<td>456</td>
</tr>
<tr>
<td>358</td>
<td>Priapulus</td>
<td>457</td>
</tr>
<tr>
<td>359</td>
<td>Bonellia, anatomy</td>
<td>458</td>
</tr>
<tr>
<td>360</td>
<td>Echiurus, ciliated funnel</td>
<td>458</td>
</tr>
<tr>
<td>361</td>
<td>... anatomy</td>
<td>459</td>
</tr>
<tr>
<td>362</td>
<td>... nervous system</td>
<td>459</td>
</tr>
<tr>
<td>363</td>
<td>Bonellia, male</td>
<td>460</td>
</tr>
<tr>
<td>364</td>
<td>Echiurus, trochosphere</td>
<td>460</td>
</tr>
<tr>
<td>365</td>
<td>Polygordius neapolitanus</td>
<td>462</td>
</tr>
<tr>
<td>366</td>
<td>Protodrilus</td>
<td>463</td>
</tr>
<tr>
<td>367</td>
<td>Polygordius neapolitanus, transverse section</td>
<td>463</td>
</tr>
<tr>
<td>368</td>
<td>... ... trochosphere</td>
<td>464</td>
</tr>
<tr>
<td>369</td>
<td>... ... later stage</td>
<td>464</td>
</tr>
<tr>
<td>370</td>
<td>Hirudo medicinalis</td>
<td>466</td>
</tr>
<tr>
<td>371</td>
<td>... ... transverse section</td>
<td>468</td>
</tr>
<tr>
<td>372</td>
<td>... ... jaw</td>
<td>468</td>
</tr>
<tr>
<td>373</td>
<td>... quinquestriata, dissection from dorsal aspect</td>
<td>469</td>
</tr>
<tr>
<td>374</td>
<td>... ... left side</td>
<td>470</td>
</tr>
<tr>
<td>375</td>
<td>... medicinalis, nephridium</td>
<td>471</td>
</tr>
<tr>
<td>FIG.</td>
<td>Illustration Description</td>
<td>Page</td>
</tr>
<tr>
<td>------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>376.</td>
<td>Hirudo, diagram of blood-channels</td>
<td>472</td>
</tr>
<tr>
<td>377.</td>
<td>section of eye</td>
<td>473</td>
</tr>
<tr>
<td>378.</td>
<td>cocoon</td>
<td>474</td>
</tr>
<tr>
<td>379.</td>
<td>Three Rhynchobdellida</td>
<td>475</td>
</tr>
<tr>
<td>380.</td>
<td>Proboscis of Clepsine</td>
<td>477</td>
</tr>
<tr>
<td>381.</td>
<td>Transverse sections of three Leeches</td>
<td>478</td>
</tr>
<tr>
<td>382.</td>
<td>Pontobdella, nephridial system</td>
<td>479</td>
</tr>
<tr>
<td>383.</td>
<td>Clepsine, development</td>
<td>479</td>
</tr>
<tr>
<td>384.</td>
<td>Diagram of origin of metamerism</td>
<td>482</td>
</tr>
<tr>
<td>385.</td>
<td>Diagram illustrating the relationships of the Annulata and Trochel-minthes</td>
<td>483</td>
</tr>
<tr>
<td>386.</td>
<td>Apus cancriformis, dorsal aspect</td>
<td>485</td>
</tr>
<tr>
<td>387.</td>
<td>Lepidurus kirkii, side view</td>
<td>486</td>
</tr>
<tr>
<td>388.</td>
<td>Apus glacialis, ventral aspect</td>
<td>487</td>
</tr>
<tr>
<td>389.</td>
<td>appendages</td>
<td>488</td>
</tr>
<tr>
<td>390.</td>
<td>Lepidurus kirkii, sagittal section</td>
<td>490</td>
</tr>
<tr>
<td>391.</td>
<td>Apus, transverse section</td>
<td>492</td>
</tr>
<tr>
<td>392.</td>
<td>shell-gland</td>
<td>493</td>
</tr>
<tr>
<td>393.</td>
<td>cancriformis, nervous system</td>
<td>494</td>
</tr>
<tr>
<td>394.</td>
<td>structure of paired eye</td>
<td>495</td>
</tr>
<tr>
<td>395.</td>
<td>development</td>
<td>496</td>
</tr>
<tr>
<td>396.</td>
<td>Astacus fluviatilis, male</td>
<td>499</td>
</tr>
<tr>
<td>397.</td>
<td>appendages</td>
<td>501</td>
</tr>
<tr>
<td>398.</td>
<td>articulations and muscles of leg</td>
<td>503</td>
</tr>
<tr>
<td>399.</td>
<td>Section of skin and exoskeleton of Lobster</td>
<td>504</td>
</tr>
<tr>
<td>400.</td>
<td>Articulations and muscles of abdomen of Crayfish</td>
<td>505</td>
</tr>
<tr>
<td>401.</td>
<td>Astacus fluviatilis, dissection from right side</td>
<td>506</td>
</tr>
<tr>
<td>402.</td>
<td>gills</td>
<td>508</td>
</tr>
<tr>
<td>403.</td>
<td>kidney</td>
<td>510</td>
</tr>
<tr>
<td>404.</td>
<td>transverse section of thorax</td>
<td>511</td>
</tr>
<tr>
<td>405.</td>
<td>diagram of circulation</td>
<td>512</td>
</tr>
<tr>
<td>406.</td>
<td>nervous system</td>
<td>513</td>
</tr>
<tr>
<td>407.</td>
<td>reproductive organs</td>
<td>515</td>
</tr>
<tr>
<td>408.</td>
<td>formation of the blastoderm</td>
<td>515</td>
</tr>
<tr>
<td>409.</td>
<td>early embryo</td>
<td>516</td>
</tr>
<tr>
<td>410.</td>
<td>nauplius</td>
<td>517</td>
</tr>
<tr>
<td>411.</td>
<td>section of embryo</td>
<td>518</td>
</tr>
<tr>
<td>412.</td>
<td>advanced embryo</td>
<td>519</td>
</tr>
<tr>
<td>413.</td>
<td>Three Euphyllopoda</td>
<td>526</td>
</tr>
<tr>
<td>414.</td>
<td>Cladocera</td>
<td>527</td>
</tr>
<tr>
<td>415.</td>
<td>Cypris</td>
<td>528</td>
</tr>
<tr>
<td>416.</td>
<td>Cyclops and Calocatanus</td>
<td>529</td>
</tr>
<tr>
<td>417.</td>
<td>Various forms of parasitic Eupodida</td>
<td>531</td>
</tr>
<tr>
<td>418.</td>
<td>Argulus foliaceus</td>
<td>532</td>
</tr>
<tr>
<td>419.</td>
<td>Lepas anatifera</td>
<td>533</td>
</tr>
<tr>
<td>420.</td>
<td>Balanus</td>
<td>534</td>
</tr>
<tr>
<td>421.</td>
<td>Sacculina carcini</td>
<td>535</td>
</tr>
<tr>
<td>422.</td>
<td>Nebalia geoffroyi</td>
<td>536</td>
</tr>
<tr>
<td>423.</td>
<td>Mysis oculata</td>
<td>537</td>
</tr>
<tr>
<td>FIG.</td>
<td>Illustration</td>
<td>PAGE</td>
</tr>
<tr>
<td>------</td>
<td>--</td>
<td>-------</td>
</tr>
<tr>
<td>424</td>
<td>Shrimp and Prawn</td>
<td>538</td>
</tr>
<tr>
<td>425</td>
<td>Scyllarus arctus</td>
<td>539</td>
</tr>
<tr>
<td>426</td>
<td>Pagurus bernhardus</td>
<td>539</td>
</tr>
<tr>
<td>427</td>
<td>Cancer pagurus</td>
<td>540</td>
</tr>
<tr>
<td>428</td>
<td>Typical Brachyura</td>
<td>541</td>
</tr>
<tr>
<td>429</td>
<td>Squilla</td>
<td>542</td>
</tr>
<tr>
<td>430</td>
<td>Diastylis stygia</td>
<td>543</td>
</tr>
<tr>
<td>431</td>
<td>Gammarus neglectus</td>
<td>544</td>
</tr>
<tr>
<td>432</td>
<td>Asellus aquaticus</td>
<td>545</td>
</tr>
<tr>
<td>433</td>
<td>Various Amphipoda</td>
<td>546</td>
</tr>
<tr>
<td>434</td>
<td></td>
<td>546</td>
</tr>
<tr>
<td>435</td>
<td>Orchestia cavimana, anatomy</td>
<td>548</td>
</tr>
<tr>
<td>436</td>
<td>Euphausia pellucida</td>
<td>549</td>
</tr>
<tr>
<td>437</td>
<td>Nervous system of Crab</td>
<td>550</td>
</tr>
<tr>
<td>438</td>
<td>Cypris-stage of Lepas</td>
<td>552</td>
</tr>
<tr>
<td>439</td>
<td>Larvae of Crabs</td>
<td>554</td>
</tr>
<tr>
<td>440</td>
<td>Diagram illustrating the mutual relationships of the orders of Crustacea</td>
<td>557</td>
</tr>
<tr>
<td>441</td>
<td>Dalmanites and Phacops</td>
<td>558</td>
</tr>
<tr>
<td>441 bis</td>
<td>Triarthrus beckii</td>
<td>559</td>
</tr>
<tr>
<td>442</td>
<td>Peripatus capensis</td>
<td>560</td>
</tr>
<tr>
<td>443</td>
<td>" ventral view of head</td>
<td>560</td>
</tr>
<tr>
<td>444</td>
<td>" anatomy</td>
<td>561</td>
</tr>
<tr>
<td>445</td>
<td>" edwardsii, nephridium</td>
<td>563</td>
</tr>
<tr>
<td>446</td>
<td>" novaezealandiae, development</td>
<td>564</td>
</tr>
<tr>
<td>447</td>
<td>" capensis</td>
<td>565</td>
</tr>
<tr>
<td>448</td>
<td>Scolopendrella immaculata</td>
<td>567</td>
</tr>
<tr>
<td>449</td>
<td>Scolopendra</td>
<td>568</td>
</tr>
<tr>
<td>450</td>
<td>Lithobius forficatus</td>
<td>568</td>
</tr>
<tr>
<td>451</td>
<td>Pauropus huxleyi</td>
<td>569</td>
</tr>
<tr>
<td>452</td>
<td>Strongylostoma, development</td>
<td>570</td>
</tr>
<tr>
<td>453</td>
<td>Periplaneta americana</td>
<td>572</td>
</tr>
<tr>
<td>454</td>
<td>" mouth-parts</td>
<td>573</td>
</tr>
<tr>
<td>455</td>
<td>" americana, lateral view of head</td>
<td>573</td>
</tr>
<tr>
<td>456</td>
<td>" muscular system</td>
<td>575</td>
</tr>
<tr>
<td>457</td>
<td>" anatomy</td>
<td>576</td>
</tr>
<tr>
<td>458</td>
<td>" salivary glands</td>
<td>577</td>
</tr>
<tr>
<td>459</td>
<td>Trachea of caterpillar</td>
<td>577</td>
</tr>
<tr>
<td>460</td>
<td>Periplaneta, tracheal system</td>
<td>578</td>
</tr>
<tr>
<td>461</td>
<td>" nervous system</td>
<td>578</td>
</tr>
<tr>
<td>462</td>
<td>" male reproductive organs</td>
<td>579</td>
</tr>
<tr>
<td>463</td>
<td>" female reproductive organs</td>
<td>579</td>
</tr>
<tr>
<td>464</td>
<td>Segmentation of ovum of Insect</td>
<td>580</td>
</tr>
<tr>
<td>465</td>
<td>Ventral plate of embryo Cockroach</td>
<td>581</td>
</tr>
<tr>
<td>466</td>
<td>Germinal layers and amnion of Insect</td>
<td>582</td>
</tr>
<tr>
<td>467</td>
<td>Lepisma</td>
<td>583</td>
</tr>
<tr>
<td>468</td>
<td>Podura</td>
<td>584</td>
</tr>
<tr>
<td>469</td>
<td>Locusta</td>
<td>584</td>
</tr>
<tr>
<td>470</td>
<td>Ephemera</td>
<td>584</td>
</tr>
<tr>
<td>FIG.</td>
<td>Illustration Description</td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>--------------------------</td>
<td></td>
</tr>
<tr>
<td>471</td>
<td>Aphis rosae</td>
<td></td>
</tr>
<tr>
<td>472</td>
<td>Cicada</td>
<td></td>
</tr>
<tr>
<td>473</td>
<td>Pulex and larva</td>
<td></td>
</tr>
<tr>
<td>474</td>
<td>Gastrophilus equi</td>
<td></td>
</tr>
<tr>
<td>475</td>
<td>Pieris</td>
<td></td>
</tr>
<tr>
<td>476</td>
<td>Criocerus</td>
<td></td>
</tr>
<tr>
<td>477</td>
<td>Section of integument of Insect</td>
<td></td>
</tr>
<tr>
<td>478</td>
<td>Mouth-parts of Honey-bee</td>
<td></td>
</tr>
<tr>
<td>479</td>
<td>" " " Diptera</td>
<td></td>
</tr>
<tr>
<td>480</td>
<td>" " " Lepidoptera</td>
<td></td>
</tr>
<tr>
<td>481</td>
<td>Digestive organs of Beetle</td>
<td></td>
</tr>
<tr>
<td>482</td>
<td>Nervous, tracheal, and digestive systems of the Honey-bee</td>
<td></td>
</tr>
<tr>
<td>483</td>
<td>Tracheal gills of Ephemerid</td>
<td></td>
</tr>
<tr>
<td>484</td>
<td>Heart of Cockchafer</td>
<td></td>
</tr>
<tr>
<td>485</td>
<td>Nervous system of Diptera</td>
<td></td>
</tr>
<tr>
<td>486</td>
<td>Ocellus of Dytiscus larva</td>
<td></td>
</tr>
<tr>
<td>487</td>
<td>Chordotonal organ of Isoptryx</td>
<td></td>
</tr>
<tr>
<td>488</td>
<td>Sexual apparatus of Honey-bee</td>
<td></td>
</tr>
<tr>
<td>489</td>
<td>Segmentation of ovum of Insect</td>
<td></td>
</tr>
<tr>
<td>490</td>
<td>Germinal layers and amnion of Insect</td>
<td></td>
</tr>
<tr>
<td>491</td>
<td>Development of Hydrophilus</td>
<td></td>
</tr>
<tr>
<td>492</td>
<td></td>
<td></td>
</tr>
<tr>
<td>493</td>
<td>" " " Apis mellifica, queen, worker, and drone</td>
<td></td>
</tr>
<tr>
<td>494</td>
<td>Formica rufa</td>
<td></td>
</tr>
<tr>
<td>495</td>
<td>Euscorpio</td>
<td></td>
</tr>
<tr>
<td>496</td>
<td>Ventral surface of cephalothorax and pre-abdomen of Scorpion</td>
<td></td>
</tr>
<tr>
<td>497</td>
<td>Endosternite of Scorpion</td>
<td></td>
</tr>
<tr>
<td>498</td>
<td>Scorpion, anatomy, lateral view</td>
<td></td>
</tr>
<tr>
<td>499</td>
<td>" " " dorsal</td>
<td></td>
</tr>
<tr>
<td>500</td>
<td>" " " development</td>
<td></td>
</tr>
<tr>
<td>501</td>
<td>Embryo of Scorpion</td>
<td></td>
</tr>
<tr>
<td>502</td>
<td>Chelifer bravaisii</td>
<td></td>
</tr>
<tr>
<td>503</td>
<td>Phrynus</td>
<td></td>
</tr>
<tr>
<td>504</td>
<td>Galeodes dastuguei</td>
<td></td>
</tr>
<tr>
<td>505</td>
<td>Epeira diadema</td>
<td></td>
</tr>
<tr>
<td>506</td>
<td>" " " chelicere and pedipalpi of female</td>
<td></td>
</tr>
<tr>
<td>507</td>
<td>" " " male</td>
<td></td>
</tr>
<tr>
<td>508</td>
<td>Sarcoptes scabiei</td>
<td></td>
</tr>
<tr>
<td>509</td>
<td>Trombidium fuliginosum</td>
<td></td>
</tr>
<tr>
<td>510</td>
<td>Limulus</td>
<td></td>
</tr>
<tr>
<td>511</td>
<td>" " ventral view</td>
<td></td>
</tr>
<tr>
<td>512</td>
<td>Eurypterus fischeri</td>
<td></td>
</tr>
<tr>
<td>513</td>
<td>Anatomy of dipneumonious Spider</td>
<td></td>
</tr>
<tr>
<td>514</td>
<td>Limulus, sagittal section</td>
<td></td>
</tr>
<tr>
<td>515</td>
<td>Lung-book of Spider</td>
<td></td>
</tr>
<tr>
<td>516</td>
<td>Tracheal system of Spider</td>
<td></td>
</tr>
<tr>
<td>517</td>
<td>Gill-books of Limulus</td>
<td></td>
</tr>
<tr>
<td>518</td>
<td>Lateral eye of Euscorpius</td>
<td></td>
</tr>
<tr>
<td>519</td>
<td>Central</td>
<td></td>
</tr>
<tr>
<td>FIG.</td>
<td>Illustration Description</td>
<td>Page</td>
</tr>
<tr>
<td>------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>520.</td>
<td>Nymphon hispidum</td>
<td>625</td>
</tr>
<tr>
<td>521.</td>
<td>Pentastomum tenuioides</td>
<td>625</td>
</tr>
<tr>
<td>522.</td>
<td>Macrobiotus hufelandi</td>
<td>626</td>
</tr>
<tr>
<td>523.</td>
<td>Diagram to illustrate affinities of Arthropoda</td>
<td>629</td>
</tr>
<tr>
<td>524.</td>
<td>Anodonta cygnea</td>
<td>632</td>
</tr>
<tr>
<td>525.</td>
<td>Interior of valve and animal removed from shell</td>
<td>633</td>
</tr>
<tr>
<td>526.</td>
<td>Section of shell and mantle</td>
<td>634</td>
</tr>
<tr>
<td>527.</td>
<td>Cygnea, animal after removal of mantle-lobe</td>
<td>636</td>
</tr>
<tr>
<td>528.</td>
<td>Dissection from left side</td>
<td>637</td>
</tr>
<tr>
<td>529.</td>
<td>Structure of gills</td>
<td>638</td>
</tr>
<tr>
<td>530.</td>
<td>Transverse sections</td>
<td>639</td>
</tr>
<tr>
<td>531.</td>
<td>Diagram of circulation</td>
<td>641</td>
</tr>
<tr>
<td>532.</td>
<td>Otocyst</td>
<td>642</td>
</tr>
<tr>
<td>533.</td>
<td>Early embryo</td>
<td>643</td>
</tr>
<tr>
<td>534.</td>
<td>Later embryos</td>
<td>643</td>
</tr>
<tr>
<td>535.</td>
<td>Advanced embryo</td>
<td>644</td>
</tr>
<tr>
<td>536.</td>
<td>Metamorphosis</td>
<td>645</td>
</tr>
<tr>
<td>537.</td>
<td>Anatomy of Pecten</td>
<td>648</td>
</tr>
<tr>
<td>538.</td>
<td>Valves of Mya, Modiola, and Vulsella</td>
<td>649</td>
</tr>
<tr>
<td>539.</td>
<td>Cardium edule</td>
<td>649</td>
</tr>
<tr>
<td>540.</td>
<td>Venus gnidia</td>
<td>650</td>
</tr>
<tr>
<td>541.</td>
<td>Scrobicularia piperata</td>
<td>650</td>
</tr>
<tr>
<td>542.</td>
<td>Solecurtus strigillatus</td>
<td>651</td>
</tr>
<tr>
<td>543.</td>
<td>Diagram of concrescence of mantle-lobes</td>
<td>651</td>
</tr>
<tr>
<td>544.</td>
<td>Requienia and Hippurites</td>
<td>652</td>
</tr>
<tr>
<td>545.</td>
<td>Teredoa navalis</td>
<td>652</td>
</tr>
<tr>
<td>546.</td>
<td>Aspergillum</td>
<td>653</td>
</tr>
<tr>
<td>547.</td>
<td>Mytilus edulis</td>
<td>653</td>
</tr>
<tr>
<td>548.</td>
<td>Nucula nucleus</td>
<td>654</td>
</tr>
<tr>
<td>549.</td>
<td>Gills of Pelecypoda</td>
<td>655</td>
</tr>
<tr>
<td>550.</td>
<td>Gill-filaments of Mytilus</td>
<td>656</td>
</tr>
<tr>
<td>551.</td>
<td>Dissection of Poromya</td>
<td>656</td>
</tr>
<tr>
<td>552.</td>
<td>Donax, enteric canal</td>
<td>657</td>
</tr>
<tr>
<td>553.</td>
<td>Diagram of Nucula</td>
<td>657</td>
</tr>
<tr>
<td>554.</td>
<td>Nervous system and auditory organs of Nucula</td>
<td>658</td>
</tr>
<tr>
<td>555.</td>
<td>Eye of Pecten</td>
<td>659</td>
</tr>
<tr>
<td>556.</td>
<td>Development of Ostrea</td>
<td>660</td>
</tr>
<tr>
<td>557.</td>
<td>Veliger of Ostrea</td>
<td>660</td>
</tr>
<tr>
<td>558.</td>
<td>Embryos of Cyclos</td>
<td>661</td>
</tr>
<tr>
<td>559.</td>
<td>Diagram illustrating the mutual relationships of the Pelecypoda</td>
<td>662</td>
</tr>
<tr>
<td>560.</td>
<td>Chaetoderma nitidulum</td>
<td>664</td>
</tr>
<tr>
<td>561.</td>
<td>Neomenia carinata</td>
<td>664</td>
</tr>
<tr>
<td>562.</td>
<td>Chiton spinosus, dorsal view</td>
<td>665</td>
</tr>
<tr>
<td>563.</td>
<td>Ventral view</td>
<td>665</td>
</tr>
<tr>
<td>564.</td>
<td>Valves of shell</td>
<td>665</td>
</tr>
<tr>
<td>565.</td>
<td>Chaetoderma nitidulum, longitudinal section</td>
<td>666</td>
</tr>
<tr>
<td>566.</td>
<td>Chiton, longitudinal section</td>
<td>667</td>
</tr>
<tr>
<td>567.</td>
<td>Nervous system of Amphineura</td>
<td>667</td>
</tr>
<tr>
<td>568.</td>
<td>Neomenia carinata, reproductive organs</td>
<td>668</td>
</tr>
<tr>
<td>FIG.</td>
<td>PAGE</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>569. Chiton, nephridial and genital systems</td>
<td>669</td>
<td></td>
</tr>
<tr>
<td>570. "" development</td>
<td>670</td>
<td></td>
</tr>
<tr>
<td>571. Triton nodiferus, shell</td>
<td>672</td>
<td></td>
</tr>
<tr>
<td>572. Triton nodiferus, shell, median section</td>
<td>673</td>
<td></td>
</tr>
<tr>
<td>573. "" operculum</td>
<td>674</td>
<td></td>
</tr>
<tr>
<td>574. "" lateral view of body</td>
<td>674</td>
<td></td>
</tr>
<tr>
<td>575. "" diagram of introvert</td>
<td>675</td>
<td></td>
</tr>
<tr>
<td>576. "" dissection from dorsal side</td>
<td>677</td>
<td></td>
</tr>
<tr>
<td>577. "" buccal mass</td>
<td>678</td>
<td></td>
</tr>
<tr>
<td>578. "" vertical section of buccal cavity</td>
<td>678</td>
<td></td>
</tr>
<tr>
<td>579. "" nervous system from dorsal side</td>
<td>680</td>
<td></td>
</tr>
<tr>
<td>580. "" and related parts, lateral view</td>
<td>681</td>
<td></td>
</tr>
<tr>
<td>581. "" section of eye</td>
<td>682</td>
<td></td>
</tr>
<tr>
<td>582. Solarium perspectivum</td>
<td>685</td>
<td></td>
</tr>
<tr>
<td>583. Terebra oculata</td>
<td>686</td>
<td></td>
</tr>
<tr>
<td>584. Cypraea moneta</td>
<td>687</td>
<td></td>
</tr>
<tr>
<td>585. Doris tuberculata</td>
<td>687</td>
<td></td>
</tr>
<tr>
<td>586. Carinaria mediterranea</td>
<td>687</td>
<td></td>
</tr>
<tr>
<td>587. Limax</td>
<td>687</td>
<td></td>
</tr>
<tr>
<td>588. Sigaretus leviatus</td>
<td>688</td>
<td></td>
</tr>
<tr>
<td>589. Aplysia</td>
<td>688</td>
<td></td>
</tr>
<tr>
<td>590. Shell-bearing Pteropoda</td>
<td>689</td>
<td></td>
</tr>
<tr>
<td>591. Atlanta peronii</td>
<td>689</td>
<td></td>
</tr>
<tr>
<td>592. Pterotrachea sentata</td>
<td>690</td>
<td></td>
</tr>
<tr>
<td>593. Helix nemoralis</td>
<td>690</td>
<td></td>
</tr>
<tr>
<td>594. Pleurophyllidia lineata</td>
<td>691</td>
<td></td>
</tr>
<tr>
<td>595. Patella vulgata</td>
<td>691</td>
<td></td>
</tr>
<tr>
<td>596. Pulmonary cavity and related parts in Limax</td>
<td>692</td>
<td></td>
</tr>
<tr>
<td>597. Nervous system of Patella</td>
<td>693</td>
<td></td>
</tr>
<tr>
<td>598. Diagrams of displacement of mantle-cavity, &c.</td>
<td>694</td>
<td></td>
</tr>
<tr>
<td>599. Nervous system of Aplysia</td>
<td>695</td>
<td></td>
</tr>
<tr>
<td>600. "" "" Limnaeus</td>
<td>695</td>
<td></td>
</tr>
<tr>
<td>601. Eyes of Gastropoda</td>
<td>696</td>
<td></td>
</tr>
<tr>
<td>602. Osphradium of Murex</td>
<td>696</td>
<td></td>
</tr>
<tr>
<td>603. Reproductive organs of Helix</td>
<td>697</td>
<td></td>
</tr>
<tr>
<td>604. Hermaphrodite gland of Gastropoda</td>
<td>698</td>
<td></td>
</tr>
<tr>
<td>605. Forms of egg-cases in Gastropoda</td>
<td>699</td>
<td></td>
</tr>
<tr>
<td>606. Segmentation and formation of germinal layers in Gastropoda</td>
<td>700</td>
<td></td>
</tr>
<tr>
<td>607. Early development of Patella</td>
<td>701</td>
<td></td>
</tr>
<tr>
<td>608. Trochospheres of Patella</td>
<td>702</td>
<td></td>
</tr>
<tr>
<td>609. Later trochosphere of Patella</td>
<td>703</td>
<td></td>
</tr>
<tr>
<td>610. Veliger of Vermetus</td>
<td>704</td>
<td></td>
</tr>
<tr>
<td>611. Diagram illustrating the relationships of the Gastropoda</td>
<td>705</td>
<td></td>
</tr>
<tr>
<td>612. Dentalium, section of shell</td>
<td>706</td>
<td></td>
</tr>
<tr>
<td>613. "" anatomy</td>
<td>706</td>
<td></td>
</tr>
<tr>
<td>614. "" larvae</td>
<td>706</td>
<td></td>
</tr>
<tr>
<td>614 bis, Rhodope</td>
<td>707</td>
<td></td>
</tr>
<tr>
<td>615. Sepia cultrata</td>
<td>709</td>
<td></td>
</tr>
<tr>
<td>616. "" sucker</td>
<td>710</td>
<td></td>
</tr>
<tr>
<td>FIG.</td>
<td>LIST OF ILLUSTRATIONS</td>
<td>PAGE</td>
</tr>
<tr>
<td>-------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>617.</td>
<td>Sepia, cultrata, shell</td>
<td>711</td>
</tr>
<tr>
<td>618.</td>
<td>.. chromatophore</td>
<td>711</td>
</tr>
<tr>
<td>619.</td>
<td>.. cultrata, cranial cartilage</td>
<td>712</td>
</tr>
<tr>
<td>620.</td>
<td>.. nuchal cartilage</td>
<td>712</td>
</tr>
<tr>
<td>621.</td>
<td>.. mantle-cavity</td>
<td>713</td>
</tr>
<tr>
<td>622.</td>
<td>.. officinalis. jaws</td>
<td>714</td>
</tr>
<tr>
<td>623.</td>
<td>.. section of buccal mass</td>
<td>715</td>
</tr>
<tr>
<td>624.</td>
<td>.. officinalis. enteric system</td>
<td>715</td>
</tr>
<tr>
<td>625.</td>
<td>.. cultrata, dissection of male from posterior aspect</td>
<td>716</td>
</tr>
<tr>
<td>626.</td>
<td>.. lateral dissection of male</td>
<td>717</td>
</tr>
<tr>
<td>627.</td>
<td>.. officinalis, longitudinal section of ink-sae</td>
<td>718</td>
</tr>
<tr>
<td>628.</td>
<td>.. cultrata, vascular system</td>
<td>719</td>
</tr>
<tr>
<td>629.</td>
<td>.. cephalic ganglia</td>
<td>719</td>
</tr>
<tr>
<td>630.</td>
<td>.. pedal and pleuro-visceral ganglia</td>
<td>719</td>
</tr>
<tr>
<td>631.</td>
<td>.. section of eye</td>
<td>720</td>
</tr>
<tr>
<td>632.</td>
<td>.. cultrata, otolith</td>
<td>721</td>
</tr>
<tr>
<td>633.</td>
<td>.. officinalis, renal organs</td>
<td>722</td>
</tr>
<tr>
<td>634.</td>
<td>.. diagrammatic sagittal section of female</td>
<td>723</td>
</tr>
<tr>
<td>635.</td>
<td>.. male reproductive organs</td>
<td>724</td>
</tr>
<tr>
<td>636.</td>
<td>.. sperms and spermatophore</td>
<td>725</td>
</tr>
<tr>
<td>637.</td>
<td>Nautilus pompilius, section of shell</td>
<td>726</td>
</tr>
<tr>
<td>638.</td>
<td>.. female, in shell</td>
<td>727</td>
</tr>
<tr>
<td>639.</td>
<td>.. spadix</td>
<td>728</td>
</tr>
<tr>
<td>640.</td>
<td>.. cephalic cartilage</td>
<td>729</td>
</tr>
<tr>
<td>641.</td>
<td>.. mantle-cavity of male</td>
<td>730</td>
</tr>
<tr>
<td>642.</td>
<td>.. dissection of male from left side</td>
<td>731</td>
</tr>
<tr>
<td>642 bis</td>
<td>.. arteries</td>
<td>733</td>
</tr>
<tr>
<td>643.</td>
<td>.. renal sacs, ctenidia, &c.</td>
<td>733</td>
</tr>
<tr>
<td>644.</td>
<td>.. male reproductive organs</td>
<td>735</td>
</tr>
<tr>
<td>645.</td>
<td>.. female</td>
<td>735</td>
</tr>
<tr>
<td>646.</td>
<td>Octopus vulgaris</td>
<td>737</td>
</tr>
<tr>
<td>647.</td>
<td>Loligo vulgaris</td>
<td>738</td>
</tr>
<tr>
<td>648.</td>
<td>Argonauta argo</td>
<td>739</td>
</tr>
<tr>
<td>649.</td>
<td>Octopus lentus, male</td>
<td>739</td>
</tr>
<tr>
<td>650.</td>
<td>Amphitretus pelagicus</td>
<td>740</td>
</tr>
<tr>
<td>651.</td>
<td>Shell of Spirula</td>
<td>740</td>
</tr>
<tr>
<td>652.</td>
<td>Spirula peronii</td>
<td>741</td>
</tr>
<tr>
<td>653.</td>
<td>Ammonite</td>
<td>741</td>
</tr>
<tr>
<td>654.</td>
<td>Shell of Belemnite</td>
<td>742</td>
</tr>
<tr>
<td>655.</td>
<td>.. Argonauta argo</td>
<td>742</td>
</tr>
<tr>
<td>656.</td>
<td>Segmentation of Loligo</td>
<td>745</td>
</tr>
<tr>
<td>657.</td>
<td>Blastoderm of Sepia</td>
<td>745</td>
</tr>
<tr>
<td>658.</td>
<td>.. sections</td>
<td>746</td>
</tr>
<tr>
<td>659.</td>
<td>Development of Loligo</td>
<td>747</td>
</tr>
<tr>
<td>660.</td>
<td>..</td>
<td>748</td>
</tr>
<tr>
<td>661.</td>
<td>..</td>
<td>748</td>
</tr>
<tr>
<td>662.</td>
<td>..</td>
<td>749</td>
</tr>
<tr>
<td>663.</td>
<td>Diagram to illustrate the relationships of the Cephalopoda</td>
<td>750</td>
</tr>
</tbody>
</table>
CLASSIFICATION OF THE ANIMAL KINGDOM ADOPTED IN THIS BOOK.

KINGDOM ANIMALIA.

Phylum I. PROTOZOA.

Class I. RHIZOPoda.
 Order 1. Lobosa.
 ,, 2. Labyrinthulidea.
 ,, 3. Foraminifera.
 ,, 5. Radiolaria.

Class II. MYCETOZOA.

Class III. MASTIGOPHORA.
 Order 1. Flagellata.
 ,, 2. Choanoflagellata.

Phylum II. PORIFERA.

Class PORIFERA.

Sub-class I. Calcarea.
 Order 1. Homocelâ.
 ,, 2. Heterocelâ.

Class I. HYDROZOA.
 Order 1. Leptolinidae.
 Sub-order a. Anthomedusae.
 ,, b. Leptomedusae.
 Order 2. Trachylineae.

Phylum III. COELENTERATA.

Sub-order a. Trachymedusae.
 ,, b. Narcomedusae.
 Order 3. Hydrocorallina.
 ,, 4. Siphonophora.
 ,, 5. Graptolithida.
Phylum III. COELENTERATA—continued.

Class II. SCYPHOZOA.
 Order 1. Stauromedusae.
 ,, 2. Peromedusae.
 ,, 3. Cubomedusae.
 ,, 4. Discomedusae.

Class III. ACTINOZOA.
 Sub-class I. Zoantharia.
 Order 1. Actiniaria.
 ,, 3. Antipatharia.
 Sub-class II. Alcyonaria.
 Order 1. Alcyonacea.
 ,, 2. Gymnosomatia.
 ,, 3. Caryosomatia.
 ,, 4. Oligostomia.

Order 2. Gorgonacea.
 ,, 3. Pennatulacea.

Class IV. CTENOPHORA.
 Order 1. Cydippida.
 ,, 2. Lobata.
 ,, 3. Cestida.

Appendix to Ctenophora—Ctenoplana and Ctenophana.

Appendix to Coelenterata—Mesozoa, Salinella, and Trichoplax.

Phylum IV. PLATYHELMINTHES.

Class I. TURBELLARIA.
 Order 1. Polycladida.
 ,, 2. Tricladiida.
 ,, 3. Rhabdocelida.

Class II. TREMATODA.
 Order 1. Monogenetica.
 ,, 2. Digenetica.
 ,, 3. Diphyllobothria.

Class III. CESTODA.
 Order 1. Monozoa.
 ,, 2. Polyzoa.

Appendix to Platyhelminthes—Class NEMERTINEA.

Phylum V. NEMATHELMINTHES.

Class I. NEMATODA.
 Order 1. Nematoidae.
 ,, 2. Gordioidea.

Class II. ACANTHOCEPHALA.

Class III. CHAETOGNATHA.

Appendix to Nemathelminthes—Cheto-
 somida, Echinoderida, and Desmo-
 scolidae.

Phylum VI. TROCHELMINTHES.

Class I. ROTIFERA.
 Order 1. Rhizoza.
 ,, 2. Bdelloida.
 ,, 3. Ploïmia.
 Sub-order a. IIllicicata.
 ,, b. Lorica.

Order 4. Scirtopoda.
 ,, 5. Trochospheraida.

Class II. DINOPHILEA.
 ,, III. GASTROTRICHA.

Phylum VII. MOLLUSCOIDA.

Class I. POLYZOA.
 Sub-class I. Ectoprocta.
 Sub-order a. Cyclostomata.
 ,, b. Cheilostomata.
 ,, c. Ctenostomata.

Order 2. Phylactolematia.
 Sub-class II. Endoprocta.

Class II. PHORONIDA.
 ,, III. BRACHIOPODA.
 Order 1. Inarticulata.
 ,, 2. Articulata.
CLASSIFICATION OF THE ANIMAL KINGDOM

Phylum VIII. ECHINODERMATA.

Class I. ASTEROIDEA.
 Order I. Phanerozoonia.
 ,, 2. Cryptozoonia.

Class II. OPHIUROIDEA.
 Order I. Ophiurida.
 ,, 2. Euryalida.

Class III. ECHINOIDEA.
 Order I. Paleo-echinoidea.
 ,, 2. Regularia.
 ,, 3. Clypeastridea.
 ,, 4. Spatangoidea.

Class IV. HOLOTHUROIDEA
 Order I. Elasipoda.
 ,, 2. Pedata.
 ,, 3. Apoda.

Class V. CRINOIDEA.
 Order I. Paleo-crinoidea.
 ,, 2. Neo-Crinoidea.

Class VI. CYSTOIDEA.
 ,, VII. BLASTOIDEA.

Phylum IX. ANNULATA.

Class I. CHAETOPODA.
 Sub-class I. Polychaeta.
 Order I. Archi-Chaetopoda.
 ,, 2. Errantia.
 Sub-class II. Oligochaeta.
 Order I. Naidomorpha.
 ,, 2. Lumbricomorpha.
Appendix to the Chaetopoda—Class MYZOSTOMIDAE.

Class II. GEPHYREA.
 Order I. Inerimia.
 ,, 2. Armata.

Class III. ARCHI-ANNELIDA.
 ,, IV. HIRUDINEA.
 Order I. Rhynchobdellida.
 ,, 2. Gnathobdellida.

Phylum X. ARTHROPODA.

Class I. CRUSTACEA.
 Sub-class I. Entomostraca.
 Order I. Phyllopoda.
 Sub-order a. Euphillopoda.
 ,, b. Cladocera.
 Order 2. Ostracoda.
 ,, 3. Copepoda.
 Sub-order a. Eucopepoda.
 ,, b. Branchiura.
 Order 4. CIRRIPEDIA.
 Sub-order a. Encirripedia.
 ,, b. Rhizocephala.
 Sub-class II. Malacostraca.
 Order 1. Phyllocarida.
 ,, 2. Schizopoda.
 ,, 3. Decapoda.
 Sub-order a. Mammata.
 ,, b. Brachyura.
 Order 4. Stomatopoda.
 ,, 5. Cumacea.

Order 6. Arthrostraca.
 Sub-order a. Amphipoda.
 ,, b. Isopoda.
Appendix to Crustacea—Class TRILOBITA.

Class II. ONYCHOPHORA.
 ,, III. MYRIAPODA.
 Order I. Symphyla.
 ,, 2. Chilopoda.
 ,, 3. Diplopoda.
 ,, 4. Pauropoda.

Class IV. INSECTA.
 Order I. Aptera.
 ,, 2. Orthoptera.
 ,, 4. Hemiptera.
 ,, 5. Diptera.
 ,, 7. Coleoptera.
CLASSIFICATION OF THE ANIMAL KINGDOM

Phylum X. ARTHROPODA—continued.

Class V. ARACHNIDA.
Order I. SCORPIONIDA.
,, 2. PSEUDOSCORPIONIDA.
,, 3. PEDIPALPIDA.
,, 4. SOLPUGIDA.
,, 5. PHALANGIDA.
,, 6. ARANEIDA.
Order 7. ACARIDA.
,, 8. XIPHIOSURA.
,, 9. EUCRYPTERIDA.

Appendix to the Arachnida—The Pycnogonida, Linguatulida, and Tardigrada.

Phylum XI. MOLLUSCA.

Class I. PELECYPODA.
Order I. PROTOBRANCHIA.
,, 2. TILBERANCHIA.
,, 3. PSEUDO-LAMELLIBRANCHIA.
,, 4. EULAMELLIBRANCHIA.
Sub-order a. INTEGRIPILLIATA.
,, b. SINNAPITRADIATA.
Order 2. PECTINIBRANCHIA.
Sub-order a. PLATYPODA.
,, b. HETEROPODA.
Sub-class II. EUTYNEURA.
Order 1. OPISTHOBRANCHIA.
Sub-order a. TETRABRANCHIATA.
,, b. NAUTIBRANCHIATA.
Order 2. PULMONATA.

Appendix to the Gastropoda—Class SCAFFOPODA AND RHODOPE.

Class IV. CEPHALOPODA.
Sub-class I. DIBRANCHIA.
Order I. DECAPODA.
,, 2. OCTOPODA.
Sub-class II. TETRABRANCHIATA.

Phylum XII.

Sub-phylum I. ADELOCHORDA.
Class. ADELOCHORDA.

Sub-phylum II. UROCHORDA.
Class. UROCHORDA.
Order I. LARVAECA.
,, 2. THALLACEA.
Sub-order a. CYLINDRIFULSIA.
,, b. HEMINYRIA.
,, c. PYROSOMATA.
Order 2. ASCIDIACE.
Sub-order a. ASCIDIACE SIMPLICIA.
,, b. ASCIDIACE COMPOSITE.

Sub-phylum III. VERTEBRATA.

Division A. ACRANIA.
Class. ACRANIA.

Division B. CRANIATA.

Class I. CYCLOSTOMATA.
Order I. PETROMYZONTES.
,, 2. MYXINOIDEI.

Class II. PISCES.
Sub-class I. ELASMOBRANCHII.
Order I. CLADOSELACHIA.
,, 2. PLEURACANTHIA.
,, 3. Acanthodea.
,, 4. Selachii.
Sub-order a. PROTOSELACHII.
,, b. ENSELACHII.
Section a. Squalida.
,, b. Rajida.
Sub-class II. HOLOCEPHALI.
,, 3. TELOSTOMI.
Order I. CROSSEOPTERYCHI.
,, 2. CHONDROSTEI.
CLASSIFICATION OF THE ANIMAL KINGDOM

Phylum XII. CHORDATA—continued.

Order 3. Holostei.

Sub-order a. Phylacanthi.
 b. Acanthopteri.
 c. Pharyngognathi.
 d. Plectognathi.

Sub-order b. Lophobranchii.

Order 4. Telostei.

Sub-order a. Physostomi.
 b. Acanthopteri.
 c. Plectognathi.
 d. Lophobranchii.

Sub-class IV. Dipnoi.

 2. Dipneumona.

Appendix to Pisces—The Ostracodermi.

Class III. AMPHIBIA.

Order 1. Urodela.
 2. Gymnophiona.
 3. Gymnophiona.

Order 1. Squamata.

Sub-order a. Lacertilia.
 b. Ophidio.
 c. Pythonomorpha.

Order 2. Rhynchocephalia.
 3. Chelonia.
 4. Theromorpha.
 5. Crocodilia.
 7. Ichthyosauria.
 8. Dinosauria.

Class IV. REPTILIA.

Order 1. Squamata.

Sub-order a. Lacertilia.
 b. Ophidio.
 c. Pythonomorpha.

Order 2. Rhynchocephalia.
 3. Chelonia.
 4. Theromorpha.
 5. Crocodilia.

Class V. AVES.

Sub-class I. Archæornithes.
 II. Neornithes.

Section A. Ratitae.

Order 1. Megistanes.
 2. Rhe.
 3. Struthiones.
 4. Æpyornithes.
 5. Gasterornithes.

Section B. Carinate.

Order 1. Stereornithes.
 2. Odontolae.
 3. Ichthyornithes.
 4. Pygopodes.
 5. Impennes.

Order 6. Turbinates.
 7. Steganopodes.
 8. Heronion.
 10. Accipitres.
 11. Cryptures.
 15. Limicolæ.
 17. Columbæ.
 18. Psittaci.
 19. Striges.
 20. Picariæ.

Class VI. MAMMALIA.

Sub-class I. Prototheria.
 II. Theria.

Section A. Metatheria (Marsupialia).

Order 1. Polyprotodonta.
 2. Diprotodonta.

Section B. Eutheria.

Order 1. Edentata.
 2. Sirenia.
 3. Cetacea.
 4. Ungulata.

Division A. Ungulata Vera.

Sub-order a. Artiodactyla.
 b. Perissodactyla.

Division B. Subungulata.

Sub-order a. Hyracoida.
 b. Proboscidea.
 c. Amblypoda.

Order 5. Rodentia.
 6. Carnivora.

Sub-order a. Carnivora vera.
 b. Pinnipedia.
 c. Croodontia.

Order 7. Insectivora.
 8. Chiroptera.

Sub-order a. Lemuroidea.
 b. Anthropoidea.
ADDENDA ET CORRIGENDA

VOL. I

p. 188. Fenja and Aegir have been proved to be nothing more than damaged examples of a normal Sea-anemone (Halcampoides).

p. 214. Line 15 from top, for "Hornosiria" read "Horniphora."

p. 230. The statement that Land-snails are sometimes the second host of the Liver Fluke is based on error. In addition to Lymnea, however, other freshwater genera, certainly Bulinus (Physa) are sometimes the second hosts of this Trematode.

p. 246. Fig. 192: n, nervous system; r, rostellum; r.b, sacs of rostellum; r.s, sheaths of rostellum. (From Leneckart and Nitsche's Diagrams, after Pintner.)

p. 247. Fig. 195: dy, vitelline duct; dst, vitelline glands; e, excretory pore; h, head end; od, ovicuccl; ov, ovary; p, penis; r.s, receptaculum seminis; t, testes; vd, vas deferens; vs, vesiculo seminalis; v.g.o, female genital opening.

p. 247. Fig. 196: co, excretory opening; mo, male reproductive opening; n, longitudinal nerve; n', junction of longitudinal nerves; u.r, nerve-ring; o (in front), ovaries; o (behind), tube leading from opening of vas deferens to male aperture; o', central cavity into which ova pass before being received into the uterus; p (in front), proboscis; p (behind), papilla on which vas deferens opens; r.s, receptaculum seminis; r.s.o, opening of duct leading to receptaculum seminis; s, sucker; t, lobes of testes; u', uterus; vs, vesiculo seminalis; y.h, vitelline glands.

p. 297. Fig. 213, for "Rhabdocoelida" read "Rhabdocoelida."

p. 337. Line 19 from top, for "is" read "in."

p. 356 et seq. Anthenea flavescans should be Anthenea acuta.

p. 367. Last line of page, after "anus" insert "and is."

p. 474. Line 10 from top, for "gonads" read "gonads."

p. 485. Fig. 356, line 4 under cut, for "Brom's" read "Brom's."

p. 520. Line 19 from top, for "podomere" read "podomere."

p. 533. Fig. 419, first line under cut, after "A, the entire animal" insert "s. carina; c. scutum; t. tergum."

p. 546. Fig. 434, at end of line under cut, for "3a, larva" read "4a, larva."

VOL. II

p. 118. Line 3 from bottom, for "(a. l. c.)" read "(a. lat. c.)"

p. 131. Fig. 762, in description under cut, for "st. c. read "st. p."

p. 423. Fig. 1019: The stroke from cor should run vertically downwards.

p. 429. Fig. 1023: The third stroke from cuu is an error; it points to the process of the second metatarsal.
ZOOLGY

INTRODUCTION

Zoology, the branch of Natural History which deals with animals, is one of the two subdivisions of the great science Biology, which takes cognisance of all organisms, or things having life, as distinguished from such lifeless natural objects as rocks and minerals. The second of the two subdivisions of Biology is Botany, which deals with plants.

The subject-matter of Zoology, then, is furnished by the animals which inhabit the land-surface, the air, and the salt and fresh waters of the globe: the aim of the science is to find out all that can be known of these animals, their structure, their habits, their mutual relationships, their origin.

The first step in the study of Zoology is the recognition of the obvious fact that the innumerable individual animals known to us may be grouped into what are called species, the members of which resemble one another so closely that to know one is to know all. The following example may serve to give the reader a fairly accurate notion of what Zoologists understand by species, and of the method of naming species which has been in use since the time of the great Swedish naturalist Linnaeus.

The Domestic Cat, the European Wild Cat, the Ocelot, the Leopard, the Tiger, and the Lion are animals which agree with one another in the general features of their organisation—in the number and form of their bones and teeth, in the possession of retractile claws, and in the position and characters of their internal organs. No one can fail to see that these animals, in spite of differences of size, colour, markings, &c., are all, in the broad sense of the word, "Cats." This is expressed in the language of systematic Zoology by saying that they are so many species of a single genus.

According to the system of binomial nomenclature introduced by Linnaeus, each kind of animal receives two names—one the generic...
name, common to all species of the genus: the other the specific name, peculiar to the species in question. Both generic and specific names are Latin in form, and are commonly Latin or Greek in origin, although frequently modern names of persons or places, with Latinised terminations, are employed. In giving the name of an animal, the generic name is always placed first, and is written with a capital letter, the specific name following it, and being written, as a rule, with a small letter. For instance, to take the examples already referred to, the Domestic Cat is called *Felis domestica*, the European Wild Cat *F. catus*, the Leopard *F. pardus*, the Tiger *F. tigris*, the Lion *F. leo*. Thus the systematic name of an animal is something more than a mere appellation, since it indicates the affinity of the species with other members of the same genus: to name an animal is, in fact, to classify it.

It is a matter of common observation that no two individuals of a species are ever exactly alike: two tabby Cats, for instance, however they may resemble one another in the general characters of their colour and markings, invariably present differences in detail by which they can be readily distinguished. Individual variations of this kind are of universal occurrence. Moreover, it often happens that the members of a species are divisible into groups distinguishable by fairly constant characters: among Domestic Cats, for instance, we find white, black, tabby, gray, and tortoiseshell Cats, besides the large long-haired Persian breed, and the tailless Manx Cat. All these are distinguished as varieties of the single species *Felis domestica*.

It is often difficult to decide whether two kinds of animals should be considered as distinct species or as varieties of a single species, and no universal rule can be given for determining this point. Among the higher animals mutual fertility is a fair practical test, the varieties of a species usually breeding freely with one another and producing fertile offspring, while distinct species either do not breed together or produce infertile hybrids or mules. Compare, for instance, the fertile mongrels produced by the union of the various breeds of Domestic Dog with the infertile mule produced by the union of the Horse and Ass. But this rule is not without exception, and in the case of wild animals is, more often than not, impossible of application: failing it, the only criterion of a "good species" is usually the presence of constant differences from allied species. Suppose, for instance, that a naturalist receives for description a number of skins of wild Cats, and finds, after an accurate examination, that in some specimens the tail is two-thirds the length of the body and the skin of a uniform reddish tint with a few markings on the head, while in the rest the tail is nearly half as long as the body, and the skin tawny with black stripes. If there are no intermediate gradations between these two sets of individuals, they will be placed without hesitation in distinct
species: if, on the other hand, there is a complete series of gradations between them, they will be considered to form a single variable species.

As, therefore, animals have to be distinguished from one another largely by structural characters, it is evident that the foundations of a scientific Zoology must be laid in Morphology, the branch of science which deals with form and structure. Morphology may be said to begin with an accurate examination of the external characters; the divisions of the body, the number and position of the limbs, the characters of the skin, the position and relations of the mouth, eyes, ears, and other important structures. Next the internal structure has to be studied, the precise form, position, &c., of the various organs, such as brain, heart, and stomach being made out: this branch of morphology is distinguished as Anatomy. And, lastly, the various parts must be examined by the aid of the microscope, and their minute structure, or Histology, accurately determined. It is only when we have a fairly comprehensive knowledge of these three aspects of a given animal—its external characters, its rough anatomy, and its histology—that we can with some degree of safety assign it to its proper position among its fellows.

An accurate knowledge of the structure of an animal in its adult condition is not, however, all-sufficient. Nothing has been made more abundantly clear by the researches of the last half-century than that the results of anatomy and histology must be checked, and if necessary corrected, by Embryology—i.e. by the study of the changes undergone by animals in their development from the egg to the adult condition. A striking instance is afforded by the common Barnacles which grow in great numbers on ships’ bottoms, piers, &c. The older zoologists, such as Linnaeus, grouped these creatures, along with Snails, Mussels, and the like, in the group Mollusca, and even the great anatomical skill of Cuvier failed to show their true position, which was made out only when Vaughan Thompson, about fifty years ago, proved, from a study of the newly hatched young, that their proper place is among the Crustacea, in company with Crabs, Shrimps, and Water-fleas.

Given a sound knowledge of the anatomy, histology, and embryology of animals, their Classification may be attempted—that is, we may proceed to arrange them in groups and sub-groups, each capable of accurate definition.

The general method of classification employed by zoologists is that introduced by Linnaeus, and may be illustrated by reference to the group of Cats which we have already used in the explanation of the terms genus, species, and variety.

We have seen that the various kinds of true Cat—Domestic Cat, Lion, Tiger, &c.—together constitute the genus Felis. Now there
is one member of the cat-tribe, the Cheetah, or Hunting Leopard, which differs from all its allies in having imperfectly retractile claws and certain peculiarities in its teeth. It is therefore placed in a distinct genus, *Cynacthurus*, to mark the fact that the differences separating it from any species of *Felis* are of a more fundamental character than those separating the species of *Felis* from one another.

The nearest allies of the Cats are the Hyænas, but the presence of additional teeth and of non-retractile claws—to mention only two points—makes the interval between Hyænas and the two genera of Cats far greater than that between *Felis* and *Cynacthurus*. The varying degree of difference is expressed in classification by placing the Hyænas in a separate family, the *Hyænidæ*, while *Felis* and *Cynacthurus* are placed together in the family *Felidæ*. Similarly, the Civets and Mongooses form the family *Viverridæ*; the Dogs, Wolves, Jackals, Foxes, &c., the family *Canidæ*; Bears, the family *Ursidæ*; and so on.

All the foregoing animals have sharp teeth adapted to a flesh diet, and their toes are armed with claws. They therefore differ fundamentally from such animals as Sheep, Deer, Pigs, and Horses, which have flat teeth adapted for grinding vegetable food, and hoofed feet. The differences here are obviously far greater than those between any two of the families mentioned above, and are emphasised by placing the flesh-eaters in the order *Carnivora*, the hoofed animals in the order *Ungulata*. In the same way gnawing animals, such as Rats, Mice, and Beavers, form the order *Rodentia*; pouched animals, such as Kangaroos and Opossums, the order *Marsupialia*; and so on.

Carnivora, *Ungulata*, *Rodentia*, *Marsupialia*, &c., although differing from one another in many important respects, agree in the possession of a hairy skin and in the fact that they all suckle their young. They thus differ from Birds, which have a covering of feathers and hatch their young from eggs. The differences here are considerably more important than those between the orders of quadrupeds referred to, and are expressed by placing the latter in the class *Mammalia*, while Birds constitute the class *Aves*. In the same way the scaly, cold-blooded Lizards, Snakes, Tortoises, &c., form the class *Reptilia*; the slimy-skinned, scaleless Frogs, Toads, and Salamanders the class *Amphibia*; and the finned, water-breathing Fishes the class *Pisces*.

Mammals, Birds, Reptiles, Amphibians, and Fishes all agree with one another in the possession of red blood and an internal skeleton—an important part of which is the backbone or vertebral column—and in never having more than two pairs of limbs. They thus differ in some of the most fundamental features of their organisation from such animals as Crabs, Insects, Scorpions, and Centipede, which have colourless blood, a jointed external skeleton, and
INTRODUCTION

numerous limbs. These differences—far greater than those between classes—are expressed by placing the backboned animals in the phylum or sub-kingdom Chordata, the many-legged armoured forms in the phylum Arthropoda. Similarly, soft-bodied animals with shells, such as Oysters and Snails, form the phylum Mollusca. Polypes and Jelly-fishes form the phylum Coelenterata. And finally the various phyla recognised by zoologists together constitute the kingdom Animalia.

Thus the animal kingdom is divided into phyla, the phyla into classes, the classes into orders, the orders into families, the families into genera, and the genera into species, while the species themselves are assemblages of individual animals agreeing with one another in certain constant characters. It will be seen that the individual is the only term in the series which has a real existence: all the others are mere groups formed, more or less arbitrarily, by man.

To return to the animal originally selected as an example, it will be seen that the zoological position of the Domestic Cat is expressed as follows:

Kingdom—Animalia.

Phylum—Chordata.

Class—Mammalia.

Order—Carnivora.

Family—Felidae.

Genus—Felis.

Species—F. domestica.

The object of systematic zoologists has always been to find a natural as opposed to an artificial classification of animals. Good instances of artificial classification are the grouping of Bats with Birds on the ground that they both possess wings, and of Whales with Fishes on the ground that they both possess fins and live in the water. An equally good example of a natural classification is the grouping of both Bats and Whales under the head of Mammalia because of their agreement, in all essential points of anatomy, histology, and embryology, with the hairy quadrupeds which form the bulk of that class.

With the older zoologists the difficulty was to find some general principle to guide them in their arrangement of animals—some true criterion of classification. It was believed by all but a few advanced thinkers that the individuals of each species of animal were descended from a common ancestor, but that the original progenitor of each species was totally unconnected with that of every other, having, as Buffon puts it, “participated in the grace of a distinct act of creation.” To take an instance—all Wolves were allowed to be descended from a pair of ancestral Wolves, and all Jackals from a pair of ancestral Jackals, but the original pair in each case was supposed to have come into being by a supernatural
process of which no explanation could or ought to be offered. Nevertheless it was obvious that a Jackal was far more like a Wolf than either of them was like a Tiger, and that in a natural system of classification this fact should be expressed by placing the Wolf and Jackal in one family, the Tiger in another.

All through the animal kingdom the same thing occurs: no matter what group we take, we find the species composing it resemble one another in varying degrees, or, as it is sometimes expressed, have varying degrees of relationship to one another. On the view that each species was separately created the word relationship was used in a purely metaphorical sense, as there could of course be no real relationship between two groups of animals having a totally independent origin. But it was assumed that creation had taken place according to a certain scheme in the Divine Mind, and that the various species had their places in this scheme like the bits of glass in a mosaic. The problem of classification was thus to discover the place of each species in the pattern of the unknown design.

The point of view underwent a complete change when, after the publication of Darwin’s Origin of Species in 1859, the Doctrine of Descent or of Organic Evolution came to be generally accepted by biologists. A species is now looked upon, not as an independent creation, but as having been derived by a natural process of descent from some pre-existing species, just as the various breeds of Domestic Fowl are descended from the little Jungle-fowl of India. On this view the resemblances between species referred to above are actually matters of relationship, and species are truly allied to one another in varying degrees since they are descended from a common ancestor. Thus a natural classification becomes a genealogical tree, and the problem of classification is the tracing of its branches.

This, however, is a matter of extreme difficulty. Representing by a tree the whole of the animals which have ever lived on the earth, those existing at the present day would be figured by the topmost twigs, the trunk and main branches representing extinct forms. Thus the task of arranging animals according to their relationships would be an almost hopeless one but from two circumstances: one, that remains of many extinct forms have been preserved; the other, that the series of changes undergone by an animal in its development from the egg often forms an epitome of the changes by which, in the course of ages, it has been evolved from an ancestral type. Evidence furnished by the last-named circumstance is, of course, furnished by embryology: the study of extinct animals constitutes a special branch of morphology to which the name Paleontology is applied.

The solid crust of the earth is composed of various kinds of rocks divisible into two groups: (1) Igneous rocks, such as granite
and basalt, the structure of which is due to the action of the internal heat of the globe, and which originate below the surface and are not arranged in layers or strata. (2) Aqueous or sedimentary rocks, which arise by the disintegration, at the surface of the earth, of pre-existing rocks, the fragments or debris being carried off by streams and rivers and deposited at the bottom of lakes or seas. Being formed in this way by the deposition of successive layers or strata, the sedimentary rocks have a stratified structure, the lowest being in every case older than the more superficial layers. The researches of geologists have shown that there is a general order of succession of stratified rocks: that they may be divided into three great groups, each representing an era of time of immense but unknown duration, and that each group may be subdivided into more or fewer systems of rocks, each representing a lesser period of time. The following table shows the thirteen rock-systems usually recognised, arranged under the three great groups in chronological order, the oldest being at the bottom of the list.

I. Palaeozoic or Primary
 1. Laurentian.
 2. Cambrian.
 4. Devonian.
 5. Carboniferous.
 6. Permian.
 7. Triassic.
 8. Jurassic.

II. Mesozoic or Secondary
 10. Eocene.
 11. Miocene.
 13. Quaternary and Recent.

III. Cainozoic or Tertiary

Imbedded in these rocks are found the remains of various extinct animals in the form of what are called fossils. In the more recent rocks the resemblance of these to the hard parts of existing animals is perfectly clear: we find shells hardly differing from those we pick up on the beach, bones easily recognisable as those of Mammals, Birds, or Fishes, and so on. But in the older rocks the fossils are in many cases so different in character from the animals existing at the present day as to be referable to no existing order. We find Birds with teeth, great aquatic Reptiles as large as Whales, Fishes, Molluscs, Crustacea, &c., all of an entirely different type from any now existing. We thus find that the former were in many cases utterly unlike the present animal inhabitants of the globe, and we arrive at the notion of a succession of life in time, and are even able, in exceptionally favourable circumstances, to trace back existing forms to their extinct ancestors.

By combining the results of comparative morphology, embryology,
and palæontology we get a department of Zoology called Phylogeny, the object of which is to trace the pedigrees of the various groups. There are, however, very few cases in which this can be done with any approach to exactness: most "phylogenies" are purely hypothetical, and merely represent the views at which a particular zoologist has arrived after a more or less exhaustive study of the group under discussion.

Animals may also be studied from the point of view of Distribution. One aspect of this study is inseparable from Palæontology, since it is obviously necessary to mention in connection with a fossil the particular system or systems of rocks in which it occurs: thus we distinguish geological distribution or distribution in time.

The distribution of recent forms may be studied under two aspects, their horizontal or geographical distribution, and their vertical or bathymetrical distribution. To mention the latter first, we find that some species exist only on plains, others—hence called alpine forms—on the higher mountains; that some marine shells, fishes, &c., always keep near the shore (littoral species), others live at great depths (abyssal species), while others (pelagic species) swim on the surface of the ocean. Among aquatic animals, moreover, whether marine or fresh-water, three principal modes of life are to be distinguished. These are animals, such as Jelly-fishes, which float on or near in the water, and are carried about passively by currents; such forms are included under the term Plankton. Most Fishes, Whales, and Cuttle-fishes, on the other hand, are strong swimmers, and are able to traverse the water at will in any direction; they together constitute the Nekton. Finally, such animals as Crabs, Oysters, Sponges, Zoophytes, &c., remain permanently fixed to or creep over the surface of the bottom, and are grouped together, as the Benthos.

Under the head of geographical distribution we have such facts as the absence of all Land-mammals, except Bats, in New Zealand and the Polynesian Islands, the presence of pouched Mammals, such as Kangaroos and Opossums, only in some parts of America and in Australia and the adjacent islands, the entire absence of Finches in Australasia, and so on. We find, in fact, that the fauna—i.e. the total animal inhabitants—of a country is to a large extent independent of climate, and that the fauna of adjacent countries often differ widely. In fact, it is convenient in studying the geographical distribution of animals largely to ignore the ordinary division into continents, and to divide the land-surface of the globe into what are called zoo-geographical regions. The characteristics of these regions will be discussed in a future section; at present it is only necessary, for convenience of reference, to give their names and boundaries.
INTRODUCTION

1. The Holartic Region includes the whole of Europe, Asia as far south as the Himalayas, Africa north of the Sahara, together with the corresponding portion of Arabia, and North America as far south as Mexico. For convenience of reference it is often customary to divide this region into two: its Eurasian portion is then called the Paleartic, its American portion the Neartic region.

2. The Ethiopian Region includes Africa south of the Sahara, Southern Arabia, and Madagascar with the adjacent islands.

3. The Oriental Region includes India, Ceylon, South China, the Malayan Peninsula, and what are known as the Indo-Malayan islands, i.e. those islands of the Malayan Archipelago which lie to the west of a line—called Wallace’s line—passing to the east of the Philippines, between Borneo and Celebes and between Bali and Lombok.

4. The Australian Region includes Australia, Tasmania, and the Austro-Malayan islands, i.e. the islands of the Malayan Archipelago lying to the east of Wallace’s line.

5. The New Zealand Region includes New Zealand and the adjacent islands, such as the Chatham, Auckland, and Campbell groups.

6. The numerous groups of islands lying between Australia and Southern Asia to the west, and America to the east, are conveniently grouped together as the Polynesian Region.

7. The Neotropical Region includes the whole of South and Central America and part of Mexico.

There are still two departments of zoological science to be mentioned. As it is impossible to have a right understanding of a machine without knowing something of the purpose it is intended to serve, so the morphological study of an animal is imperfect without some knowledge of its Physiology, i.e. of the functions performed by its various parts, and the way in which they work together for the welfare of the whole. It is hardly possible to give more than occasional references to physiological matters in a text-book of Zoology, but in order to pave the way for such references a brief account of the general principles of Physiology will be given in the next section.

Not only may we study the action of a given animal’s organs, but also the actions of the animal as a whole, its habits, its relations to other animals, whether as friends, as enemies, or as prey, to the vegetable kingdom, and to its physical surroundings, such as temperature, humidity, &c. In a word, the whole question of the relation of the organism to its environment gives us a final and most important branch of Natural History which has been called Ethology or Bionomics.
SECTION I.

THE GENERAL STRUCTURE AND PHYSIOLOGY OF ANIMALS

1. Amœba.

If we examine under the microscope a drop of water containing some of the slimy deposit which collects at the bottom of pools of rain-water and in similar situations, we occasionally find it to abound in microscopic life; and among the minute moving creatures in such a drop we frequently find examples of a remarkable organism—the Amœba or Proteus Animalcule (Fig. 1). This is a little particle of irregular shape, which we should be likely, on a cursory examination, to put down as motionless; it appears somewhat like an irregular particle of some colourless glass-like substance with a more granular central portion. If, however, we make an exact drawing of the outline of the Amœba, and, after an interval, compare the drawing with the original, we find that the drawing appears no longer to represent what we see; a change has taken place in the shape of the Amœba; and careful observation shows that this change is constantly going on: the Amœba is constantly varying in shape. This change is effected by the pushing out of projections or processes, called pseudopods \((psd.)\), which undergo various alterations of size and shape, and may become withdrawn, other similar processes being developed in their place. At the same time careful
watching shows that the Amœba is also, with extreme slowness, changing its position. This it effects by a kind of streaming motion. A projection forms itself on one side, and the entire substance of the Amœba gradually streams into it; a fresh projection appears towards the same side, the streaming movement is repeated, and, by a constant succession of such movements, an extremely gradual locomotion, which it often takes very close watching to detect, is brought about. In these movements, it is to be noticed, the Amœba is influenced to some extent by contact with other minute objects; when the processes come in contact with small grains of sand or other similar particles their movements are modified in such a way that the Amœba, in its slow progress onwards, passes on one side of them, so that it might be said to feel its way among the solid particles in the drop of sediment.

Judging from the nature of these movements, we are obliged to infer that the substance of which this remarkable object is composed must be soft and semi-fluid, yet not miscible with the water, and, therefore, preserving a sharp contour. These and other characteristics to be mentioned subsequently enable us to conclude that we have to do with the substance of complex chemical composition termed protoplasm, which constitutes the vital material of all living organisms whether animals or plants. In Amœba the protoplasm is clearly distinguishable into two parts, an outer homogeneous, glassy-looking layer completely enclosing a more granular internal mass.

Examination of the Amœba with a fairly high power of the microscope reveals the presence in its interior of two objects which with a low power we should be likely to overlook. One of these is a small rounded body of a homogeneous appearance, which preserves its form during all the changes which the Amœba as a whole undergoes. This is termed the nucleus (Fig. 1, nu.): it is enclosed in an extremely delicate membrane, and consists of a protoplasmic material differing from that which forms the main bulk of the Amœba in containing a substance which refracts the light more strongly and which has a stronger affinity for certain colouring matters. The other minute object to be distinguished in the interior appears as a clear rounded space (c. vac.) in the protoplasm. When this is watched it will be observed to increase gradually in size till it reaches a maximum of, let us say, a fifth of the total diameter of the Amœba, when, by a contraction of its walls, it suddenly disappears, to reappear presently and gradually grow again to its maximum size. This pulsating clear space is the contractile vacuole.

By watching the Amœba carefully for some time we may be enabled to observe that the movements of the protoplasm of the body not only effect locomotion, but are connected also with the
reception of certain foreign particles of organic nature—\textit{i.e.} either entire minute animals or plants, or minute fragments of larger forms—into the interior of the protoplasm. A process of the protoplasm is pressed against such a particle, which becomes sunk in the soft substance, and passes gradually into the interior. Here it becomes surrounded by a little globule of watery fluid, and by degrees partially or wholly disappears; the part, if any, which remains subsequently passes outwards from the protoplasm into the surrounding water. The matter which disappears evidently mixes with the protoplasm and adds to its bulk. All, in fact, of the matter of the foreign body that is capable of it becomes digested and assimilated by the protoplasm. The globule of watery fluid enclosing the food-particle (for such is the true nature of the foreign body) probably contains some ingredient of the nature of a \textit{ferment}, capable of acting on certain substances and rendering them more soluble or capable of being more readily taken up by the protoplasm. This we infer mainly from what we know of the digestion and absorption of food in the higher animals; but the fact, which has been established by experiment, that the Amöeba is able readily to digest certain classes of organic substances, while others, when taken into the interior of the protoplasm, remain unaltered, seems to indicate that some special property, similar to those possessed by the digestive ferment of the higher animals, is present in the watery fluid surrounding the food-particle.

The movements of the Amöeba, slow and gradual though they are, must involve a certain expenditure of energy or working power: this can only be derived from the energy of \textit{chemical affinity} which the protoplasm possesses in virtue of its complex chemical composition. The protoplasm loses some of this energy by its conversion into energy of movement. This loss implies the breaking up of the complex chemical ingredients of which protoplasm is made up into simpler ones; the protoplasm falls a grade in the scale of chemical compounds, and by its fall generates the force by means of which the Amöeba moves. The energy of chemical affinity which the protoplasm possesses is thus analogous to the potential energy which the weight of a clock has when it is wound up. As the weight, by virtue of its position, is able as it falls to deal out working power so as to cause the movement of the machinery of the clock, so the protoplasm is able, by the degradation or decomposition of its complex compounds, to deal out working power enabling the Amöeba to move. In the case of the clock-weight there comes a time when all the potential energy is expended: the weight reaches its lowest limit, and unless it is wound up again the clock stops. The like holds good of the Amöeba: the protoplasm is continually being used up—broken up into compounds of a lower order—and, in course of time, the whole potential energy would become exhausted, were it not that a new
supply is being constantly received. This new supply of energy is derived from the substance of the food-particles; and this at the same time maintains the bulk of the Amoeba, which, if food particles are absent from the water, gradually diminishes.

Accompanying the degradation, or destructive metabolism as it is termed, of the protoplasm, and intimately connected with it, is the passage inwards of oxygen from the air dissolved in the water, and the passage outwards of carbonic acid gas. Oxygen is a necessary agent in the process of destructive metabolism, and

carbonic acid is a constant waste-product of such action. This interchange of oxygen and carbonic acid is the essence of the process of respiration observable in all living things. In addition to the carbonic acid given off in this process other waste-products are formed and have to be got rid of. In all probability the contractile vacuole already referred to has to do with this process—the process of excretion—since uric acid, which in higher animals is the typical form assumed by such waste-products, is said to have been detected in the interior of the contractile vacuole in the case of certain near relatives of Amoeba.

When food is abundant the Amoeba increases in bulk—more
food being ingested than is required for simply maintaining the size unaltered—and soon a remarkable change takes place. The processes become withdrawn, and a fissure appears dividing the Amoeba into two parts (Fig. 2). This fissure grows inwards, and the two parts become more and more completely separated from one another till eventually the separation becomes complete, and we have two distinct Amoebæ resulting from the division of the one. While the protoplasm has been undergoing this division into two halves the nucleus also divides, and each of the two new Amoebæ possesses a nucleus similar to the original one, and developed from it by division. It is mainly by this simple process of division into two, or binary fission as it is called, that reproduction or multiplication takes place in the Amoeba.

In spite of the great simplicity of its structure, the Amoeba thus carries on a number of different functions. The practically structureless particle of protoplasm is able to act on matter absorbed as food in such a way as to alter the chemical composition of the latter and to assimilate it; it is able to carry on movements of locomotion as well as movements—those involved in the taking in of food particles—which may be looked upon as movements ofprehension; it exhibits a certain degree of sensitiveness or irritability, as shown by the modifications of its movements which result from contact with foreign bodies; it is able to respire: it carries on processes of excretion; and, finally, it is capable of reproducing its kind. It is these functions that characterise living beings as distinguished from non-living matter. The power of locomotion, the capacity for assimilating organic substances, and the absence of two special compounds—chlorophyll and cellulose—are specially characteristic of the animal as distinguished from the plant.

2. The Animal Cell.

In all but the lowest animals the various functions just enumerated are carried on by means of a more or less complex machinery of organs—muscles, alimentary or enteric canal, glands, heart and blood-vessels, gills or lungs, nervous system, organs of excretion, and organs of reproduction. But in all animals, however complex, the same substance, protoplasm, which in Amoeba constitutes the bulk of the body, is the essential and active part. Wherever in the body active functions are being discharged and active changes are going on, there we find protoplasm present; where there is no protoplasm there is no vital activity. In the earliest stages of their existence all animals are formed entirely of protoplasm. Every animal consists at first of a single minute particle of protoplasm, not widely different from an Amoeba. Soon this particle divides into a number of parts which, instead of
STRUCTURE AND PHYSIOLOGY OF ANIMALS

separating completely from one another, like the parts of a divided Amoebâ, remain associated together, forming a clump of minute particles of protoplasm. Such minute protoplasmic particles are termed cells; every animal consists, at first, of a single cell, and afterwards, in all higher animals, this single cell becomes converted by division and subdivision into a little cluster or clump of cells.

It is time that we should inquire more particularly as to the meaning of these two terms—cell and protoplasm—evidently so important in the study of both plants and animals. Protoplas, we have already seen, is a semi-fluid, gelatinous, clear or finely granular substance of complex chemical composition. It is known not to be a definite compound, but to be a somewhat varying mixture of chemical compounds, the most essential of which are bodies of the class of proteins—highly complex substances, into the composition of which the elements carbon, hydrogen, oxygen, nitrogen, and sulphur all enter. Living protoplasm always contains a large amount of water. It is soluble in weak acids or weak alkalies; and is capable of being coagulated—rendered firmer and more opaque—by the action of heat and of strong alcohol. Its reaction is slightly alkaline. As regards its minute structure, it is generally acknowledged that there are two kinds of substance in the protoplasm, in some cases more, in others less, distinctly marked off from one another. One of these substances (mitome) is less fluid than the other, and appears to be arranged in the form of a network of threads, composed of numerous minute rounded granules, enclosing the second, more fluid substance (paramitome) in its meshes.

To a particle of protoplasm, usually containing a nucleus in its interior, constituting the entire body of such a simple organism as Amoebâ, and forming one of the constituent elements of which a higher plant or animal is made up, the term cell is applied. The word was first employed in reference to the microscopic structure of plants, in connection with which it is much more appropriate than in connection with the microscopic structure of animals: for a plant-cell has, nearly always, a definite, firm, enclosing envelope or cell-wall (Fig. 3, I, e.w)—a structure which is only exceptionally present in the case of animals. In the interior of the cell-protoplas, or cytoplasm, is a body termed the nucleus similar to the nucleus of Amoebâ: usually of rounded shape, with a thin enclosing nuclear membrane (A. n.m), which is perforated by numerous minute apertures. In the nucleus is a single coiled thread, or a network of threads, or one or more rounded clumps, of a substance—chromatin (chr.)—which differs from ordinary protoplasm in having a stronger affinity for most staining agents. A rounded body termed the nucleolus (nu'), which usually occurs in the interior of the nucleus, is formed either of a
solid mass of chromatin, or of a substance—achromatin—differing somewhat from chromatin in its properties and less strongly affected by staining agents. Allied to the achromatin of which such nucleolar clumps may be composed is a constituent of the nucleus to which the name of limin is applied. This assumes the form of a network of delicate threads—limin filaments—which usually have associated with them, embedded in their substance or adhering to their surfaces, rows of chromatin granules, the interstices being filled with a granular material—the nuclear sap. When the nucleus divides during the process of division of the cell, its contents, more particularly the chromatin, in many cases go through a remarkable series of changes, to which the term karyokinesis or mitosis is applied.

At the time when this mitotic division is about to be initiated either one or two minute bodies (Fig. 3, A, c) are to be distinguished situated close together in the cytoplasm in the immediate neighbourhood of the nucleus. These are the centrosomes—minute masses of a protoplasmic substance which seems to resemble the matter of the nucleolus. The centrosomes, at first close together, gradually separate from one another, a spindle-shaped bundle of very fine fibres of achromatic 1 material—the nuclear spindle—extending between them (Fig. 3, C). At the same time each centrosome becomes the centre of a system of fine achromatin fibres (apparently made up, like the fibres of the spindle, of rows of granules) which are arranged round it in a radiating manner forming a structure termed the attraction-sphere or astrosphere (Fig. 3, A, s). Meantime important changes have been in progress in the nucleus. The chromatin first becomes arranged in a close tangle, and then becomes divided up into a number of parts—the chromatin segments or chromosomes—which frequently have the form of loop-like threads (Fig. 3, C, chv), but often assume other forms. The nuclear membrane disappears. Each of the chromatin segments splits lengthwise into two parts—the daughter-segments of the chromatin or daughter-chromosomes (Fig. 3, D, E), and with these the filaments of the spindle become connected.

At this point the segments of the chromatin form a single group—the equatorial plate—extending across the axis of the spindle. The latter has shifted its position, so that its fibres now run across the original site of the nucleus, each of them having become interrupted and divided into two halves, each of which extends inwards from the corresponding centrosome, and has become connected with one of the daughter-chromosomes. The spindle-fibres now contract, and, apparently as a result of this contraction, half the daughter-chromosomes become drawn towards

1 The term achromatin is usually applied to all the matter of the nucleus that has not the special characteristics of chromatin; but it applies to cytoplasmic structures—i.e. structures belonging to the body of the cell—as well.
one of the centrosomes and half towards the other (Fig. 3, F, G, H), so that they are now separated into two distinct groups. When the groups have approached the extremity of the spindle, the segments of each unite, and eventually the entire chromatin of each of the two groups assumes the arrangement which the chromatin of the original nucleus exhibited before division began.

![Diagrams illustrating karyokinesis](From Parker's Biology, after Flemming, Ruh, &c.)

A new nuclear membrane becomes formed around each chromatin group, and the whole assumes the character of a complete nucleus—the daughter-nucleus. A furrow which appears on the surface of the cell-protoplasm (Fig. 3, H, I), surrounding it in the form of a ring in a plane at right angles to the long axis of the spindle, deepens gradually so as to give rise to a cleft, eventually completely separating the substance of the cell into two halves. Each
of these halves encloses one of the daughter-nuclei and has assumed the character of a complete daughter-cell. In some instances the division of the nucleus is direct or amitotic, the nucleus simply becoming separated into two equal parts, without disappearance of the nuclear membrane, and without any complicated re-arrangement of the chromatin.

Amoeba is simply an independent animal cell; or, to express the same meaning in another way, is a unicellular animal, and as such it is a member of the phylum of the Protozoa or unicellular animals. All the rest of the animal kingdom, forming the division Metazoa, are multicellular in the fully developed condition; but each of these multicellular animals or Metazoa originates from a single cell—the ovum. The ovum is a typical cell (Fig. 4), usually spherical in shape, with one or more enclosing membranes, with cell protoplasm enclosing a nucleus (germinal vesicle) in which are contained one or more rounded masses of chromatin (germinal spot or spots). The ovum may contain in addition to the protoplasm a quantity of non-protoplasmic nutrient material or yolk.

Before the process of impregnation or fertilisation which gives the impulse to development, the ovum undergoes a change which is termed maturation (Fig. 5, A). This consists, in essence, of the throwing out of portions of the nucleus. The latter approaches the surface and divides, mitotically, into two parts—one coming to project on the surface and finally becoming completely separated off from the ovum as a rounded particle—the first polar body (pol.). A second division of the nucleus results in the throwing off of a second polar body; and, after this has been formed, the portion which remains in the ovum resumes its central position and forms what is termed the female pro-nucleus (♀ pron.).

In the process of impregnation a very minute body, the male cell, sperm-cell, or sperm, penetrates into the interior of the female cell or ovum, and the nucleus which it contains—the male pro-
nucleus (♂ pron.) coalesces with the female pro-nucleus to form a single nucleus called the segmentation nucleus (seg. nucl.). The principal part in the process of fertilisation is thus played by the two nuclei; but the centrosomes, one (♂ cent.) derived from the sperm, and the other (♀ cent.) from the ovum, also seem to take a share. Sometimes each of these divides into two, and the two centrosomes resulting from the division of that derived from the...
sperm coalesce with the two formed by division of that belonging to the ovum: but, more commonly, the centrosome of the ovum disappears before the two nuclei come into contact. The result of these changes is the formation of the impregnated ovum, or oosperm as it is called. The oosperm, it is to be noted, before development begins, consists of the primary ovum minus the portions of the substance of its nucleus removed in the polar bodies, and also, usually, minus its centrosome, and plus the sperm with its nucleus and centrosome.

On impregnation follows shortly the process of division already briefly referred to, which is known as segmentation (Fig. 6). This either affects the entire substance (holoblastic or complete segmentation) or only a part (microblastic or incomplete segmentation) of the oosperm. In the former case the ovum usually contains little or no food-yolk, consisting exclusively, or nearly so, of protoplasmic matter. The first stage in the process of segmentation is the mitotic division of the segmentation-nucleus, accompanied by the division into two parts of the substance of the protoplasm—the result being the formation of two cells, each with its nucleus (Fig. 6). Each of these two cells then divides—four cells being thus formed; the four divide to form eight: the eight divide to form sixteen, and so on, until, by the process of division and subdivision, the oosperm becomes segmented into a large number of comparatively small cells which are termed the blastomeres. This mass of cells is spherical in shape, and the rounded blastomeres of which it is composed, project on its surface so as to give it somewhat the appearance of the fruit of the mulberry, whence it is termed the mulberry body or morula stage. The blastomeres next become arranged regularly in a single layer—the embryo assuming the form of a hollow sphere, the blastosphere or blastula, with a wall composed of a single layer of cells enclosing a cavity—the segmentation cavity or blastocoel.

One side of the hollow blastula next becomes pushed inwards or invaginated, as one might push in one side of a hollow india-rubber ball—the result of this process of invagination, or gastrulation as...
it is termed, being the formation of a cup—the gastrula (Fig. 7)—with a double wall. The cavity of the cup-shaped gastrula is the archenteron or primitive digestive cavity; the opening is termed the blastopore, the outer layer of the wall of the cup is the ectoderm (or epiblast), the inner the endoderm (or hypoblast). The ectoderm and endoderm are the primary germinal layers of the embryo; from one or both of them are developed the cells of a third layer—the mesoderm (mesoblast)—which is subsequently formed between them.

This mode of formation of the primary germinal layers in holoblastic oosperms by a process of gastrulation prevails in a number of different sections of the animal kingdom. In many animals, however, it becomes modified or disguised in various ways; and in many meroblastic oosperms it is doubtful if there occurs anything of the nature of true gastrulation.

The cells of the three germinal layers give rise to the various organs of the body of the fully-formed animal—each layer having a special part to play in the history of the development. As the various parts of the embryo become gradually moulded from the cells of the germinal layers, it becomes evident on comparison that their internal structure—the form and arrangement of their constituent cells—is undergoing gradual modifications, the nature of which is different in the case of different parts. A differentiation of the cells is going on in the developing organs, resulting in the formation of a variety of different kinds of tissues.

4. Tissues.

The cells of the tissues of the animal body differ greatly in form in different cases. Some are rounded, others cubical, others polygonal; some are shaped like a pyramid, others like a cone, others like a column or cylinder; others are flattened and tabular or scale-like. Cells situated on free surfaces are in many cases beset at their free ends with delicate, hair-like structures or cilia which vibrate to and fro incessantly during the life of the cell (Fig. 8, a); sometimes there is in each cell a single, relatively long, whip-like cillum, which is then termed a flagellum (g, h). Cells provided with cilia are termed ciliated, such as bear flagellate cillum.

Some tissues are composed entirely of cells. Others, though originating from cells or by the agency of cells, consist in greater
or less measure of non-protoplasmic matter formed between the cells. Tissues composed entirely of cells take the form, for the most part, of membranes covering various surfaces—external and internal. Such membranes are known under the general name of epithelia (Fig. 8); they may consist of a single layer of cells (a–h) or may be many-layered (i); the former are termed non-stratified, the latter stratified, epithelia. The cells of an epithelium may be flattened (c, d), their edges being cemented together, so as to form a continuous membrane; or they may be cubical or cylindrical or prismatic (a, b); in the case of a stratified epithelium the cells may be of different forms in different strata (i). The epidermis, which covers the outer surface of the body of an animal, is an example of an epithelium: sometimes it is stratified, sometimes unstratified; its cells sometimes possess cilia, sometimes are devoid of them. Lining the internal cavities of the body are layers of cells, or epithelia, sometimes in a single layer, sometimes in several layers, sometimes ciliated, sometimes non-ciliated.

Glands (Fig. 9) are formed for the most part by the modification of certain cells of epithelia. In many cases a single cell of the epithelium forms a gland, which is then termed a unicellular gland (Fig. 9, A). The secretion (or substance which it is the function of

![Fig. 8.—Various forms of epithelium. a, ciliated epithelium; b, columnar; c, surface view of the same; c, tessellated; d, the same from the surface; f, flagellate epithelium with collars; g, flagellate epithelium without collars; h, epithelium of intestine with pseudopodia; i, stratified epithelium; k, deric epithelium of a marine planarian with pigment cells, rod-cells, and sub-epithelial glands. (From Lang's Comparative Anatomy.)](image)
the gland to form or collect) gathers in such a case in the interior of the cell, and reaches the surface of the epithelium through a narrow prolongation of the cell which serves as the duct of the gland (B). In other cases the gland is multicellular—formed of a number of cells of the epithelium lining a depression or infolding, simple or complex in form, of the latter (D-G). In the central cavity of such a gland the secretion collects to reach the general surface or cavity lined by the epithelium through the passage or duct.

A series of tissues in which the cells are, in most instances, subordinate, as regards bulk, to substances formed between them, is the group known as the connective tissues, including gelatinous connective tissue, retiform connective tissue, fibrous connective tissue, cartilage, and bone. In the majority of forms of connective tissue the cells lie embedded in an intermediate substance called the matrix or ground-substance of the connective tissue.

In the case of gelatinous connective tissue (Fig. 10) the ground substance (g) is of a gelatinous character, sometimes supported by systems of fibres (u), and the cells are usually stellate or star-shaped with radiating processes.

Retiform or reticulate connective tissue (Fig. 11) consists of stellate or branching cells with processes which are prolonged into fibres—the fibres from neighbouring cells joining so as to form a network. In this form of connective tissue there is no true ground-substance—the interspaces between the cells being filled with other tissue elements.

Fibrous connective tissue, which is a very common form, has a ground-substance containing gelatin, and consisting of numerous fibres, usually arranged in bundles. Thicker yellow elastic fibres may be present among the others, and may be so numerous as to give the entire tissue an elastic character. Associated with fibrous tissue, and produced by modification of its cells is adipose tissue or fat (Fig. 12). Fat consists of masses of large cells in which the protoplasm has more or less completely become replaced by fat,
the cells being bound together into groups and masses or lobules by means of fibrous connective tissue.

In the case of cartilage the matrix is of a firm but elastic character, sometimes quite homogeneous in appearance (hyaline cartilage, Fig. 13), sometimes permeated by systems of fibres (fibrocartilage, Fig. 14), which may be of an elastic nature (yellow elastic cartilage). The cells are usually rounded, and as a rule several

Fig. 10.—Gelatinous connective tissue of a Jelly-fish; c, epithelium; g, gelatinous matrix; \(b_2 \) branching cells; \(ef \) elastic fibres. (From Lang's Comparative Anatomy.)

Fig. 11.—Reticular connective tissue. (From Lang.)
occur together in spaces scattered through the matrix: sometimes condensation of the matrix round each of the spaces in which the cells are contained forms a cell-capsule. The outer surface is covered over by a fibrous membrane—the *perichondrium*. Cartilage is frequently hardened by the deposition in the matrix of salts of lime—and is then known as *calcified cartilage*.

In *bone* or *osseous connective tissue* (Fig. 15) the matrix is exceedingly dense and hard owing to its being strongly impregnated with carbonate and phosphate of lime. It consists of numerous thin plates or lamellae, which are arranged partly parallel with the surface, partly concentrically around certain canals (c)—the *Haversian canals*—in which blood vessels lie. The cells, or *bone-corpuscles*, lie in minute spaces—the *lacuna*—between the lamellae, and a system of exceedingly fine channels—the *canaliculi*—extend from lacuna to lacuna, containing fine protoplasmic processes by means of which neighbouring cells are placed in communication with one another. The outer surface of the bone is covered by a vascular fibrous
membrane—the *periosteum*—which takes an active part in its growth and nutrition.

The connective tissues are all more or less passive in the functions which they perform, serving mainly for support and for binding together the various organs. **Muscular tissue**, on the other hand, has an active part to play—this being the tissue by means of which, in general, all the *movements* of the body of an animal are brought about. Muscular tissue varies greatly in minute structure in different groups of animals, and even in different parts of the same animal. It consists of microscopic fibres aggregated together into large bundles or layers. These fibres are composed of a substance—the *muscle substance*—which when living has the special property of *contractility*, contracting or becoming shorter and thicker on the application of a *stimulus*. There are two principal varieties of muscular tissue to be distinguished, termed respectively *non-striated* and *striated* muscle. Each fibre of non-striated muscle (Fig. 16) is usually a single, greatly elongated cell, sometimes branched, with a single nucleus; it may contain a core of unaltered protoplasm, or all except the nucleus may be altered into muscle substance; cross-striation is absent. A fibre of striated muscular tissue (Fig. 17) is formed by the union together of several cells which are represented by their nuclei (*n*). Sometimes there is a core of protoplasm; but more usually the entire fibre is composed of muscle substance, with perhaps a remnant of protoplasm in the neighbourhood of each nucleus. The substance of the fibre is crossed by numerous transverse bands and striae, the precise significance of which is a matter of controversy. The fibre is usually enclosed in a delicate sheath—the *sarcolemma*. Striated muscular

![Image](image-url)
tissue is specially characteristic of parts in which rapid movement is necessary.

The principal elements of **nervous tissue** are **nerve cells** and **nerve fibres**.

Nerve cells (Fig. 18) vary greatly in form: they are relatively large cells with large nuclei, and one or several processes produced into nerve fibres.

The **nerve fibres** (Fig. 19), which are to be looked upon as greatly produced processes of nerve cells, are arranged for the most part in strands which are termed **nerves**. The fibres themselves vary greatly in structure in different classes of animals. In the higher animals the most characteristic form of nerve fibre is that which is termed the **medullated nerve-fibre**. In this there is a central cylinder—the **axis-cylinder** or **neuraxis** (\(A, \text{ax} \))—which is the essential part of the fibre, and is made up of numerous extremely fine **primitive fibrillae**; this is surrounded by a layer of a white glistening material—the **white substance of Schwann** or **medullary sheath** (med), enclosed in turn in a very delicate membrane—the **neurilemma** (neur).

The blood, the lymph, and other similar fluids in the body of an animal may be looked upon as **liquid tissues**, having certain cells
—the corpuscles—disseminated through a liquid plasma, which takes the place of the ground substance of the connective tissues.

In a large proportion of cases such corpuscles are similar to Amoebae in their form and movements (amöboïd corpuscles, leucocytes). In the blood of Vertebrates leucocytes occur along with coloured corpuscles of definite shape containing the red-colouring matter (haemoglobin) of the blood. The leucocytes are able like Amoebae to ingest solid particles, and under certain conditions a number of them may unite together to form a single mass of protoplasm, with many nuclei, termed a plasmodium.

The characteristic cells of the reproductive tissues are the ova and the spermatozoa or sperms. The ova (Fig. 4), when fully formed, are relatively large, usually spherical cells, sometimes composed entirely of protoplasm, sometimes with an addition of nutrient food-yolk. Each ovum, as already mentioned, encloses a large nucleus (germinad vesicle) and in the interior of that one or more nucleoli or germinal spots. The sperms (Fig. 20) are extremely minute bodies, nearly always motile, usually slender and whip-like, tapering towards one extremity, and commonly with a rounded head at the other.
The sperms are developed by a succession of cell-divisions from certain cells—the primitive male cells—similar in character to immature ova.

5. Organs.

The chief systems of organs of an animal are the integumentary, the skeletal, the muscular, the alimentary or digestive, the vascular, the respiratory, the nervous, the excretory, and the reproductive.

The skin or integument consists in the majority of animals of a cellular membrane—the epidermis—to which reference has already been made, with, superficial to it, in many animals a non-cellular layer the cuticle, and below it usually a fibrous layer which is known as the dermis. The epidermis may consist of a single layer or may be stratified; it is frequently ciliated, and some of its cells frequently assume the form of unicellular glands. Modification of its superficial layers of cells gives rise frequently to the formation of hard structures contributing to the development of an exoskeleton (vide infra).

The cuticle, when present, varies greatly in thickness and consistency. Sometimes it is very thin and delicate; in many animals it becomes greatly thickened and hardened so as to form a strong protecting crust, sometimes of a material termed chitin, somewhat akin to horn in consistency, sometimes solidified by the deposition of calcareous salts. The cuticle is to be looked upon as a secretion from the cells of the epidermis; but the term is frequently applied in the case of the higher animals, in which a cuticle in the strict sense of the term is absent, either to a superficial part of the epidermis, in which the cells have become altered and horny, or to the whole of that layer.

The layer or layers of the integument situated beneath the epidermis consist of fibrous connective tissue and muscular fibres, constituting the derm or dermis.

The term skeleton or skeletal system is applied to a system of hard parts, external or internal, which serves for the protection and support of softer organs and often for the attachment of muscles. This system of hard parts may be external, enclosing the soft parts, or it may lie deep within the latter, covered by integument and muscles; in the former case it is termed an exoskeleton or external skeleton; in the latter an endoskeleton or internal skeleton. In many groups of animals both systems are developed. An exoskeleton is formed by the thickening and hardening of a part or the whole of one of the layers of the integument enumerated above; or more than one of these layers may take part in its formation. In many invertebrate animals, such as Insects, Crustaceans, and Molluses, it is a greatly thickened and hardened
cuticle which forms the exoskeleton. The horny scales of Reptiles, the feathers of Birds, and the fur of Mammals are examples of an exoskeleton derived from the epidermis, while the bony shell of Turtles and the bony scales of Fishes are examples of a dermal exoskeleton.

When an endoskeleton is present, it usually consists either of cartilage or bone or of both; but sometimes it is composed of numerous minute bodies (spicules) of carbonate of lime or of a siliceous material.

A skeleton, whether internal or external, is usually composed of a number of pieces which are movably articulated together, and which thus constitute a system of jointed levers on which the muscles act.

The alimentary or digestive system consists of a cavity or system of cavities into which the food is received, in which it is digested, and through the wall of which the nutrient matters are absorbed: together with certain glands.

In the lowest groups in which a distinct alimentary or enteric cavity is present it is not distinct from the general cavity of the body, but in all higher forms there is an enteric canal which is suspended within the cavity of the body, and the lumen of which is completely shut off from the latter. It may have simply the form of a sac or bag with a single opening which serves both as mouth and anus; in other cases the sac becomes branched and may take the form of a system of branching canals. In most animals, however, the alimentary canal has the form of a longer or shorter tube beginning at the mouth and ending at the anal opening (Fig. 21). In most cases there are organs in the neighbourhood of the mouth serving for the seizure of food; these may be simply tentacles or soft finger-like appendages, or they may have the form of jaws, by means of which the food is not only seized but torn to pieces or pounded up to small fragments in the process of mastication. The alimentary canal itself is usually divided into a number of regions which differ both in structure and in function.

In general there may be said to be three regions in the alimentary canal—the ingestive, the digestive and absorbent, and the egestive or efferent. The ingestive region is the part following behind the mouth, by which the food reaches the digestive and absorbent region. But, besides serving as a passage, it may also act as a region in which the food undergoes certain processes, chiefly mechanical, which prepare it for digestion. This ingestive region may comprise a mouth cavity or buccal cavity, a pharynx, an oesophagus or gullet, with sometimes a muscular gizzard, which may be provided with a system of teeth for the further breaking up of the food, and sometimes a crop or food-pouch.

The digestive and absorbent region is the part in which the chemical processes of digestion go on, and from which takes place
the absorption of the digested food-substances. Into this part are poured the secretions of the various digestive glands, which act on the different ingredients of the food so as to render them more soluble. Through the lining membrane of this part the digested nutrient matter passes, to enter the blood system. This region may present a number of different parts; nearly always there are at least two—a wide sac, the stomach, and a narrow tube, the intestine.

The egestive or efferent part of the alimentary canal is the posterior part of the intestine in which digestion and absorption do not go on, or only go on to a limited extent, and which serves merely for the passage to the anal opening of the faeces or unabsorbed effete matters of the food.

The whole of the interior of the alimentary canal is lined by a layer of cells—the alimentary or enteric epithelium. The form and arrangement of the cells of this epithelium vary greatly in different groups of animals. Usually, they are vertically elongated, prismatic, or columnar, or pyramidal in shape; frequently they are ciliated. In some lower forms, the cells lining the alimentary cavity have the power, like Amoeba, of thrusting forth processes of their protoplasm (Fig. 8, b), and of taking minute particles of food into their interior to become digested and absorbed (intracellular digestion). Sometimes they are all more or less active in secreting a fluid destined to act on the food and render it more soluble; sometimes this function is confined to certain of the cells, which have a special form; very often the secreting cells

Fig. 21.—General view of the viscera of a male Frog, from the right side.

- n, stomach; h, urinary bladder; e, small intestine; d, cloacal aperture; s, large intestine; c, liver; j, bile duct; g, gall bladder; b, spleen; i, lung; k, larynx; l, fat body; p, testes; v, uterus; m, kidney; p, pancreas; s, cerebellum; p, spinal cord; t, tongue; a, ariicle; w, ureter; 2, ventricle; 6, vesicula seminalis; e, optic lobe; x, cerebellum; y, Eustachian recess; z, nasal sac. (From Marshall.)
line special little pouch-like, simple or branched glands, opening by a passage or duct into the main cavity of the alimentary canal. Besides these glands formed from specially modified cells of the enteric epithelium there are nearly always present certain large special glands, separate from the alimentary canal itself but opening into it by means of ducts. Of these the most generally occurring are the glands termed salivary glands, liver, and pancreas. The salivary glands have the function of secreting a fluid called the saliva, which, in many cases at least, has a special action on starchy matters, converting them into sugar. The ducts of these glands open always, not into the digestive, but into some part of the ingestive part of the alimentary system.

The most important function of the liver—properly so called—is one distinct from the process of digestion: its secretion—the bile—has, however, at least a mechanical effect on this process, and assists the secretion of the pancreas in its effects upon fat. In lower forms the organ to which the term liver is commonly applied appears in many cases to combine the functions of a true liver with that of a pancreas, and is thus more appropriately termed hepatopancreas or liver-pancreas.

The pancreas secretes a fluid—the pancreatic juice—which has a very important effect in digestion. It renders substances of the nature of albumins soluble by converting them into modifications termed peptones; it converts starch into the soluble substance sugar; it acts on fatty matters in such a way as to convert them into emulsions which are capable of being taken up and absorbed, and it effects the splitting up of part of the fat into fatty acids and glycerine.

When the food has been acted on by the various digestive secretions, the soluble part of it is fitted to be taken up and absorbed through the wall of the alimentary canal into the blood (in animals in which a blood-system exists), or into the fluid which takes its place. In the higher animals a part of the soluble matter of the food passes directly into the blood contained in the blood-vessels; while another part is taken up by a set of special vessels, the lacteals, which are a part of the lymphatic system, and reaches the blood indirectly.

In some of the lower groups of animals there is no system of blood-vessels, and the nutrient matter of the food, absorbed through the alimentary canal merely passes from cell to cell throughout the body, or is received into a space or series of spaces containing fluid intervening between the alimentary canal and the wall of the body. But in the majority of animals there is a system of branching tubes containing a special fluid—the blood—and it is into this that the nutrient matter absorbed from the food sooner or later finds its way. The blood has for one of its principal functions the conveyance of the nutrient matters from the
alimentary canal throughout the body, so that the various organs may select from it the material which they require for the carrying on of their functions. To carry out this office the blood is contained in a complicated system of branching tubes or blood-vessels.

The essence of the process of respiration, as we have already seen, is an interchange of oxygen and carbonic acid, which goes on between the tissues of an organism and the surrounding medium, whether air or water. During the vital changes which go on in the bodies of all animals, as in Amoeba, oxygen is constantly being used up and carbonic acid being formed. The necessary supply of oxygen has to be got from the air, or, in the case of aquatic animals, from the air dissolved in the surrounding water. At the same time the carbonic acid has to be got rid of. In the lowest animals—as for instance Amoeba, and many of higher organisation—the oxygen passes inwards and the carbonic acid outwards through the general surface of the body. But in the great majority of animals there is a special set of organs—the organs of respiration—having this particular function. In some animals these organs of respiration are processes, simple or branched, lined by a very delicate membrane, and richly supplied with blood-vessels. Such processes are called gills or branchia; they are specially adapted for the absorption of oxygen dissolved in water.

In other animals the oxygen is obtained directly from the air; and in such air-breathing forms the organ of respiration is very often a sac, either simple or compound, termed a lung. The interior of this sac is lined with an epithelium of extreme delicacy, immediately outside of which is a network of microscopic blood-vessels or capillaries with thin walls, and the oxygen readily passes from the air in the cavity of the lung through the membrane and the thin wall of the blood-vessel into the blood. In other air-breathing forms the organs of respiration are tracheae, which are ramifying tubes, by means of which the air is conveyed to all parts of the body. In such forms, of which the Insects are examples, the air is conveyed, by means of these tubes, from openings on the surface of the body to all parts, and respiration goes on in all the organs.

In order that the air or water in contact with the surface of the lungs or gills may be renewed, there are usually special mechanical arrangements. In many gill-bearing animals the gills are attached to the legs, and are thus moved about when the animal moves its limbs. In others certain of the limbs are constantly moving in such a way as to cause a current of water to flow over the gills. In air-breathing forms there is usually a pumping apparatus, by means of which the air is alternately drawn into and expelled from the lungs.

In a great number of animals there is in the blood a substance
called haemoglobin, which has a strong affinity for oxygen; and the oxygen from the air, when it enters the blood, enters into a state of loose chemical combination with it. In this state, or simply dissolved in the fluid plasma of the blood, the oxygen is conveyed throughout the body.

Thus the blood, besides receiving the solid and liquid food from the alimentary canal and carrying it throughout the body for distribution, receives also the oxygen or gaseous food, and supplies it to the parts requiring it. In all parts of the body in which vital action is taking place chemical changes are constantly going on. These chemical changes in the tissues, having for their result the production of heat, of motion, secretion, and nerve-action, are for the most part of the nature of oxidations, and involve a constant consumption of oxygen, while a product which becomes formed as a result of this action is carbonic acid gas.

To carry out all the functions which it has to perform as a distributor of nourishment and oxygen, and a remover of carbonic acid, the blood has to be moved about through the vessels— to circulate throughout the various organs. In the lowest forms in which a definite blood-system is to be recognised, this movement is effected in great measure by the general movements of the body of the animal. In others certain of the vessels contract and drive the blood through the system; such contractions are of a peristaltic character, the contractions being of the nature of constrictions running in a definite direction along the course of the vessel with an effect similar to that produced by drawing the hand along a compressible india-rubber tube.

In all higher forms the movement of the blood is effected by means of a special organ—the heart. The heart is a muscular organ which by its contractions forces the blood through the system of vessels. In its simplest form it usually consists of two chambers, both with muscular walls,—the one, called the auricle, receiving the blood and driving it into the other, which is called the ventricle. The latter, in turn, when it contracts, drives the blood through the vessels to the various parts of the body—the return of the blood backwards to the auricle from the ventricle being prevented by the presence of certain valves, which act like folding doors opening from the auricle towards the ventricle, but closing when pressure is exerted in the opposite direction. In the higher animals the heart becomes a more complex organ than this, with a larger number of chambers and a more elaborate system of valves.

Carbonic acid, as already mentioned, is a waste-product constantly being produced in the tissues, and being carried off by the blood to pass out by the gills or lungs. Besides the carbonic acid, there are constantly being formed waste-substances of another class—viz., substances containing nitrogen, of which uric acid and urea are the principal ultimate forms. These are separated from
the blood and thrown out of the body by a distinct set of organs called renal organs, or organs of urinary excretion. The form of these organs varies greatly in the different groups; in many cases they are more or less intimately connected with the genital system.

In place of the simple contractions and extensions of the protoplasm which constitute the only movements of Amoeba, the higher animals are capable of complex and definite movements. These are brought about by the agency of a set of organs termed the muscles. A muscle is a band or sheet of muscular fibres endowed in the living state with the property of contractility, by virtue of which, when stimulated in certain ways, it contracts in the direction of its length, becoming shortened, and, at the same time, thickened (Fig. 22). The extremities of the muscle are frequently composed, not of contractile muscular fibres, but of a form of strong fibrous connective tissue—the tendon of the muscle. The ends of the muscle are usually firmly attached to two different parts of the jointed framework or skeleton, external or internal, and, when the muscle contracts and becomes shortened, these two parts are drawn nearer to one another.

In all but the most lowly-organised animals there is a system of organs—the nervous system—by means of which a communication is effected between the various parts of the body, enabling them to work in harmony, and by means of which also a communication is established between the organism and the external world. The two essential elements of the nervous system—the nerve-cells and nerve-fibres—have a regular arrangement which varies in the different animal types, both as regards structural details and the relations borne to the other systems of organs; but there are always to be recognised two chief parts or sets of parts—the central and the peripheral.
The central parts of the nervous system consist (Fig. 23) of certain aggregations of nerve matter, known as nerve-ganglia, containing a large number of nerve-cells: when a relatively large mass of this matter is collected together it is termed the brain. To or from these central parts pass all the systems of nerve-fibres, constituting the peripheral part of the system; the former have the office both of receiving impressions conveyed by the nerve-fibres from the surface, from the organs of special sense, and from the internal organs, and of sending off messages through similar channels to the various parts of the body, to muscles, to glands, to alimentary canal, and to vascular system. When a movement is to be effected a message passes from the nerve-centre along a nerve-fibre to a muscle and causes it to contract: when an organ requires the amount of blood supplied to it to be increased or diminished a message is conveyed along a nerve-fibre and causes the dilatation or contraction of the blood-vessels of the part; and a similar initiatory or controlling influence is exerted over the activities of all the organs.

In certain groups of animals all the impressions from the external world are received through the integument of the general surface, and this is the case in all animals with the general impressions of touch and of heat and cold. The sensitiveness of
the integument to such general impressions may be increased by
the presence in it of a variety of tactile papillæ or corpuscles
having nerve-fibres terminating in them. In most animals, how-
ever, there are certain organs, the organs of special sense,
adapted to receiving impressions of special kinds—eyes for the
reception of the impressions produced by light, ears for the recep-	ion of those produced by the waves of sound, olfactory organs or
organs of smell, and gustatory organs or organs of taste. The most
rudimentary form of eye is little more than a dot of pigment
which absorbs some of the rays of bright light—these producing
a nerve-disturbance in certain neighbouring nerve-cells. To this
may be added clear, highly-refracting bodies which intensify the
effect. In the higher types of eye there are the same essential
parts—the clear, highly-refracting substance, the pigment and the
nerve-cells; but each has undergone a development resulting in
the construction of an organ adapted to the reception of light-
impressions of a very definite character. The highly-refracting
body assumes the form of a lens for the focussing of the light-rays;
the nerve-cells are arranged in a regular layer, the retina, from
which nerve-fibres pass to the central part of the nervous system;
the pigment is so arranged as to absorb the light rays and prevent
their passage beyond the retina, and in certain cases lines also a
diaphragm, the iris, with a central aperture through which the
rays of light are admitted to the central parts of the eye. In
some animals (Insects, Crustacea) the eye consists of a very large
number of independent elements, each with its refracting apparatus,
its nervous element, and its absorbing pigment.

The car in its simplest form is a membranous sac or otoeyst with
internally projecting stiff cilia, and containing a liquid in which
there lie a number of particles of carbonate of lime. The sound-
waves evidently set in vibration the liquid and its contained cal-
careous particles, and by means of these vibrations acting on the
cilia, an impression of a definite character is produced in the cells
of a neighbouring nerve-ganglion. In higher forms the apparatus
for receiving the vibrations becomes extremely complex, and there
is elaborated a nervous mechanism by which sounds of different
pitch and intensity produce impressions of a distinct character.
The organ of hearing frequently assumes the additional function
of an organ ministering to the sense of rotation and thus has an
important part to play in the maintenance of the equilibrium of
the body.

The essential elements of the reproductive organs—the ova
and spermatozoa—have already been briefly alluded to (p. 28).
The ova are developed in an organ termed the ovary, and the
sperms in an organ termed the spermary or testis. Sometimes
ovaries and testes are developed in the same individual, when the
arrangement is termed monocious or hermaphrodite; sometimes
the ovaries occur in one set of individuals—the females—and the testes in another set—the males, when the term unisexual or dioecious is employed. Very frequently the male differs from the female in other respects besides the nature of the reproductive elements—in size, colour, and the like; when such differences are strongly marked the animal is said to be sexually dimorphic. The ova and sperms are usually conveyed to the exterior by canals or ducts—the ovarian ducts or oviducts, and the testicular ducts, spermatic ducts, or vasa deferentia. In some instances the ova are impregnated after being discharged from the oviducts, and the development of the young takes place externally; in other cases the impregnation takes place in the oviduct, and the young become fully developed in the interior of a special enlargement of the oviduct termed the uterus. In the former case the animal is said to be oviparous, in the latter viviparous; but there are numerous intermediate gradations between these two extremes.

In a limited number of groups of animals reproduction takes place by means of cells corresponding to ova developed in organs similar to ovaries, but without impregnation by means of sperms. This phenomenon is known as parthenogenesis.

Besides the sexual process of reproduction by means of ova and spermatozoa, there are in many classes of animals various asexual modes of multiplication. One of these—the process of simple fission—has been already noticed in connection with the reproduction of Amoeba. The formation of spores is an asexual mode of multiplication which occurs only in the Protozoa, and will be described in the account of that group. Multiplication by budding takes place in a number of different classes of animals. In this form of reproduction a process or bud (Fig. 24, bd) is given off from some part of the parent animal; this bud sooner or later assumes the form of the complete animal, and may become detached from the parent either before or after its development has been completed, or may remain in permanent vital connection with the parent form.

When the buds, after becoming fully developed, remain in vital continuity with the parent, a sort of compound animal, consisting of a greater or smaller number of connected units, is the result. Such a compound organism is termed a colony, and the component units are termed zooids. In some cases such a colony is produced by a process which is more correctly termed incomplete fission than budding.

Alternation of generations; heterogamy; paedomogenesis.—In the life-history of a considerable number of animals, a stage in which reproduction takes place by a process of budding or fission
alternates with a stage in which there occurs a true sexual mode of reproduction. Such a phenomenon is termed *alternation of generations* or *metagenesis*. The term *heterogamy* is applied to cases in which two different sexual generations—usually a true sexual and a parthenogenetic—alternate with one another. *Paedogenesis*, or the development of young by a sexual process from individuals that have not attained the adult condition, is a phenomenon which is to be observed in some groups of animals.

7. Symmetry.

The general disposition or *symmetry* of the parts in an animal presents two main modifications—the *radial* and the *bilateral*. The *gastrula* (p. 21) is the simplest and most generalised form among multicellular animals or *Metazoa*; but no adult animal retains this simple shape. In the gastrula we may imagine a central *primary axis* (Fig. 25, *AB*) passing through the middle of the blastopore and of the archenteric cavity, and a series of *secondary axes* (*ab, cd*) running at right angles to this to the outer surface. In a symmetrical gastrula the secondary axes would be all equal. Many
animals are in the adult condition similar in their symmetry to the gastrula, except that there are special developments along a series of regularly arranged radiating secondary axes: these radial developments may be in the form of tentacles or radially arranged processes (Fig. 26), or may assume the character of a radial arrangement of internal parts. Such an animal is said to be radially symmetrical. The body of a radially symmetrical animal is capable of being divided into a series of equal radial parts or antimeres, each of which is symmetrically disposed with regard to one of the secondary or radial axes.

In animals which are not permanently fixed, locomotion usually takes place in the direction of the primary axis of the body, and one side, habitually directed downwards, becomes modified differently from the other which is habitually directed upwards: a lower or ventral surface becomes distinguishable from an upper or dorsal. The radial symmetry now becomes disturbed; the secondary axes have become unequal; the dorso-ventral or vertical secondary axes...
are, to a greater or less extent, different from the transverse or horizontal secondary axes, and the body of an animal having such a disposition of the parts is divisible into two equal lateral halves or hemisomes by a median vertical plane passing through the primary axis. This is the bilateral symmetry observable in all but a few types of animals.

Sometimes the bilaterally symmetrical animal is unsegmented: sometimes it is divided into a series of segments or metameres. A distinct head may be present or absent. The head end or anterior end is that which, save in exceptional cases, is directed forwards in locomotion. It is towards this end that the organs of special sense are situated, as well as the opening of the mouth and the organs for the prehension and mastication of food. A head is developed when the anterior part bearing these structures is separated off externally from the rest. In segmented animals the head consists of a number of segments amalgamated together, and it contains the brain or the principal central ganglia of the nervous system.

8. The Primary Subdivisions or Phyla of the Animal Kingdom.

The various systems of organ)—digestive, circulatory, nervous, excretory, etc.—present under one form or another in all the higher groups of animals, are variously arranged and occupy various relative positions in different cases, producing a number of widely different plans of animal structure. According as their structure conforms to one or another of these great plans, animals are referred to one or another of the corresponding great divisions or phyla of the animal kingdom. That animals do present widely differing plans of structure is a matter of common knowledge. We have only to compare the true Fish, such as Cod, Haddock, etc., in a fishmonger's shop with the Lobsters and the Oysters, to recognise the general nature of such a distinction. The first-named are characterised by the possession of a backbone and skull, with a brain and spinal cord, and of two pairs of limbs (the paired fins): they belong to the great vertebrate or backboned group—the division Vertebrata of the phylum Chordata. The Lobsters, on the other hand, in which these special vertebrate structures are absent, possess a jointed body enclosed in a hard jointed case, and a number of pairs of limbs also enclosed in hard jointed cases, and adapted to different purposes in different parts of the body—some being feelers, others jaws, others legs; their general type of structure is that which characterises the phylum Arthropoda. The Oysters, again, with their hard calcareous shell secreted by a pair of special folds of the skin constituting what is termed the mantle, and with a special arrangement of the nervous system and other organs which
need not be described here, are referable to the phylum *Mollusca*. Other familiar animals are readily to be recognised as belonging to one or other of these great phyla. A Prawn, a Crab, a Blue-bottle Fly, a Spider, are all on the same general plan as the Lobster: they are jointed animals with jointed limbs, and they have the internal organs occupying similar positions with relation to one another. They are all members of the phylum *Arthropoda*. Again, a Mussel, a Snail, a Squid are all to be set side by side with the Oyster as conforming to the same general type of structure; they are all members of the phylum *Mollusca*. While a Dog, a Lizard, a Fowl are obviously nearer the Fish: they all have skull and backbone, brain and spinal cord, and two pairs of limbs; they are all members of the great group *Chordata*.

Altogether twelve phyla are to be recognised, viz.:—

<table>
<thead>
<tr>
<th>I. Protozoa</th>
<th>VII. Molluscoidea</th>
</tr>
</thead>
<tbody>
<tr>
<td>II. Porifera</td>
<td>VIII. Echinodermata</td>
</tr>
<tr>
<td>III. Ccelenterata</td>
<td>IX. Annelida</td>
</tr>
<tr>
<td>IV. Platyhelminthes</td>
<td>X. Arthropoda</td>
</tr>
<tr>
<td>V. Nematodehelmithes</td>
<td>XI. Mollusca</td>
</tr>
<tr>
<td>VI. Trochohelmithes</td>
<td>XII. Chordata</td>
</tr>
</tbody>
</table>
SECTION II

PHYLUM PROTOZOA

In the preceding section we learnt the essential structure of an animal cell, and it was pointed out that in the lowest organisms the entire individual consists of a single cell. All such unicellular animals are placed in the lowest primary subdivision of the animal kingdom—the phylum Protozoa.

We have also learnt that cells vary considerably in character. They may be amœboid or capable of protruding temporary processes of protoplasm called pseudopods; flagellate, or produced into one or more—always a small number—of threads having an intermittent lashing movement; ciliated, or produced into numerous rhythmically moving threads of protoplasm; or encysted, the protoplasm being enclosed in a cell-wall. Moreover, under certain circumstances, amœboid cells may fuse with one another to form a plasmodium.

These well-marked phases in the life of the cell allow us to divide the Protozoa into subdivisions called Classes. The same organism may be amœboid, flagellate, encysted, and plasmodial at various stages of its existence, but nevertheless we find certain forms in which the dominant phase in the life-history is amœboid, others which are characteristically flagellate or ciliated, others again in which the tendency to form plasmodia is a distinctive feature. In this way five well-marked groups of unicellular organisms may be distinguished.

Class 1. Rhizopoda.—Protozoa in which the amœboid form is predominant, the animal always forming pseudopods. Flagella are often present in the young, and occasionally in the adult. Encystation frequently occurs.

Class 2. Mycetoza.—Terrestrial Protozoa in which the plasmodial phase is specially characteristic, as also is the formation of large and often complex cysts.

Class 3. Mastigophora.—Protozoa in which the flagellate form
is predominant, although the amoeboid and encysted conditions frequently occur.

Class 4. Sporozoa.—Parasitic Protozoa without organs of locomotion in the adult. Encystation is almost universal, and the young may be flagellate or amoeboid.

Class 5. Infusoria.—Protozoa which are always ciliated, either throughout life or in the young condition.

CLASS I.—RHIZOPODA.

1. Example of the Class—Amoeba proteus.

Amoeba has been fully described in the preceding chapter; it will therefore be unnecessary to do more than recapitulate the most essential features in its organisation.

It is an irregular mass of protoplasm (Fig. 27, e) about \(\frac{1}{4} \) mm. in diameter, produced into irregular processes or pseudopods (psd) of variable size and form, and capable of being protruded and retracted often with considerable rapidity. The protoplasm is divisible into a granular internal substance or endosarc and a clear outer layer or ectosarc; the difference between the two is hardly a structural one, but depends simply on the accumulation of granules in the central portion. The granules are, for the most part, various products of metabolism—proteinaceous or fatty.

Imbedded in the endosarc is a large nucleus (nu), of spherical form, and consisting of a clear achromatic substance, enclosed in a membrane, and containing minute granules of chromatin. The contractile vacuole (c. vac.), a very characteristic organ of the Protozoa, lies in the ectosarc, and exhibits rhythmical movements, contracting and expanding at more or less regular intervals.

Amoeba feeds by ingesting minute organisms (Fig. 27, c, f. vac.) or fragments of organisms—i.e., by enveloping them in its substance, retaining them until the proteids they contain are dissolved and assimilated, and then crawling away and leaving the undigested remnants behind.

Amoebae are sometimes found to undergo encystation; the pseudopods are withdrawn and the protoplasm surrounds itself with a cell-wall or cyst (D, cy), from which, after a period of rest, it emerges and resumes active life. The cyst is formed of a chitinoid material—i.e., a nitrogenous substance allied in composition to horn and to the chitin of which the armour of Insects, Crayfishes, etc., is composed.

Reproduction takes place by simple or binary fission; direct or amitotic division of the nucleus is followed by division into two of the cell-body (i). Rarely two Amoebae have been observed to
conjugate or undergo complete fusion, but nothing is known of the result of this process or of its precise significance in this particular case.

2. Classification and General Organisation.

The Rhizopoda differ among themselves in the character of their pseudopods, which may be short and blunt or long and
delicate; in the number of nuclei; and in the presence or absence of a hard shell within or around the protoplasm. The following five orders may be distinguished:

Order 1.—Lobosa.

Rhizopoda with short, blunt pseudopods.

Order 2.—Labyrinthulidea.

Rhizopoda having a network of fine pseudopods, in which corpuscles travel to and fro.

Order 3.—Foraminifera.

Shelled Rhizopoda with fine, branched, and anastomosing pseudopods.

Order 4.—Heliozoa.

Rhizopoda with fine, stiff, radiating pseudopods.

Order 5.—Radiolaria.

Rhizopoda having a shell in the form of a perforated central capsule, and usually, in addition, a siliceous skeleton: the pseudopods are long and delicate.

Systematic Position of the Example.

Amoeba proteus is one of many species of the genus *Amoeba*, belonging to the family *Amoebidae*, of the order *Lobosa*. The blunt pseudopods not uniting to form networks place it among the Lobosa: the absence of a shell among the Amoebidae. The genus *Amoeba* is distinguished by the presence of one or more nuclei, and of a contractile vacuole. In *A. proteus* the pseudopods are of considerable length and sometimes branched, and there is a single nucleus, having its chromatin in the form of scattered granules.

Order 1.—Lobosa.

General Structure.—The members of this group all agree with *Amoeba* in essential respects, their most characteristic feature being the short, blunt pseudopods. The chief variations in structure upon which the genera and species are founded have to do with the number and character of the nuclei, the form of the pseudopods, and the presence or absence of a shell.

In *Amoeba* itself there may be one (Fig. 27, e) or several (b) nuclei, the chromatin of the nucleus may be arranged in various ways (f, h), and the pseudopods may be prolongations of con-
siderable relative size (c), or mere wave-like elevations of the surface (g). Sometimes specimens are found in which neither nucleus nor vacuole is present; these are placed in the genus

Protamœba (Fig. 28). Very probably, however, future investigation will show this and other non-nucleate forms to possess a potential nucleus in the form of minute scattered granules of chromatin.

The largest of the naked or shell-less Lobosa is Pelomyxa, which may be as much as 8 mm. in diameter; it is multi-nucleate and is further distinguished by numerous non-contractile vacuoles in the endosarc.

Skeleton.—We may understand the relation of the shelled to the shell-less Lobosa by supposing an Amœba to draw in the pseudopods from the greater part of its body, and to secrete, from that part only, a cell-wall; such a cell-wall or capsule would differ
from a cyst in having an aperture at one end to allow of the protrusion of pseudopods from a small naked area. This is exactly what we find in *Arcella* and its allies (Fig. 29, A–C), in which the shell is chitinoid. A different kind of shell is found in *Diffugia* (D), which secretes a gelatinous coating to which minute sand-grains and other foreign particles become attached.

Fig. 30. *Chlamydomyxa labyrinthuloides*. A, active phase; c.w., cell-wall; f, fragment of Alga ingested as food; sp, spindles in course of pseudopods; B, resting stage—numerous individuals in the cells of a fragment of *Sphagnum*; a, specimen completely enclosed in cell; b and c, specimens which have emerged through the ruptured cell-wall; C, specimen multiplying by budding; D, by binary fission; E, by internal fission. (A after Archer, B–E after Geddes.)

Order 2. *Labyrinthulidea*.

In this group there are only two genera—*Labyrinthula* and *Chlamydomyxa*. *Chlamydomyxa* (Fig. 30) has hitherto been found only in Ireland, where it occurs in association with the common Bog-moss (*Sphagnum*). Like Amoeba, it
may exist either in the active or in the resting condition. In the resting stage (B, a, b, c) it consists of a mass of protoplasm surrounded by a laminated wall of cellulose and coloured green by chlorophyll—the ordinary pigment of green plants. There are also specks of bright red, due to a pigment called hematochrome, allied to chlorophyll, and small globular bodies of a bluish tint. In the young condition (a) the resting cells are globular and microscopic, lying enclosed within the cells of the Sphagnum, but as they grow in this confined space they become elongated and irregular, and finally burst through the wall of the moss-cell, forming masses (b, c) quite visible to the naked eye. These may bud (C) or undergo binary fission (D); or the protoplasm, retreating from the cell-wall, may divide into numerous small masses, each of which surrounds itself with a new cell-wall (E).

During the whole of the resting stage there is nothing to distinguish Chlamydomyxa from a plant, and it would certainly be placed among the lower Algae if the active phase of its existence were unknown.

In the active stage (A) the protoplasm protrudes from the ruptured cell-wall in the form of pseudopods produced into a complex network of extremely delicate filaments, which may unite to form larger masses of protoplasm at a considerable distance from the original cell. At the same time the bluish spheres (sp.) found in the resting stage take on a spindle shape and travel slowly along the filaments.

The filaments are used to capture living organisms (f.) which are digested by the protoplasm surrounding them, the products of nutrition being conveyed along the network to all parts of the organism. Thus in the active condition the nutrition of Chlamydomyxa is holozoic, i.e. strictly like that of an animal, the food consisting of living protoplasm. In the resting stage, on the other hand, nutrition is purely holophytic, i.e. like that of an ordinary green plant, the food consisting of the carbon dioxide and various mineral salts dissolved in the water.

Labyrinthula (Fig. 31) differs in many respects from Chlamydomyxa. In the resting stage (B) it consists of a heap of small nucleated cells (c.) connected by a homogeneous substance. In the active condition (A) it is produced into long delicate filaments, not formed of protoplasm, along which the cells (c.) travel, in the same manner as the spindles of Chlamydomyxa. Labyrinthula has, therefore
the character, not of a single cell, but of a cell-colony, formed of numerous cells connected by a non-protoplasmic substance. Chlamydomyxa, on the other hand, has the character of a single cell, and no nuclei have been found in the spindles. Thus further investigation is necessary before the association of these two organisms in one group is fully justified, and it has recently been proposed to include Labyrinthula among the Mycetozoa.

Order 3.—Foraminifera.

General Structure.—The members of this order differ from the Lobosa and agree with the active phase of Chlamydomyxa in the fact that their pseudopods are long and delicate, and unite to form networks; moreover, with few exceptions, they agree with Arcella and its allies in possessing a shell. In the majority of cases this shell is formed of calcium carbonate.

One of the simplest members of the group is *Microgromia* (Fig. 32). It consists of a protoplasmic body (B), with a single nucleus (nu.) and contractile vacuole (c. vac.), enclosed in a chitinoid cell-wall or shell (sh.) with an aperture at one end through which the protoplasm protrudes and is produced into delicate radiating pseudopods. The animal multiplies by binary fission, and the individuals or zooids thus produced remain united in larger or smaller clusters or cell-colonies (A). Sometimes the cell-body of a zooid divides, and one of the daughter-cells creeps out of the cell-wall (C), and, after moving about for a time like an Amœba, draws in its pseudopods, assumes an oval form, and sends out two flagella by means of which it is propelled through the water (D).

We shall find other instances in which the young of a Rhizopod is
a flagellula, i.e. a cell provided with one or more flagella, which, if its history were not known, would be included among the Mastigophora.

Platoum (Fig. 33, A) is a form resembling Microgromia, but illustrating a very interesting type of colony. The protoplasm flows out of the mouth of the shell in the form of a long plate (B) which sends off rounded side branches, and each of these, acquiring a cell-wall, becomes a zooid of the simple cell-colony.

Gromia (Fig. 34, 1) leads us to the more typical Foraminifera. The protoplasm of this form protrudes from the mouth (a) of the chitinoid shell (sh.) and flows around it so that the shell becomes an internal structure. The pseudopods are very long and delicate, and unite to form a complicated network, exhibiting a streaming movement of granules, and serving, as usual, to capture prey.

Skeleton.—*Squamminulina* (Fig. 34, 2) differs from Gromia mainly in having the shell formed of calcium carbonate, so as to have the character of a hollow, stony sphere, with an aperture at one end. It appears that all the calcareous Foraminifera begin life in this simple form; but in the majority of cases the adult structure attains a considerable degree of complexity. The protoplasm of the original globular chamber overflows, as it were, through the aperture; but, instead of forming an elongated plate from which side buds are given off, as in Platoum, the extended mass rounds itself off, and secretes a calcareous shell in organic connection with the original shell, and communicating with it by the original aperture. In this way a two-chambered shell is produced, and a repetition of the process gives us the many-chambered shell found in most genera. New chambers may be added in a straight line (Fig. 35, 5), or alternately on opposite sides of the original chamber (6), or with each new chamber enclosing its predecessor (4), or in a flat spiral, each new chamber being larger than its predecessor (7, 8), or in a spire in which the newer chambers

![Fig. 33.—Platoum sterecoreum. A, single zooid; B, formation of colony; c. vac, contractile vacuole; f, food particles; nu, nucleus; sh, shell. (From Bütschli's Protozoa, after Cienkowsky.)](image-url)
overlap the older \((9, 10)\), or in an irregular spiral of globular chambers \((6)\), or in an extremely compact spiral in which the new chambers completely enclose their predecessors \((11)\). In all cases adjacent chambers communicate with one another either by a single large hole or by numerous small ones; the protoplasm is thus perfectly continuous throughout the organism. With the

![Diagram of various forms of Foraminifera](image)

Fig. 34.—Various forms of *Foraminifera*. In 4, *Miliola*, \(a\), shows the living animal; \(b\), the same killed and stained; \(a\), aperture of shell; \(f\), food particles; \(n\), nucleus; \(sh\), shell. (From Bütschli’s *Protozoa* and Claus’s *Zoology*.)
increase in the number of chambers there is a multiplication of the nucleus (Fig. 34, 4, b, Fig.

The shell presents two leading types of structure, apart from

the form and arrangement of the chambers: either it is of a porcelain-like texture and provided with a single terminal aperture, (Fig. 34, 4), or the texture is glassy and the whole shell perforated
with very minute apertures, through which, as well as through the terminal aperture, pseudopods are protruded (Fig. 34, 2).

In many cases additional complexity is attained by the development of what is called the *supplemental skeleton* (Fig. 35, Sh, s. sk.). This consists of a deposit of calcium carbonate outside the original shell; it is traversed by a complex system of canals, containing protoplasm, and is sometimes produced into large spines. Foraminifera in which this secondary skeleton occurs are sometimes of considerable size—2-3 cm. in diameter—and of extraordinary complexity.

Many Foraminifera resemble *Diffugia* in having a skeleton formed of sand-grains, sponge-spicules, and other foreign bodies cemented together by a secretion from the protoplasm (Fig. 35, 1). Some of these are formed on the imperforate type, having the

![Fig. 36.—*Hastigerina murrayi*. plsm. vacuolated protoplasm surrounding shell; psd. pseudopods; sh. shell; sp. spines. (After Brady.)](image)

protoplasm protruded from a single terminal aperture; others on the perforate type, small pseudopods being protruded between the particles forming the shell.

In many cases the pseudopods are the only portions of *protoplasm* outside the shell, whereas in *Gromia*, as we saw, the shell is invested with a layer of protoplasm, and is thus *in strictness* an internal structure. In one of the calcareous forms with perforated spiral shell, called *Hastigerina* (Fig. 36), a very remarkable modification of this condition of things obtains. The shell (sh.) is surrounded with a mass of protoplasm (plsm.) many times its own diameter, and so full of vacuoles as to present a bubbly or frothy appearance. The shell itself, moreover, in this and allied
forms is provided with numerous delicate, hollow, calcareous spines (sp.), which are only to be seen in perfect, freshly-caught specimens.

Many Foraminifera exhibit the phenomenon of dimorphism: the individuals of a single species occur under two distinct forms differing from one another in the size of the central chamber, the shape and mode of growth of the succeeding chambers, and the character of the nuclei.

The reproduction of the Foraminifera is very imperfectly known; but in some forms the protoplasm has been observed to divide into flagellula or swarm-cells, minute masses of protoplasm, each provided with a flagellum: usually these are of uniform size, but in some cases large and small spores are produced. In some species young forms, provided with a shell, are formed in the terminal chamber of the adult.

Distribution.—Gromia, Microgromia, and a few other forms are found in fresh-water: one species has been found in damp earth, but the great majority of the Foraminifera are marine, some being pelagic, i.e. occurring at or near the surface of the ocean, others abyssal, i.e. living at great depths. In the Atlantic, large areas of the sea-bottom are covered with a gray mud called Globigerina-ooze from the vast number of Globigerinae contained in it.

From the palaeontological point of view, the Foraminifera are a very important group. Remains of their shells occur in various formations from the Silurian period to the present day, certain rocks such as the White Chalk (Cretaceous period) and the Nummulitic limestone (Eocene) being largely made up of them.

Order 4.—Heliozoa.

General Structure.—The Heliozoa are at once distinguished from the preceding groups by the character of their pseudopods, which have the form of stiff filaments radiating outwards from the more or less globular cell-body, presenting very little movement beyond the characteristic streaming of granules, and not uniting to form networks.

One of the simplest forms is the common "Sun-animalcule," Actinophrys sol (Fig. 37). The body is nearly spherical, and contains a large nucleus and numerous vacuoles, some of which, near the surface, are contractile. Each of the stiff, radiating pseudopods has a delicate axis, which is traceable through the protoplasm.
as far as the nucleus. Living organisms are devoured in much the same way as in Amoeba: each is ingested along with a droplet of water, and is thus seen, during digestion, to lie in a definite cavity of the protoplasm, called a food-vacuole.

Actinosphaerium (Fig. 38, A), another fresh-water form, is more complex. The protoplasm is distinctly divided into a central mass, the *medulla* or *endosarc* (*B, med.*), in which the vacuoles are small, and an outer layer, the *cortex* or *ectosarc* (*cort.*), in which they are very large. There are numerous nuclei (*nu.*) and chromatophores (*chr.*), the latter coloured green by chlorophyll.

Many genera form **colonies**. Numerous zooids may be united by bridges of protoplasm into an open network, or the connecting bridges may be shorter and the zooids more numerous, giving the colony a more compact appearance.

Transitional stages occur between the naked genera already referred to and forms with a distinct **skeleton**. Sometimes the body simply surrounds itself with a temporary gelatinous investment (Fig. 39, 2, *g.*), in other cases it is surrounded by a capsule of loosely woven fibres through which the pseudopods pass, thus reminding us of the state of things characteristic of perforate Foraminifera.
One genus has a shell formed of agglutinated sand-grains; in another (Fig. 39, A) the skeleton consists of loosely matted needles of silica. Lastly, in the graceful Clathulinia (3) the body is enclosed in a perforated sphere of silica, quite like the skeleton of many of the Radiolaria (vide infra).
Reproduction ordinarily takes place by binary fission, but spore-formation also occurs. Actinosphaerium, for instance, encloses itself in a gelatinous cyst and undergoes multiple fission, forming numerous spores each enclosed in a siliceous cell-wall. These resting spores remain quiescent throughout the winter, and in spring the protoplasm emerges from each and assumes the form of the ordinary active Actinosphaerium. In Clathrulina spore-formation takes place in the active condition, and the spores (Fig. 39, 3 b) are flagellulate, each being an ovoid body provided with two flagella. Conjugation has been observed in some instances, but the precise nature and significance of the process is still imperfectly known.

Order 5.—Radiolaria.

The Radiolaria are a large and well-defined group of Rhizopods, noticeable, in most instances, by the presence of a siliceous skeleton of great beauty and complexity. They are all marine.

General Structure.—The most important characteristic of the group is the presence of a perforated membranous sac, called the central capsule (Fig. 40, cent. caps.), which lies embedded in the protoplasm, dividing it into intra-capsular (int. caps. pr.) and extra-capsular (ext. caps. pr.) regions. In the intra-capsular protoplasm is a large and complex nucleus (nu.), or sometimes many nuclei; from the extra-capsular protoplasm the pseudopods (psd.) are given off in the form of delicate radiating threads, which in some cases remain free, in others, e.g. Lithocircus, anastomose freely, i.e. unite to form networks. There is no contractile vacuole, but in many forms the extra-capsular protoplasm contains numerous large non-contractile vacuoles, which give it the frothy or bubbly appearance noticed previously in Hastigerina. The vacuolated portion of the protoplasm has a gelatinous consistency, and is distinguished as the calymna.

The central capsule may be looked upon as a chitinoïd internal skeleton, reminding us of the shell of Gromia and of the perforated calcareous shell of Hastigerina with its investment of vacuolated protoplasm. It is found in its simplest form in Thalassoplaneta (Fig. 41), in which it is spherical and uniformly perforated with minute holes. In other forms, such as Lithocircus (Fig 40), it is
more or less conical in form, and the apertures are restricted to the flat base of the cone. Lastly, in the most complex forms (Fig. 42), the membrane of the capsule is double, and there are three apertures—a principal one having a central position and provided with a lid or operculum (op.), and two subsidiary ones on the opposite side. In relation with the principal or lidded aperture there is found in the extra-capsular protoplasm a heap of pigment called the phaeodinum (ph.).

In some genera the central capsule is the only skeletal structure present, but in most cases there is in addition a skeleton—mainly external—formed, as a rule, of silica, but in one subdivision of the class of a chitinoid substance called acanthin, so transparent that it can only be distinguished from silica by chemical tests. The siliceous skeleton may consist of loosely woven spines (Fig. 41), but usually (and the acanthin skeleton always) has the form of a firm frame-work of globular, conical, stellate, or discoid shape, frequently produced into simple or branched spines. A very beautiful form of skeleton is exhibited by Actinomma (Fig. 43), in which there are three concentric perforated spheres (A, sk. 1, sk. 2, sk. 3) connected by radiating spicules. The outer of these spheres occurs in the extra-capsular protoplasm (B, ev. caps. pr.), the middle one in the intra-capsular protoplasm, and the inner one in the nucleus (nu.).

Colonial forms are comparatively rare in this order, but occur in some genera by the central capsule undergoing repeated divisions while the extra-capsular mass remains undivided. In this way is produced—in Collozonum for instance (Fig. 44, A, B, C)—a firm gelatinous mass, the calyyma or vacuolated extra-capsular protoplasm (D, ev.e.) common to the entire colony, having embedded in it numerous central capsules (c. caps.) each indicating a zooid of the colony. Collozonum may attain a length of 3 or 4 cm.

Reproduction by binary fission has been observed in some cases, and is probably universal. The nucleus divides first, then the central capsule, and finally the extra-capsular protoplasm.

Spore-formation has been observed in Collozonum and some other genera: the intra-capsular protoplasm divides into small masses,
Fig. 42. *Aulactinium actinæstrum*. c. calymna; km. central capsule; n. nucleus; op. operculum; ph. phæodium. (From Lang’s *Comparative Anatomy*, after Haeckel.)

Fig. 43. *Actinomma asteracanthion*. A. the shell with portions of the two outer spheres broken away; B. section showing the relations of the skeleton to the animal; cent. caps. central capsule; e.e. caps. pr. extra-capsular protoplasm; nu. nucleus; sk. 1, outer, sk. 2, middle, sk. 3, inner sphere of skeleton. (From Bützchli’s *Protozoa*, after Haeckel and Hertwig.)
each of which becomes a flagellula (Fig. 44, E, F) provided with a single flagellum. In some instances all the spores produced are alike (E), and each encloses a small crystal (c.): in other cases (F)—in the same species—the spores are dimorphic, some being small (microspores) others large (megaspores). Their development has not been traced.

Symbiosis.—One most characteristic and remarkable feature of the group has yet to be mentioned. In most species there occur in the extra-capsular protoplasm minute yellow cells (Fig. 40, z.) which multiply by fission independently of the Radiolarian. It is now known that these are unicellular plants belonging to the class of Algae and to the species *Zooxanthella antricola*. This intimate association of two organisms is called *symbiosis*: it is a mutually beneficial partnership, the Radiolarian supplying the Alga with carbon dioxide and nitrogenous waste matters, while the Alga gives off oxygen and produces sugar and other food-stuffs, some of which must make their way by diffusion into the protoplasm of the Radiolarian.

CLASS II.—**MYCETOZOA.**

1. **Example of the Class—*Didymium difforme*.**

Didymium occurs as a whitish or yellow sheet of protoplasm (Fig. 45, G), often several centimetres across, which crawls, like a gigantic Amoebo, over the surface of decaying leaves. It shows the characteristic streaming movements of protoplasm and feeds by ingesting various organic bodies, notably the Bacilli which always occur in great numbers in decaying substances. Numerous nuclei are present.
After leading an active existence for a longer or shorter time, the protoplasm aggregates into a solid lump, surrounds itself with a cyst, and undergoes multiple fission, dividing into an immense number of minute spores. The cyst (Fig. 45, A, spg. 1, spg. 2) is therefore not a mere resting capsule, like that of Amoeba, but a sporangium or spore-case. Its wall consists of two layers, an inner of a dark purple colour and membranous texture, formed of cellulose, and an outer of a pure white hue, formed of calcium carbonate. Thus the whole sporangium, which may attain a diameter of 3 or 4 mm., resembles a minute egg. From the inner surface of the wall of the sporangium spring a number of branched filaments of cellulose, which extend into the cavity among the spores and together constitute the capillitium (B, cp.).

The spores consist of nucleated masses of protoplasm surrounded by a thick cellulose wall of a dark reddish-brown colour. After a period of rest the protoplasm emerges in the form of an ameboid mass which soon becomes a flagellula (C), provided with a single flagellum, a nucleus (nu.), and a contractile vacuole.
PHYLUM PROTOZOA

The flagellulae move freely and ingest Bacilli (D, b); then, after a time, they become irregular in outline, draw in the flagellum, and become amœboid (E). The amœbulae thus formed congregate in considerable numbers and fuse with one another (F), the final result being the production of the great amœboid mass (G) with which we started. There is no fusion of the nuclei of the amœbulae. Thus Didymium in its active condition is a plasmodium, i.e. a body formed by the concrescence of amœbulae.

2. GENERAL REMARKS ON THE MYCETOZOA.

Speaking generally, the Mycetozoa differ from all other Protozoa in their terrestrial habit. They are neither aquatic, like most members of the phylum, nor parasitic, like many other forms, but live habitually a sub-aerial life on decaying organic matter. They are also remarkable for their close resemblance in the structure of the sporangia and spores to certain Fungi, a group of parasitic or saprophytic plants in which they are often included, most works on Botany having a section on the Myxomycetes or "Slime-fungi," as these organisms are then called. They are placed among animals on account of the structure and physiology of the flagellate, amœboid, and plasmodial phases which exhibit automatic movements and ingest solid food. On the other hand, the Mycetozoa are sometimes included among the Rhizopoda, a course which their very peculiar reproductive processes appears to render inadvisable.

An interesting organism, called Protomyxa, probably belongs to this group. In its plasmodial phase it consists of orange-coloured masses of protoplasm, about 1 mm. in diameter, which crawl over sea-shells by means of their long, branched pseudopods, and ingest living prey. No nuclei are known. The protoplasm becomes encysted and breaks up into naked spores, which escape from the cyst as flagellulae, but soon become amœboid and fuse to form the plasmodium.

CLASS III.—MASTIGOPHORA.

1. EXAMPLE OF THE CLASS—Euglena viridis.

Euglena (Fig. 46) is a flagellate organism commonly found in the water of ponds and puddles, to which it imparts a green colour. The body (E, H) is spindle-shaped, and has at the blunt anterior end a depression, the gullet (F, o's.), from the inner surface of which springs a single long flagellum (j.)). According to recent observations the flagellum is not a simple thread, but is beset with delicate cilium-like processes. The organism is propelled through the water by the lashing movements of the flagellum, which is always directed forwards; it can also perform slow worm-like movements of contraction and expansion (A—D), but anything like the free pseudopodial movements which characterise the Rhizopoda is precluded by the presence of a very thin skin or cuticle which invests the body. There is a nucleus (n. v.) near the centre of the body, and at the anterior end a contractile vacuole (H, e. vac.), leading into a large non-contractile space or reservoir (v.) which discharges into the gullet.

The greater part of the body is coloured green by the characteristic vegetable pigment, chlorophyll, and contains grains of
paramylum (H, p.), a carbo-hydrate allied to starch. In contact with the reservoir is a bright red speck, the stigma (pg.), formed of a pigment allied to chlorophyll and called hematohrome. It seems probable that the stigma is a light-perceiving organ or rudimentary eye.

Euglena is nourished like a typical green plant: it decomposes the carbon dioxide dissolved in the water, assimilating the carbon and evolving the oxygen. Nitrogen and other elements it absorbs in the form of mineral salts in solution in the water. But it has also been shown that the movements of the flagellum create a whirlpool by which minute fragments are propelled down the gullet and into the soft internal protoplasm. There seems to be no doubt that in this way minute organisms are taken in as food. Euglena thus combines the characteristically animal (holozoic) with the characteristically vegetable (holophytic) mode of nutrition.

Sometimes the active movements cease, the animal comes to rest and surrounds itself with a cyst or cell-wall of cellulose (G), from which, after a quiescent period, it emerges to resume active life. It is during the resting condition that reproduction takes place by the division of the body in a median plane parallel to the long axis (G). Under certain circumstances multiple fission takes place, and flagellulae are produced, which, sometimes after passing through an amœboid stage, develop into the adult form.
2. Classification and General Organisation.

The Mastigophora form a very extensive group, the genera and species of which show a wonderful diversity in structure and habit. The only character common to them all is the presence of one or more flagella. Some approach plants so closely as to be claimed by many botanists; others are hardly to be distinguished from Rhizopods; while the members of one order present an interesting likeness to certain otherwise unique cells found in Sponges.

The class is divisible into four orders as follows:

Order 1.—Flagellata.

Mastigophora having one or more flagella at the anterior end of the body.

Order 2.—Choanoflagellata.

Mastigophora having a single flagellum surrounded at its base by a contractile protoplasmic collar.

Order 3.—Dinoflagellata.

Mastigophora having two flagella, one anterior, the other encircling the body like a girdle.

Order 4.—Cystoflagellata.

Mastigophora having two flagella, one of which is modified into a long tentacle, while the other is small and contained within the gullet.

Systematic Position of the Example.

Euglena viridis is one of several species of the genus Euglena, and belongs to the Family Euglenidae; sub-order Euglenoidea, and order Flagellata.

The presence of an anterior flagellum and the absence of a collar, transverse flagellum, or tentacle, indicate its position among the Flagellata. It is placed among the Euglenoidea in virtue of possessing a single flagellum and a small gullet into which the contractile vacuole opens. The genus Euglena is distinguished by its centrally placed nucleus, green chromatophore, red stigma, and euglenoid movements. E. viridis is separated from other species of the genus by its spindle-shaped body with blunt anterior and pointed posterior end, and by the flagellum being somewhat longer than the body.

Order 1.—Flagellata.

The cell-body is usually ovoid or flask-shaped (Fig. 47, 6, 7, 9, &c.), but may be almost globular (1), or greatly elongated (3).
Anterior and posterior ends are always distinguishable, the flagella being directed forwards in swimming, and, as a rule, dorsal and ventral surfaces can be distinguished by the presence of a mouth or by an additional flagellum on the ventral side. They are,
therefore, usually *bilaterally symmetrical* or divisible into equal and similar right and left halves by a vertical antero-posterior plane.

Some of the lower forms have no distinct cuticle, and are able, under certain circumstances, to assume an amoeboid form (2). The curious genus *Mastigamoeba* (4) has a permanently amoeboid form, but possesses, in addition to pseudopods, a single long flagellum. It obviously connects the Mastigophora with the Rhizopoda, and indeed there seems no reason why it should be placed in the present group rather than with the Lobosa. Similarly, *Dimorpha* (5) connects the Flagellata with the Heliozoa: in its flagellate phase (a) it is ovoid and provided with two flagella, but it may send out long stiff radiating pseudopods, while retaining the flagella, or may draw in the latter and assume a purely helizoan phase of existence provided with pseudopods only (b).

The number of flagella is subject to great variation. There may be one (Fig. 47, 1–2), two (9, 10), three (6), or four (7). Sometimes the flagella show a differentiation in function; in *Heteromita, e.g.* (Fig. 51) the anterior flagellum (j. l. 1) only is used in progression, the second or ventral flagellum (j. l. 2) is trailed behind when the animal is swimming freely or is used to anchor it to various solid bodies.

There are also important variations in structure correlated with varied modes of nutrition. Many of the lower forms, such as *Heteromita*, live in decomposing animal infusions: they have neither mouth nor gullet and take no solid food, but live by absorbing the nutrient matters in the solution; their nutrition is, in fact, saprophytic, like that of many fungi. A few live as parasites in various cavities of the body of the higher animals. One Euglena-like form lives as an intra-cellular parasite within the cells of one of the lower worms.

Haematococcus (Fig. 48), *Pandorina* (Fig. 49), *Volvox* (Fig. 50), and their allies present us with a totally different state of things. The mouthless body is surrounded by a cellulose cell-wall (e.w.), and contains chromatophores (chr.) coloured either green by chlorophyll or red by haematochrome. Nutrition is purely holophytic, i.e., takes place by the absorption of a watery solution of mineral salts and by the decomposition of carbon dioxide. It is, therefore, not surprising that these chlorophyll-containing Flagellata are often included among the Alge or lower green plants.

Other genera live in a purely animal fashion by the ingestion of solid proteinaceous food, usually in the form of minute living organisms; in these cases there is always some contrivance for capturing and swallowing the prey. In *Oikomonas* (Fig. 47, 8) we have one of the simplest arrangements: near the base of the flagellum is a slight projection containing a vacuole (v. l.), the movements of the flagellum drive small particles (f) against this region where the protoplasm is very thin and readily allows the...
particles to penetrate into the vacuole, where they are digested. In Euglena, as we have seen, there is a short, narrow gullet, and in some genera (9, 9) this tube becomes a large and well-marked structure.

Skeleton.—While a large proportion of genera are naked or covered only by a thin cuticle, a few fabricate for themselves a delicate chitinoid *shell* or *lorica* (10, 1), usually vase-shaped and widely open at one end so as to allow of the protrusion of the contained animaleule. In the chlorophyll-containing forms there is a closed cell-wall of cellulose (Fig. 48, c.w.).

In many genera *Colonies* of various forms are produced by repeated budding. Some of these are singularly like a zoophyte (see Sect. IV.) in general form (Fig. 47, 11), being branched colonies composed of a number of connected monads, each enclosed in a little glassy lorica; or green (chlorophyll-containing) zooids are enclosed in a common gelatinous sphere, through which their flagella protrude (12); or tufts of zooids, reminding us of the flower-heads of Acacia, are borne on a branched stem (13). In *Volvox* (Fig. 50) the zooids of the colony are arranged in the form of a hollow sphere, and in *Pandorina* (Fig. 49) in that of a solid sphere enclosed in a delicate shell of cellulose. Lastly, in *Rhipido*-

Fig. 48. *Hematococcus pluvialis*. A, motile stage; B, resting stage; C, D, two modes of fission; E, *Hematococcus lacustris*, motile stage; F, diagram of movements of flagellum; *chr.* chromatophores; c. *vac.* contractile vacuole; c.w. cell-wall; *nu.* nucleus; *nu*'. nucleolus; *pyr.* pyrenoids. (From Parker's *Biology.*)
A dendron (Fig. 47, 14) a beautiful branched fan-shaped colony is produced, the branches consisting of closely adpressed gelatinous tubes each the dwelling of a single zooid.

Binary fission is the ordinary mode of asexual multiplication, and may take place either in the active or in the resting condition. Hæmatococcus (Fig. 48) and Euglena (Fig. 46), for instance, divide while in the encysted condition; Heteromita (Fig. 51)

Fig. 49.—Pandorina morum. A, entire colony; B, asexual reproduction, each zooid dividing into a daughter-colony; C, liberation of gametes; D–F, three stages in conjugation of gametes; G, zygote; H–K, development of zygote into a new colony. (From Parker's Biology, after Goebel.)

and other saprophytic forms while actively swimming; in the latter case the division includes the almost infinitely fine flagellum.

In correspondence with their compound nature, the colonial genera exhibit certain peculiarities in asexual multiplication. In Dinobryon (Fig. 47, 11) a zooid divides within its cup, in which one of the two products of division remains; the other crawls out of the lorica, fixes itself upon its edge, and then secretes a new lorica for itself. In Pandorina (Fig. 49) each of the sixteen zooids of the colony divides into sixteen (B), thus forming that number of daughter-colonies within the original cell-wall, by the rupture of
which they are finally liberated. In *Volvox* (Fig. 50), certain zooids, called *parthenogonidia* (A, α), have specially assigned to them the function of asexual reproduction: they divide by a process resembling the segmentation of the higher animals (D₁–D₅), and form daughter-colonies which become detached and swim freely in the interior of the mother-colony.

A very interesting series of stages in sexual reproduction is found in this group. In *Heteromita* two individuals come together

(Fig. 51, E⁴) and undergo complete fusion (E²–E⁴): the result of this conjugation of the two gametes or conjugating cells is a thin-walled sac, the zygote (E⁵), the protoplasm of which divides by multiple fission into very minute spores. These, when first liberated by the rupture of the zygote (E⁶), are mere granules, but soon the ventral or trailing flagellum is developed, and afterwards the anterior flagellum (F³–F⁵). In *Pandorina* (Fig. 49) the cells of the colony escape from the common gelatinous envelope (C) and conjugate in pairs (D, E), forming a zygote (F, G), which, after a period of rest (H), divides and forms a new colony (K).
In some cases the conjugating cells are of two sizes, union always taking place between a large cell or *megagamete* and a small cell or *microgamete*. In *Volvox* (Fig. 50) this dimorphism reaches its extreme, producing a condition of things closely resembling what
we find in the higher animals. Certain of the zooids enlarge and form megagametes (B, ovy.), others divide repeatedly and give rise to groups of microgametes (B, spy. E, F), each in the form of an elongated yellow body with a red pigment-spot and two flagella. These are liberated, swim freely, and conjugate with the stationary megagamete (G), producing a zygote (H), which, after a period of rest, divides and reproduces the colony. It is obvious that the megagamete corresponds with the ovum of the higher animals, the microgamete with the sperm, and the zygote with the oosperm or impregnated egg.

It should be noticed that in the more complex cases of reproduction just described we meet with a phenomenon not seen in cases of binary fission, viz., development, the young organism being far simpler in structure than the adult, and reaching its final form by a gradual increase in complexity.

Figure 52.—Various forms of **Choanoflagellata.** 2b illustrates longitudinal fission; 2c, the production of flagellula; 3. collar; 4. vac. contractile vacuole; 5. flagellum; 6. lorica; nu. nucleus. (After Saville Kent.)

Order 2.— **Choanoflagellata.**

General Structure.—The members of this group are distinguished by the presence of a vase-like prolongation of the protoplasm, called the **collar** (Fig. 52, 1, c.), surrounding the base of the single flagellum (fl.). The collar is contractile, and, although its precise functions are not yet certainly known, there is evidence to
show that its movements cause a flow of water, with minute particles in suspension, up the outside of the collar and down the inside, the solid particles being then ingested in the soft protoplasm between the base of the flagellum and that of the collar. The animaeule may draw in both collar and flagellum and assume an amoeboid form.

The nucleus (nu.) is spherical, and there are, one or two contractile vacuoles (c. vac.), but no trace of mouth or gullet. Some forms are naked (1), others (2) enclosed in a chitinoid shell or lorica of cup-like form. A stalk (s.) is usually present in the loricate and sometimes also in the naked forms.

The genera mentioned in the preceding paragraph are all simple, but in other cases colonies are produced by repeated fission. In Polyzoa (3) the colony has a tree-like form, which may reach a high degree of complexity by repeated branching. A totally different mode of aggregation is found in Proterospongia (4), in which the zooids are enclosed in a common gelatinous matrix of irregular form.

Reproduction.—The "collared monads," as these organisms are often called, multiply by longitudinal fission (2b). In some cases multiple fission of encysted individuals has been observed (2c), small simple flagellate being produced which gradually develop into the perfect form.

The order is especially interesting from the fact that, with the exception of Sponges and the larva of a Sea-Urchin, it is the only group in the animal kingdom in which the collar occurs.

Order 3.—Dinoflagellata.

The leading features of this group are the arrangement of the two flagella which they always possess, and the usual presence of a remarkable and often very beautiful and complex shell.

The body (Fig. 53, 1) is usually bilaterally asymmetrical, i.e. it may be divided into right and left halves which are not precisely similar. On the ventral surface is a longitudinal groove (l. gr.), extending along the anterior half only, and meeting a transverse groove (t. gr.), which is continued round the body like a girdle. From the longitudinal groove springs a large flagellum (fl. 1), which is directed forwards and serves as the chief organ of propulsion; a second flagellum (fl. 2) lies in the transverse groove, where its wave-like movements formerly caused it to be mistaken for a ring of small cilia.

The body is covered with a shell (2) formed of cellulose, and often of very complex form, being produced into long and ornamental processes, and marked with stripes, dots, &c. Besides a nucleus and a contractile vacuole, the protoplasm contains chromatophores (1, chr.) coloured with chlorophyll or an allied pigment of a yellow colour, called diatomin. Nutrition is holophytic or holozoic.

The foregoing description applies to all the commoner genera. Proroecrinum (3) is remarkable for the absence of the transverse groove, while Polykrikos (4) has no fewer than eight transverse grooves and no shell. The latter genus also has stinging-capsules or nematocytes (a, b) in the protoplasm, resembling those of Zoophytes (see Sect. IV.), and has numerous nuclei of two sizes, distinguished as meganuclei (nu.), and micronuclei (nu").
Reproduction is, as usual, by binary fission, the process taking place sometimes in a free-swimming individual, sometimes in one which has lost its flagella and come to rest.

The Dinoflagellata are mostly marine. Some are phosphorescent. Certain kinds occasionally occur in such abundance in bays and estuaries as to cause a deep brownish or red discoloration of the sea-water.

Order 4—Cystoflagellata.

This group includes only two genera, *Noctiluca* and *Leptodiscus*. A description of *Noctiluca miliaris*, the organism to which the diffused phosphorescence of the sea is largely due, will serve to give a fair notion of the leading characteristics of the order.

Noctiluca (Fig. 54) is a nearly globular organism, about \(\frac{1}{4}\) mm. in diameter. It is covered with a delicate cuticle, and the medullary protoplasm is greatly vacuolated. On one side is a groove from which springs a very large and stout flagellum or tentacle (\(bq\)), noticeable for its transverse striation. Near the base of this flagellum is the mouth (\(m\)), leading into a short gullet in which is a second flagellum (\(f\)), very small in proportion to the first. On the side opposite to the mouth is a strongly marked superficial ridge. The light-giving region is the cortical protoplasm.

Reproduction takes place by binary fission, the nucleus dividing indirectly. Spore-formation also occurs, sometimes preceded by conjugation, sometimes not.
PHYLUM PROTOZOA

The spores (b, c), formed by the breaking up of the protoplasm of the parent, escape in a form very unlike the adult, the tentacle or large flagellum being represented by a short thick process, while the main swimming organ of the flagellula becomes the small oral flagellum of the adult.

CLASS IV.—SPOROZOA.

1. Example of the Class—Monocystis agilis.

One of the most readily procured Sporozoa is the microscopic worm-like Monocystis agilis (Fig. 55, A, B), which is commonly found leading a parasitic life in the vesicules seminales of the common Earthworm. It is flattened, greatly elongated, pointed at both ends, and performs slow movements of expansion and contraction, reminding us of those of Euglena. The protoplasmic body is covered with a firm cuticle, and is distinctly divided into a denser superficial portion, the cortex, and a central semi-fluid mass, the medulla. There is a large clear nucleus (nuc.) with a distinct nucleolus and nuclear membrane, but the other organs of the protozoan cell-body are absent; there is no trace of contractile vacuole, of flagella or pseudopods, of mouth or gullet. Nutrition is effected entirely by absorption.

Reproduction takes place by a peculiar and characteristic process of spore-formation. Either a single individual, or two individuals closely applied together but not actually fused, become encysted. Multiple fission then takes place (C), the protoplasm becoming divided into an immense number of spindle-shaped spores, each surrounded with a strong chitinoid coat, and thus differing

![Fig. 55.—Monocystis agilis. A, B, two individuals in different stages of contraction; C, cyst containing spores; D—F, development of young (m) in a group of sperm-cells of the Earthworm; G, newly liberated Monocystis surrounded by sperm-cells of the Earthworm; M, young Monocystis; nu, nucleus; sp, sperm of sperm-cells of Earthworm. (After Bütschli and Huxley.)](image)
markedly from the naked spores of the Rhizopoda and Mastigophora. The protoplasm of each spore then undergoes fission, becoming divided into a number of somewhat sickle-shaped bodies, which are arranged within the spore-coat somewhat like a bundle of sausages. By the rupture of the spore-coat these *falciform young* are liberated and at once begin active movements, the thin end of the body moving to and fro like a clumsy flagellum. The falciform young appear, in fact, to be greatly modified flagellulae. They make their way to the clumps of developing sperms, bore their way in, and are thus found surrounded by sperm-cells in various stages of development (D—F). After thus living an intra-cellular life for a time, they escape into the cavity of the vesicula (G) and grow into the adult form.

2. Classification and General Organisation.

The Sporozoa are exclusively parasitic, being the only group of Protozoa of which this can be said. They have no organs of locomotion and always multiply by spore-formation. The class is divisible into the following four orders:—

Order 1.—Gregarinida.
Sporozoa in which the adult is free and motile.

Order 2.—Coccidiidea.
Sporozoa in which the adult is a minute intra-cellular parasite.

Order 3.—Myxosporidea.
Sporozoa in which the adult is amoeboid.

Order 4.—Sarcocystidea.
Elongated Sporozoa, usually found in muscle.

Systematic Position of the Example.

Monocystis agilis is a species of the genus *Monocystis*, belonging to the Family *Monocystidèa*, of the order *Gregarinida*. It is placed in the Gregarinida on account of being free and motile in the adult state. The absence of partitions dividing the protoplasm into segments indicates its position among the Monocystidae. Monocystis is distinguished by its elongated form, by the absence of any special apparatus in the cyst for the liberation and dispersal of the spores, and by its spindle-shaped spores with thickened ends, each producing 4—8 falciform young. The differences between the species of Monocystis depend largely upon size.
ORDER 1.—GREGARINIDA.

All the more typical members of the class belong to this group. With the exception of Monocystis, already described, the only genus to which it will be necessary to draw attention is *Gregarina* (Fig. 56), the various species of which are parasitic in the intestines of Crayfishes, Cockroaches, Centipedes, and other articulated animals. It differs from Monocystis in having the medullary protoplasm of the adult divided into two sections, an anterior, the *protomerite* (*pr*.), and a posterior, the *deutomerite* (*deu.*), in which the nucleus is situated. Anteriorly to the protomerite there is sometimes found, especially in young individuals, a third division, the *epimerite* (*ep.*), which is sometimes provided with hooks (*B*²), serving to attach the parasite to the epithelium of the intestine of its host. As maturity is reached the epimerite is thrown off (*B*²), and the parasite then lies freely in the cavity of the intestine.

The cysts of *Gregarina* (*C*) are often very complex and are provided with delicate ducts (*spl.*.) in the thickness of the wall, through which the spores escape. In *Gregarina gigantca* of the Lobster, the young is liberated from the spore in the form of a non-nucleated amoebula (*D*¹), with one long and one short pseudopod (*D*²); this divides by the long pseudopod (*psd. 2*) becoming separated off, and each product of fission, developing a nucleus, passes into the adult form (*D*³, *D*⁴).
Order 2.—Coccidiidea

The members of this order are extremely minute and simple forms which occur as parasites, not in the intestine, but in the actual cells of various animals. *Eimeria* (Fig. 57, 1), for instance, is found in the intestinal epithelium of the mouse and the sparrow, *Coccidium* (2) in the rabbit’s liver, and *Klossia* in the epithelium of the kidney of molluscs. They are not locomotive, but remain quiescent in the cell (A), finally encysting (C), and producing one or more spores (D), in each of which one or more falciform young (E) are developed. The remarkable parasite, *Drepanidium ranarum*, found in the blood corpuscles of the frog, is probably the falciform stage of some unknown member of this order.

Order 3.—Myxosporidea.

This group includes a small number of genera, which differ from other Sporozoa in being amœboid (Fig. 58, A). Many nuclei are present, but whether this condition is due to the multiplication of a single nucleus or to the organism being a plasmodium is not known. A good example of the order is *Myxidium*, found in the urinary bladder of the pike.
The spores are often very complex; in some cases (B) they possess organs like the trichocysts of Infusoria and the nematoecysts of Zoophytes (vide infra); in others they have the form of curious twisted bodies called psorosperms, found in the gills, kidneys, &c., of fishes; they have been seen to liberate amebula.

Order 4.—Sarcocystidea.

The best known form of this order is *Sarcocystis* (Fig. 59), which occurs in the flesh of mammals, each parasite having the form of a long spindle embedded in a striped muscular fibre. They are often known as *Rainey's* or *Miescher's corpuscles*. The protoplasm divides into spores from which falciform young are liberated.

Class V.—Infusoria.

1. Example of the Class—*Paramécium caudatum.*

Structure.—*Paramécium*, the "slipper-animalcule," is tolerably common in stagnant ponds, organic infusions, &c. The body (Fig. 60) is somewhat cylindrical, about 1/4 mm. in length, rounded at the anterior and bluntly pointed at the posterior end. On the ventral face is a large oblique depression, the *buccal groove* (*buc. gr.*), leading into a short *gullet* (*gal.*), which, as in Euglena, ends in the soft internal protoplasm.

The body is covered with small cilia arranged in longitudinal rows and continued down the gullet. The protoplasm is very clearly differentiated into a comparatively dense cortex (*cort.*) and a semi-fluid *medulla* (*med.*), and is covered externally by a thin *cuticle* (*cu.*) continued down the gullet. The cilia are prolongations of the cortex, and perforate the cuticle.

In the cortex are found two nuclei, the relations of which are very characteristic. One, distinguished as the *meganucleus* (*nu.*), is a large ovoid body, staining evenly with aniline dyes, which, when it divides, does so directly by a simple process of constriction. The other, called the *micronucleus* (*pa. nu.*), is a very small body closely applied to the meganucleus; when it divides it goes through the complex series of stages characteristic of mitosis (p. 16).

The contractile vacuoles (*c. vac.*) are two in number, and are very readily made out. Each is connected with a series of radiating spindle-shaped cavities in the protoplasm which serve as feeders to it. After the contraction of the vacuole these cavities are seen gradually to fill, apparently receiving water from the surrounding
protoplasm: they then contract, discharging the water into the vacuole, the latter rapidly enlarging while they disappear from view; finally the vacuole contracts and discharges its contents externally.

The cortex contains minute radially arranged sacs called trichocysts (trch.). When the animal is irritated, more or fewer of

Fig. 69—Paramécium caudatun. A, the living animal from the ventral aspect; B, the same in optical section; the arrow shows the course taken by food-particles; C, a specimen which has discharged its trichocysts; D, diagram of binary fission; bué. gr. buccal groove; cort. cortex; cu. cuticle; e vac. contractile vacuole; f. vac. food vacuole; gut. gut; med. medulla; me. megalanucleus; mic. micrornucleus; trch. trichocysts. (From Parker's Biology.)
these suddenly discharge a long delicate thread, which, in the condition of rest, is very probably coiled up within the sac. In a specimen killed with iodine or osmic acid the threads can frequently be seen projecting in all directions from the surface (C).

Food, in the form of small living organisms, is taken in by means of the current caused by the cilia of the buccal groove. The food-particles, enclosed in a globule of water or "food-vacuole" ($f. \text{ vac}$), circulate through the protoplasm, when the soluble parts are gradually digested and assimilated. Starchy and fatty matters, as well as proteids, are available as food, the digestive powers of Paramoecium being thus considerably in advance of those of Amoeba. Effete matters are egested at a definite anal spot posterior to the mouth, where the cortex and cuticle are less resistent than elsewhere. The whole feeding process can readily be observed in this and other Infusoria by placing in the water some insoluble colouring matter, such as carmine or indigo, in a fine state of division.

Reproduction.—Multiplication takes place by transverse fission (D), the division of the body being preceded by that of both nuclei. As already mentioned, the meganucleus divides directly, the micronucleus indirectly.

It has been proved, however, that multiplication by binary fission cannot go on indefinitely; but that after it has been repeated a certain number of times it is interrupted by conjugation. In this very remarkable and characteristic process two Paramoecia...
become applied by their ventral faces (Fig. 61, A), but do not fuse. The meganucleus (\textit{Mg. nu.}) of each breaks up into small masses, which disappear, being apparently absorbed into the protoplasm. At the same time the micronucleus (\textit{mi. nu.}) of each divides, each product of division immediately dividing again, so that each gamete or conjugating body is provided with four micronuclei (B). Two of these (\textit{mi. nu.'}, \textit{mi. nu.'}) disappear; of the remaining two one is distinguished as the stationary pronucleus, the other as the active pronucleus. The active pronucleus of each Infusor now passes into the body of the other and fuses with its stationary pronucleus (D), each individual thus coming to possess a single nuclear body derived in equal proportions from the two conjugating cells (E). The animalcules then separate from one another, and the nucleus of each divides and gives rise to the permanent mega- (G, \textit{Mg. nu.}) and micronuclei (\textit{Mi. nu.}).

2. Classification and General Organisation.

In the majority of the Infusoria the body is ciliated throughout life, but in certain forms cilia are present only in the immature condition, the adult being provided with peculiar organs of prehension or tentacles. We thus get two orders, viz.:

Order 1.—Ciliata.

Infusoria provided with cilia throughout life.

Order 2.—Tentaculifera.

Infusoria possessing cilia in the young condition, tentacles in the adult.

Systematic Position of the Example.

Paramécium aurelia is one of several species of the genus \textit{Paramécium}, belonging the Family \textit{Paramécidae}, of the sub-order \textit{Trichostomata}, and order \textit{Ciliata}. The presence of cilia in the adult condition places it among the Ciliata: the presence of a permanently open mouth into which food particles are swept by the movement of the cilia, among the Trichostomata. The \textit{Paramécidae} are free-swimming, asymmetrical, uniformly ciliated, with a ventrally placed mouth. \textit{P. caudatum} is about $\frac{4}{5}$ mm. in length, its length about four times its breadth, rounded in front, and bluntly pointed behind, and has a single micronucleus.

Order 1.—Ciliata.

This order presents a wider range of variations—some of them of a truly extraordinary character—than any other group of Protozoa.
The **form of the body** is very varied: it may be ovoid (Fig. 62, 1), kidney-shaped (2), trumpet-shaped (3), vase or cup-shaped (4, 9); produced into a long, flexible, neck-like process (5), or into large paired lappets (6); flattened from above downwards, or elongated and divided into segments reminding us of those of an articulated worm (8).

Most species are free-swimming, but some are attached to weeds, stones, &c., by a **stalk**. This may be a purely cuticular structure (9), or may contain a prolongation of the cortex in the form of a delicate contractile axial fibre (Figs. 64 and 65, ax. f.), which serves to retract the Infusor, its contraction causing the stalk to coil up into a close spiral.

The **arrangement of the cilia** is also subject to great variation, and presents four chief types. In the holotrichous type, of which Paramoecium is an example, the cilia are all small, equal-sized or nearly so, and arranged in longitudinal rows (Fig. 60, Fig. 62, 1). The second or heterotrichous type is seen in its simplest form in Nyctotherus (Fig. 62, 2), in which the left side of the peristome is bordered by a row of specially large adoral cilia, the rest of the body being covered with small cilia. In Stentor (3) the peristome is situated on the broad distal end of the trumpet-shaped body, and the adoral band of cilia takes a spiral course. This leads us to the peritrichous type of ciliation: in Vorticella (Fig. 64) the vase-shaped body is, for the most part, quite bare of cilia, but around the thickened edge of the peristome passes one limb of a spiral band of large cilia, the other limb being continued round a raised lid-like structure, or **disc**, into which the distal region is produced. This arrangement of cilia reaches its greatest complexity in Epistyliis pliactilis (Fig. 62, 9), in which the ciliary spiral makes no fewer than four turns.

But it is in the hypotrichous type that the most extraordinary modifications are found. The flattened body bears on its dorsal surface mere vestiges of cilia in the form of very minute processes of the cuticle, while on the ventral surface the cilia take the form of large hooks, fans, bristles, and plates with fringed ends (Fig. 62, 7). The hooks and plates do not vibrate rhythmically like ordinary cilia, but are moved as a whole at the will of the animal, thus acting as legs. The heterotrichous Ciliata, in fact, in addition to swimming freely in the water, creep over the surface of weeds, &c., very much after the manner of Woodlice. One of the most extraordinary forms in this group is Diaphrys, the size and arrangement of its polymorphic cilia giving it a very grotesque appearance. In another genus (10) the distal end of the flask-shaped body bears a circle of large fringed cilia, giving the animal the appearance of a Rotifer (*vide infra*, Section VII).

In addition to cilia, many genera possess delicate sheets of protoplasm or **undulating membranes** in connection with the
peristome. They contract so as to produce a wave-like movement which aids in the ingestion of food. In some cases (Fig. 62, 11) the undulating membrane (u. mb.) is a very large and obvious structure.

Certain peculiar forms have yet to be mentioned. Multicilia (Fig. 62, 14) has an irregular body of varying form, and bears a small number of very long flagellum-like cilia. Another genus in which the cilia approach to flagella is Lophomonas (13), the ovoid body of which bears a tuft of close-set cilia at its anterior end. Actinobolus (14) is remarkable for the possession, in addition to cilia, of long retractile tentacles used for attachment. In Didinium (15) the barrel-shaped body is encircled by two hoops of cilia.

As we have seen, the meganucleus in Paramécium is ovoid: in other genera it may be elongated and band-like (3, mg. nu.), horseshoe-shaped (9), very long and constricted at intervals so as to look like a string of beads (16), or much convoluted and branched (17). In some genera the meganucleus undergoes repeated division, forming at last a very great number of small bodies only discoverable by staining: this process of fragmentation of the nucleus may proceed so far that the protoplasm of a stained specimen has the appearance of being strewn with granules of chromatin. The discovery of this phenomenon has tended to throw doubt on the reported total absence of a nucleus in some Rhizopods.

In nearly all species one or more micronuclei are present, the number sometimes reaching nearly thirty. In Opaína (Fig. 66) numerous nuclear bodies (nu.) are present which divide by mitosis, and therefore resemble micronuclei: if they are to be considered as such, this genus must be held to differ from the other Ciliata in the total absence of a meganucleus.

In Torticella and other peritrichous genera there is a single contractile vacuole (Fig. 64, c. vac.), which, like that of Euglena, opens through the intermediation of a reservoir into the gullet. In the remaining Ciliata there may be one, two, or many—sometimes a hundred—contractile vacuoles. They may be scattered all over the cortex (Fig. 62, 18), or arranged in one or two rows (8). The star-like arrangement of radiating canals, described in Paramécium, occurs in several genera: or there may be two long canals, or the number of these channels in the protoplasm may reach thirty (19, c). In some instances the protoplasm is hollowed out by numerous non-contractile vacuoles (18, vac.) so as to have a reticulate appearance, reminding us of the extra-capsular protoplasm of Radiolaria.

Trichocysts, like those of Paramécium, are found in many holotrichous forms, but are rarely present in the other subdivisions of the order. In the peritrichious Epistylis umbellaria, however, there are found numerous minute capsules (Fig. 62, 9, ntc.) arranged in pairs, each containing a coiled thread. They are
Fig. 62.—Various forms of Ciliata. a shows part of a colony, b a single zooid, and c a couple of nematocysts; a. anus; c. (in 18) cuticle; e. (in 19) excretory canals; e. vac. contractile vacuole; f. vac. food vacuole; g. gullet; mi. mi. meganucleus; mi. nu. micronucleus; mth. mouth; nu. nucleus; nte. nematocyst; p. (in 15) a Partinudidium seized by Didemnum; t. tentacle; vte. vac. undulating membrane; vac. non-contractile vacuole; vest. vestibule. (From Halschii’s Protozoa, after various authors.)
obviously structures of the same character as trichocysts, and
their resemblance to the nematocysts so characteristic of Coelenterata
(vide infra, Section IV.) is singularly close.

Digestive Apparatus.—Many parasitic forms (Fig. 62, 8, 17; Fig. 66) have no mouth or gullet, and are nourished by absorption of the digested food in the intestine of their host. The simplest condition of the ingestive apparatus is found in *Prorodon* (Fig. 62, 1.) and its allies, in which the mouth (mth.) is at one pole of the ovoid body and is closed except during the ingestion of food, and the gullet (g.) is a short, straight tube. Such forms, on account of the symmetrical disposition of their organs and the want of differentiation of their cilia—they are all holotrichous—may be considered as the lowest or least specialised of the Ciliata.

From them there is a fairly complete gradation to genera, like Paramécium, having the permanently open mouth on the left side of the ventral surface, at the end of a well-marked buccal groove or peristome. *Vorticella* (Fig. 64) and its allies are peculiar in having the edge of the peristome (per.) thickened so as to form a projecting rim, and in the development of an elevated disc (d.) from the area thus enclosed; the mouth (mth.) lies between the peristome and the disc, and between it and the gullet proper (gull.) is interposed a section of the ingestive tube called the vestibule, into which the contractile vacuole opens, and which contains the anal spot. The distal end of Vorticella, with the peristome and disc, is considered to be dorsal, the narrow end, to which the stalk is attached, ventral: the mouth is, as usual, to the left. In *Nyctotherus* (Fig. 62, 2) and some other genera there is, instead of the

Fig. 63.—Various forms of *Ciliata*. In 1 the shell alone is shown; ep. contractile fibre; op. operculum. (From Bötschil's *Protozoa*, after various authors.)
temporary anal spot described in Paraméctium, a distinct anal aperture (a.).

Most of the Ciliata are naked, having no shell or other form of skeleton; but in a few forms the body is provided with a shell or lorica, formed of a chitinoid material, and reminding us of the

![Diagram](image)

Fig. 64.—Vorticella. A, B, living specimens in different positions; C, optical section; D, E, F, G, H, I, diagrams illustrating coiling of stalk; I, J, K, two stages in binary fission; E, F, free zoonid; G, H, division into mega- and microzooids; G, H, G, conjugation; H, I, multiple fission of encysted form; H, H, development of spores; a, b, axial fibre; c, d, cortex; e, f, cuticle; g, h, contractile vacuole; d, disc; gull, gullet; m, microzooid; mth, mouth; nu, meganucleus; per, peristome. (From Parker's Biology.)

similar structure found in so many of the Mastigophora. Some (Fig. 62, 4) have bell-like shells, variously ornamented, and in others (Fig. 63, 1) the similarly shaped shell is perforated and resembles the skeleton of some of the Radiolaria. A chitinoid plate or operculum (Fig. 63, 2, op.) may be fixed to the edge of the peristome, and, when the animal is retracted in its case accurately closes the mouth of the latter, or a similar operculum (3) is
attached to the interior of the tube, and is closed by a contractile thread of protoplasm (m.), which acts as a retractor muscle.

Compound forms or colonies are common among the Peritricha, rare in the other subdivisions. Many peritrichous forms occur as branched, tree-like colonies, often of great complexity (Fig. 62, 9; Fig. 65). The stem of these may be a purely cuticular structure and non-contractile (Fig. 62, 9, b), or may contain an axial fibre or muscle, like that of Vorticella (Fig. 64, ax.f.). In Ophridium (Fig. 63, 4) the colony is an irregular mass, sometimes 3–4 cm. in diameter, consisting of a gelatinous substance in which a delicate, branching stem is embedded, each branch terminating in a zooid. Some genera (Fig. 63, 5) secrete a hollow, brown, gelatinous tube, branched dichotomously; the end of each branch is the habitation of one of the zooids.

Reproduction.—Transverse fission is the universal method of reproduction, the entire process taking from half an hour to two hours in different species. In Vorticella (Fig. 64, E) and other Peritricha the plane of division is parallel to the long axis of the bell-shaped body, but as the distal surface probably corresponds with the dorsal surface of such forms as Paramoecium, fission is really transverse in this case also. In such simple Peritricha as Vorticella division proceeds until two zooids are produced on a single stalk; one of the two then acquires a second circlet of cilia near its proximal end, becomes detached (E2), and, after leading a free-swimming life for a time, settles down and develops a stalk; in this way the dispersal of the non-locomotive species is ensured. In many species of Zoothamnium (Fig. 65) the zooids
are *dimorphic*: the ordinary bell-shaped forms \((n.z.)\) divide in the usual way, but as they remain attached, the process results only in the increased complexity of the colony, not in the development of a new one. The larger zooids \((r.z.)\) are globular and mouthless: they become detached, swim off, and, after a short free existence, settle down, develop a stalk \((F)\), divide, and so form a new colony.

In Vorticella multiplication by *budding* also occurs: a small process is given off from one side (Fig. 64, \(F\)), develops a basal circlet of cilia, and swims off as a *microzooid*, the parent individual

or *megazooid* being left attached to the stalk. Obviously this process is simply a modification of binary fission, the products of division being of very different dimensions, instead of equal-sized as in the more usual case.

Spore-formation take place in Colpoda. The Infusor becomes encysted, and divides into two, four, and finally eight masses, each of which, becoming surrounded by a special investment, becomes a spore. A somewhat similar process has been described in Vorticella (Fig. 64, \(II\)).

A peculiar kind of spore-formation, specially adapted to the requirements of an internal parasite, takes place in *Opalina*.
(Fig. 66), a parasite in the intestine of the Frog. Binary fission takes place (D, E, F), and is repeated again and again so rapidly that the daughter-cells are unable to grow to the adult size before the next division. The final results of the process are small bodies (G), each with only two or three nuclei instead of the large number characteristic of the adult. These become encysted (H), and in this passive condition are passed out of the Frog's intestine with its feces, frequently being deposited on water-weeds. All this takes place during the Frog's breeding season; the tadpoles or Frog-larvae feed upon the water-plants, and in doing so frequently take in the spores or encysted Opalinae along with their food. When this occurs the cyst is dissolved by the digestive juices of the host, and the protoplasm of the spore is set free as a rounded body with a single nucleus (I), which rapidly grows into an adult Opalina (K).

Conjugation, in the form of a temporary union, accompanied by interchange of micronuclei, has been described in Paramécium, and takes place in many other Ciliata. In *Stylonychia histrio* there is, instead, a complete union of the two gametes. In Vorticella union is also permanent, and takes place, not between two ordinary forms, but between one of the ordinary stalked individuals, or megagametes, and a free-swimming, small form, or microgamete, produced, as described above, by budding (G¹, G²). The essence of conjugation is the reception of nuclear material derived from another individual; its effect appears to be increased activity in multiplication by fission.

Order 2.—Tentaculifera.

Judged from the adult structure alone, the members of this order would certainly be placed in a separate class of the Protozoa: it is only in virtue of the facts of development that they are united in a single class with the Ciliata.

The **body** may be globular (Fig. 67, 1a), ovoid (1b), or cup-shaped (2a), but presents nothing like the variety of form met with among the Ciliata. The distinguishing feature of the group is furnished by the **tentacles** which are always present in greater or less number, and which, in some cases at least, are the most highly differentiated organs found in the whole group of Protozoa. The characters of the tentacles vary strikingly in the different genera.

In the common forms *Acineta* (2), and *Podophrya* (1), the tentacles spring either from the whole surface or in groups from the angles of the somewhat triangular body. Each tentacle is an elongated cylindrical structure (1c), capable of protrusion and retraction, and having its distal end expanded into a sucker. It is, moreover, practically tubular, the axial region consisting of a semi-fluid
protoplasm, while the outer portion is tolerably firm and resistant. When partially retracted, a spiral ridge is sometimes observable around the tentacle; this may indicate the presence of a band of specially contractile protoplasm, resembling the axial fibre in the...
stalk of *Vorticella*. Infusorians and other organisms are caught by the tentacles (4, 6), the cuticle of the prey is pierced or dissolved where the sucker touches it, and the semi-fluid protoplasm can then be seen flowing down the tentacle into the body of the captor. A single tentacle only may be present (3), or the tentacle may be branched (4), the extremity of each branch being suckorial. In some forms there are no terminal suckers (3), and the tentacles are waved about to catch the prey instead of standing out stiffly as in *Acineta*. In other cases there are one or more long striated tentacles with tufted ends (7).

The nucleus may be ovoid (1a), horseshoe-shaped, or branched (8, 9); in some cases a micronucleus (1a, m.n. nu.) has been found. There are one or more contractile vacuoles (c. vac.).

Some genera are naked (1): others form a stalked shell or *lorica* (2 u) like that met with in many of the Mastigophora.

The only colonial form is the wonderful *Dendrosoma* (9), in which the entire colony attains a length of about 2 mm., and bears an extraordinary resemblance to a zoophyte *(vide infra, Sect. IV.)*. It consists of a creeping stem from which vertical branches spring, and the various ramifications of these are terminated in Podophyra-like zooids with suckorial tentacles. The nucleus is very remarkable, extending as a branched axis throughout the colony (b, nu.).

Reproduction by binary fission takes place in many species. In *Ephelota gemmipara* (8) a peculiar process of budding occurs: the distal end of the organism grows out into a number of projections or buds, into which branches of the nucleus extend. These become detached, acquire cilia on one surface, and swim off (b). After a short active existence tentacles appear and the cilia are lost. In this case budding is external, but in *Acineta tuberosa* (2 b) the buds become sunk in a depression, which is finally converted into a closed broad-cavity (b.c.): in this the buds take on the form of ciliated embryos, which finally escape from the parent. In *Dendrosoma* the common stem of the colony produces both internal and external buds (b, bd.).

Further Remarks on the Protozoa.

The majority of the Protozoa are aquatic, the phylum being equally well represented in fresh and salt water. They occur practically at all heights and depths, from 8,000 to 10,000 feet above sea-level, to a depth of 2,000 to 3,000 fathoms. Some forms, such as species of *Amoeba* and *Gromia*, live in damp sand and moss, and may therefore be almost considered as terrestrial organisms. In accordance with their small size and the readiness with which they are transported from place to place a large proportion of genera and even of species are universally distributed,
being found in all parts of the world where the microscopic fauna has been investigated.

Numerous parasitic forms are known. Besides the entire class of Sporozoa, species of Rhizopoda and of Infusoria occur both as internal and external parasites. Species of Amoeba are common in the intestines of the higher animals, and one species has been found in connection with a cancerous disease in Sheep. Parasitic Vorticellae are said to give rise to the skin-disease eczema in Man. A ciliate Infusor, Ichthyophthirius, is found in the skin of freshwater Fishes, where it gives rise to inflammation and death.

Many instances have been met with in our survey of the Phylum, of compound or colonial forms, the existence of which seems at first sight to upset our definition of the Protozoa as unicellular animals. But in all such cases the zooids or unicellular individuals of the colony exhibit a quasi-independence, each, as a rule, feeding, multiplying, and performing all other essential animal functions independently of the rest, so that the only division of labour is in such forms as Zoothamnium and Volvox, in which certain zooids are incapable of feeding, and are set apart for reproduction. In all animals above Protozoa, on the other hand, the body is formed of an aggregate of cells, some of which perform one function, some another, and none of which exhibit the independent life of the zooid of a protozoan colony. It cannot, however, be said that there is any absolute distinction between a colony of unicellular zooids and a single multicellular individual: Proterospongia and Volvox approach very near to the border-land from the protozoan side, and a similar approach in the other direction is made by certain animals known as Mesozoa, which will be discussed hereafter (Sect. IV.). Moreover, the Mycetoza, the plasmodia of which are formed by the fusion of Amebae, the nuclei of the latter remaining distinct and multiplying, are rather non-cellular than uni-cellular. This point will also be referred to at the conclusion of the section on Sponges (Sect. III.).

In each division of the Protozoa we have found comparatively low or generalised forms side by side with comparatively high or specialised genera. For instance, among the Rhizopoda, there can be no hesitation in placing the Lobosa, and especially Protameba, at the bottom of the list, and the Radiolaria at the top. Similarly, among the Mastigophora, such simple Flagellata as Oikomonas (Fig. 47, 2 and 8) and Heteromita are obviously the lowest forms, Noctiluca and the Dinoflagellata the highest. But whether the Rhizopoda, as a whole, are higher or lower than the Flagellata, is a question by no means easy to answer. A flagellum certainly seems to be a more specialised cell-organ than a pseudopod, and some of the Mastigophora rise above the highest of the Rhizopoda in the possession of a firm cortex and cuticle,
and the consequent assumption of a more definite form of body than can possibly be produced by the flowing protoplasm of a Foraminifer or a Radiolarian. On the other hand, the nucleus of the Radiolaria is a far more complex structure than that of the Mastigophora, and in Foraminifera, Radiolaria, and Heliozoa the organism frequently begins life as a flagellula, a fact which, on the hypothesis that the development of the individual recapitulates that of the race, appears to indicate that these orders of Rhizopoda are a more recently developed stock than at any rate the lower Flagellata. These circumstances, and the fact that Mastigamoeba might equally well be classed as a lobose Rhizopod with a flagellum or as a Flagellate with pseudopods, seem to indicate that the actual starting-point of the Protozoa was a form capable of assuming either the amœboid or the flagellate phase. From such a starting-point the Lobosa, Foraminifera, Heliozoa, Radiolaria, and Flagellata diverge in different directions, the first four keeping mainly to the amœboid form, but assuming the flagellate form in the young condition, in the case of Foraminifera, Heliozoa, and Radiolaria.

The Choanoflagellata, Dinoflagellata, and Cystoflagellata are obviously special developments of the Flagellate type along diverging lines.

As to the Ciliata, Lophomonas and Multicilia (Fig. 62, 12 and 13) appear to indicate the derivation of the order from the Flagellate type, since their cilia are long and flagellum-like, but the evidence is not strong and no other is at hand. The derivation of the Tentaculifera from a ciliate type appears to be clear. The Tentaculifera and the hypotrichous Ciliata are undoubtedly the highest develop-

Fig. 68.—Diagram showing the mutual relationships of the chief groups of Protozoa.
ment of the Protozoan series, since they show a degree of differentiation attained nowhere else by a single cell.

The Mycetozoa appear to have been derived from the common amœboid-flagellate stock, since they are all predominantly amœboid in the adult condition, flagellate when young. The Sporozoa probably had a similar origin, but the characters of this class have evidently been profoundly modified in accordance with their parasitic mode of life.

The diagram on the previous page is an attempt to express these relationships in a graphic form.
The microscopic animals described in the preceding section are, as already repeatedly pointed out, characterised by their unicellular character, and in this respect stand in contrast to the remainder of the animal kingdom. The animal kingdom is thus capable of division into two great subdivisions, the Protozoa or unicellular animals, and the Metazoa or multicellular—the latter comprising all the groups that remain to be dealt with. In the earliest stage of their existence all the multicellular animals or Metazoa are, as already pointed out (p. 18), in a unicellular condition, originating in a single cell, the fertilised ovum or oosperm. By the process of segmentation or yolk-division the unicellular oosperm becomes converted in all the Metazoa into a mass of cells from which the body of the adult animal is eventually built up. Of the Metazoa, the group which approximates most closely to the Protozoa is that now to be dealt with—the Porifera or Sponges.

1. Example of the Class—\textit{Sycon gelatinosum}.

\textbf{General External Appearance and Gross Structure.}—\textit{Sycon gelatinosum},1 one of the Calcareous Sponges, has the form of a tuft, one to three inches long, of branching cylinders (Fig. 69), all connected together at the base, where it is attached to the surface of a rock or other solid body submerged in the sea. It is flexible, though of tolerably firm consistency; in colour it presents various shades of gray or light brown. To the naked eye the surface appears smooth, but when examined under the lens it is found to exhibit a pattern of considerable regularity, formed by the presence of

1 This species is an inhabitant of southern seas. In all essential respects the account of it given above will apply to \textit{S. ciliatum}, a common European species which differs chiefly in the absence of the pore-membranes.
innumerable elevations of a polygonal shape, which cover the whole surface and are separated off from one another by a system of depressed lines. In these depressions between the elevations are to be detected, under the microscope, groups of minute pores—the inhalant pores. At the free end of each of the cylindrical branches is a small but distinct opening, surrounded by what appears like a delicate fringe. When the branches are bisected longitudinally (Fig. 70), it is found that the terminal openings (o) lead into narrow passages, wide enough to admit a stout pin, running through the axes of the cylinders; and the passages in the interior of the various branches join where the branches join—the passages thus forming a communicating system. On the wall of the passages are numerous fine apertures which require a strong lens for their detection. The larger apertures at the ends of the branches are the oscula of the sponge, the passages the paragastric cavities. If a living Sycon is placed in sea-water with which has been mixed some carmine powder, it will be noticed that the minute particles of the carmine seem to be attracted towards the surface of the sponge, and will often be seen to pass into its substance through the minute inhalant pores already mentioned as occurring in groups between the elevations on the outer
surface. This would appear to be due to the passage of a current of water into the interior of the sponge through these minute openings dotted over the surface; and the movement of the floating particles shows that a current is at the same time flowing out of each of the oscula. A constant circulation of water would thus appear to be carried on—currents moved by some invisible agency flowing through the walls of the sponge to the central paragastric cavities, and passing out again by the oscula.

If a portion of the Sycon is firmly squeezed, there will be pressed out from it first sea-water, then, when greater pressure is exerted, a quantity of gelatinous-looking matter, which, on being examined microscopically, proves to be partly composed of a protoplasmic material consisting of innumerable, usually more or less broken, cells with their nuclei, and partly of a non-protoplasmic, jelly-like substance. When this is all removed there remains behind a toughish felt-like material, which maintains more or less completely the original shape of the sponge. This is the skeleton or supporting framework. A drop of acid causes it to dissolve with effervescence, showing that it consists of carbonate of lime. When some of it is teased out and examined under the microscope, it proves to consist of innumerable, slender, mostly three-rayed microscopic bodies (Figs. 71 and 72, sp) of a clear glassy appearance. These are the calcareous spicules which form

Fig. 71.—Sycon gelatinosum. Section through the wall of a cylinder taken at right angles to the long axes of the canals, highly magnified; co, collarocytes; IC, incumbent canals; ov, young ova; R, radial canals; sp, triradiate spicules.
the skeleton of the Sycon.

The arrangement of the spicules, their relation to the protoplasmic parts, and the structure of the latter, have to be studied in thin sections of hardened specimens (Figs. 71 and 72). An examination of such sections leads to the following results.

Microscopic structure.—Covering the outer surface of the sponge is a single layer of cells—the ectoderm (Fig. 72, ec)—through which project regularly-arranged groups of needle-like and spear-like spicules (sp'), forming the pattern of polygonal elevations on the outer surface. The cells of the ectoderm are in the form of thin scales, which are closely cemented together by their edges to form a syncytium, or membrane consisting of cells so intimately united that their boundaries are not readily distinguishable. The paragastric cavities are lined by a layer of cells (cn) which are like those of the ectoderm, but are somewhat thicker and more granular: this is the endoderm of the paragastric cavity. Running radially through the thick wall of the cylinders are a large number of regularly-arranged straight passages. Of these there are two sets, those of the one set—the incurrent canals (Figs. 71

![Fig. 72.—Sycon gelatinosum. Transverse section through the wall of a cylinder (parallel with the course of the canals), showing one incurrent canal (IC), and one radial (R) throughout their length: sp, triradiate spicules; sp', oxodode spicules of dermal cortex (dc); sp", tetraradiate spicules of gastric cortex (gr); ec, ectoderm; en, endoderm; pm, pore membrane; pp, prosopyle; ap, apopyle; di, diaphragm; ecx, excurrent passage; PG, paragastric cavity; cm, early embryo; cm', late embryo. The arrows indicate the course of the water through the sponge.](image-url)
and 72 IC)—narrower, and lined by ectoderm similar to the ectoderm of the surface; those of the other set—the radial or flagellate canals (R)—rather wider, octagonal in cross-section, and lined by endoderm continuous with the lining of the paragastric cavity. The incurrent canals end blindly at their inner extremities—not reaching the paragastric cavity; externally each becomes somewhat dilated, and the dilatations of neighbouring canals often communicate. These dilated parts are closed externally by a thin membrane—the pore membrane (Fig. 72, pm, and Fig. 73), perforated by three or four small openings (Fig. 73, p)—the inhalant pores already referred to. The flagellate canals are blind at their outer ends, which lie at a little distance below the surface opposite the polygonal projections referred to above as forming a pattern on the outer surface; internally, each communicates with the para-

![Diagram](image)

Fig. 73. *Sycon gelatinosum.* Surface view of a pore membrane highly magnified; p, inhalant pore; R, position of the outer end of a radial canal.

Fig. 74. *Sycon gelatinosum.* An apopyle surrounded by its diaphragm; m, contractile cells.

...gastric cavity by a short wide passage—the excurrent canal (Fig. 72 ex). Incurrent and flagellate canals run side by side separated by a thin layer of sponge substance, except at certain points, where there exist small apertures of communication—the prosopyle (pp)—uniting the cavities of adjacent incurrent and flagellate canals.

The ectoderm lining the incurrent canals is of the same character as the syncytium of the outer surface. The endoderm of the flagellate canals, on the other hand, is totally different from that which lines the paragastric cavity. It consists of cells of columnar shape ranged closely together so as to form a continuous layer. Each of these *flagellate endoderm cells*, or *collared cells*, as they are termed, is not unlike one of the Choanoflagellate Protozoa (p. 72); it has its nucleus, one or more contractile (?) vacuoles, and, at the inner end, a single, long, whip-like flagellum, surrounded at its base by a delicate, transparent, collar-like upgrowth, similar to that which has already been described as occurring in the Choanoflagellata. If...
a portion of a living specimen of the sponge is teased out in sea-water, and the broken fragments examined under a tolerably high power of the microscope, groups of these collared cells will be detected here and there, and in many places the movement of the flagella will be readily observed. The flagellum is flexible, but with a certain degree of stiffness, especially towards the base, and its movements resemble those which a very supple fishing-rod is made to undergo in the act of casting a long line—the movement being much swifter and stronger in the one direction than in the other. The direction of the stronger movement is seen, when some of the cells are observed in their natural relations, to be from without inwards. It is to these movements that the formation of the currents of water passing along the canals in due. The collars of the cells in specimens teased in this way become for the most part drawn back into the protoplasm.

The short passage or excurrent canal, which leads inwards from the flagellate canal to the paragastric cavity, differs from the former in being lined by flattened cells similar to those of the paragastric cavity; it is partly separated from the flagellate canal by a thin diaphragm (Fig. 72, di, and Fig. 74), perforated by a large circular central aperture—the apopyle (ap)—which is capable of being contracted or dilated: its opposite aperture of communication with the paragastric cavity, which is very wide, is termed the gastric ostium of the excurrent canal.

The effect of the movement of the flagella of the cells in the flagellate canals is to produce currents of water running from without inwards along the canals to the paragastric cavity. This causes water to be drawn inwards through the prosopyles from the excurrent canals, and, indirectly, from the exterior through the perforated membranes at the outer ends of the latter.

Between the ectoderm of the outer surface and of the excurrent canals and the endoderm of the inner surface and of the flagellate canals are a number of spaces filled by an intermediate layer—the mesoderm or mesogloea—in which the spicules of the skeleton are embedded. Each spicule is developed from a single cell of the middle layer, the remains of the cell—the seleroblast—being sometimes distinguishable on the surface of the fully developed spicule as a thin investment. The spicules (Figs. 71 and 72, sp) are regularly arranged, and connected together in such a way as to protect and support the soft parts of the sponge. Most are, as already noticed, of triradiate form. Large numbers, however, are of simple spear-like or club-like shape (sp'); these, which are termed the osseo spicules, project on the outer surface beyond the ectoderm, and are arranged in dense masses, one opposite the outer end of each of the ciliated canals; this arrangement producing the pattern already referred to as distinguishable on the outer surface. The thick outer layer in which the bases of these
oxeote spicules lie embedded, is termed the dermal cortex (dc). A thick stratum at the inner ends of the canals and immediately surrounding the paragastric cavity is termed the gastral cortex (gc). It is supported by triradiate and also by tetraradiate spicules, one ray of each of which (sp") frequently projects freely into the paragastric cavity, covered over by a thin layer of flattened endoderm cells.

The mesoderm itself, as distinguished from the spicules which lie embedded in it, consists of a clear gelatinous substance containing numerous nucleated cells of several different kinds. Most of these are small cells of stellate shape, with radiating processes—the connective-tissue cells or collagenes (Fig. 71, co); others are fusiform; a good many, the amoeboid wandering cells, are Amoeba-like, and capable of moving about from one part of the sponge to another.

Around the inhalant pores and the apopyle are elongated cells (Figs. 73 and 74), sometimes prolonged into narrow fibres. These are contractile—effecting the closure of the apertures in question,—and are therefore to be looked upon as of the nature of muscular fibres. In the case of the inhalant pores they are ectodermal; in that of the apopyle they are endodermal. A band of similar fibres surrounds the osculum—the oscular sphincter.

The sexual reproductive cells—the ova (Figs. 71 and 72, ov) and sperms—are developed immediately below the flagellate endoderm cells of the flagellate canals, and in the same situation are to be found developing embryos (cm, cm'), resembling in their various stages those of Sycon raphanus, as described below.

2.—Distinctive Characters and Classification.

Sponges are plant-like, fixed, aquatic Metazoa, all, with the exception of one family, inhabitants of the sea. The primary form is that of a vase or cylinder, the sides of which are perforated by a number of pores, and in the interior of which is a single cavity; but in the majority of Sponges a process of branching and folding leads to the formation of a structure of a much more complex character. The surface of the Sponge is covered by a single layer of flattened cells—the ectoderm—and the internal cavities, or a part of them, are lined by a second single layer—the endoderm—part or the whole of which consists of a single layer of columnar cells each provided internally with a long flagellum. Between these two layers is a quantity of tissue usually of a gelatinous consistency—the mesoderm or mesoglea—containing a number of cells of various kinds, some of which secrete the elements of the skeleton. The skeleton or supporting framework, developed in the mesoderm, consists in some cases of fine flexible fibres of a material termed spongia; in others of spongine fibres supplemented by microscopic siliceous spicules; in others of siliceous spicules alone; in others
of spicules of carbonate of lime. Reproduction takes place both asexually by the formation of gemmules, and sexually by means of ova and sperms. The ovum develops into a ciliated free-swimming larva, which afterwards becomes fixed and develops into the plant-like adult Sponge.

The Sponges are sufficiently far removed in structure from their nearest allies—the Protozoa on the one hand and the Cœlenterata on the other—to justify us in looking upon them as constituting one of the great divisions or phyla of the animal kingdom. At the same time there is so much uniformity of structure within the group that a division into classes is not demanded; the phylum Porifera contains a single class.

The class Porifera is classified as follows:

Sub-Class I.—Calcarea.

Sponges with a skeleton of calcareous spicules, and with comparatively large collared cells.

Order 1.—Homocæla.

Calcareous Sponges in which the endoderm consists throughout of flagellate collared cells.

Order 2.—Heterocæla.

Calcareous Sponges in which the endoderm consists partly of flattened cells, the collared cells being restricted to flagellate canals or chambers.

Sub-Class II.—Non-Calcarea.

Sponges in which the skeleton is either absent, or composed of spongin fibres, or of siliceous spicules.

Tribe I.—MyxospongIæ.

Non-Calcarea devoid of skeleton.

Tribe II.—SilicispongIæ.

Non-Calcarea provided with a skeleton.

Order 1.—Hexactinellida.

SilicispongIæ with six-rayed siliceous spicules.

Order 2.—DesmospongIæ.

SilicispongIæ devoid of six-rayed spicules.

Systematic Position of the Example.

Sycon gelatinosum is one of many species of the genus *Sycon*. *Sycon* is one of several genera of the family *Syctiidæ*; and the
family Syceitide is one of several families of the order Heterococca of the class Calcarea. Among the families of the Heterococca, that of the Syceitide is distinguished by the following features, which characterise all its members:—

"The flagellate chambers are elongated, arranged radially around a central paragastric cavity, their distal ends projecting more or less on the dermal surface, and not covered over by a continuous cortex. The skeleton is radially symmetrical."

Of the genera into which the Syceitide are divided, Sycon is characterised as follows:—

"The flagellate chambers are not intercommunicating; their distal ends are provided each with a tuft of oxoete spicules."

The members of one of the other genera of the family—Syceitta—while possessing the general characteristics of the family, differ from those of the genus Sycon in wanting the tufts of oxoete spicules; those of a third—Syceantha—have the flagellate chambers united in groups; the chambers of each group intercommunicating by openings in their walls, and each group having a single common opening into the gastric cavity. The members of this genus resemble Sycon, and differ from Syceitta in the presence of tufts of oxoete spicules at the distal ends of the flagellate chambers.

These distinctions between classes, orders, families, and genera are of an entirely arbitrary character. No such divisions exist in nature; and they are merely established as a convenient way of grouping the sponges and facilitating their classification. But a classification of this kind, if carried out on sound principles, should nevertheless have something corresponding to it in nature, inasmuch as the grouping of the various divisions and subdivisions aims at expressing the relationships of their members to one another. The members, for example, of the family Syceitide are all regarded, on account of the features which they possess in common, as being more nearly related to one another than to the members of the other families, and as having been derived from a common ancestor which also possessed those features—the divergences of structure which we observe in the different genera and species being the result of a gradual process of change.

Within the limits of the genus Sycon, S. gelatinosum is distinguished from the rest as a group of individual Sponges all possessing certain specific characters which it will be unnecessary to detail here. But the individual Sponges referable to this species frequently differ somewhat widely from one another: there are numerous individual variations. If we compare a number of specimens all possessing the species-characters of Sycon gelatinosum, we find that they differ in the number of branches, in the shape of the cylinders—some being relatively narrow, some relatively wide—in the degree of development of the oscular crown of spicules, in the ratio of the thickness of the wall to the width
of the contained paragastric cavities, and in many other more
minute points; in fact, we find as a result of the comparison that no
two specimens are exactly alike. These differences are so great
that some very distinct races or varieties of S. gelatinosum have
been recognised, and some have received special names. Here
again, as in the case of the families and orders, the distinctions
are of an arbitrary character—some writers on Sponges setting
down as several species what others regard merely as varieties of
one species. It is impossible, in fact, to draw a hard and fast line
of distinction between species and varieties. In the higher groups
of animals the attempt is made to establish a physiological dis-
tinction; all the members of a species are regarded as being fertile
inter se, and capable of producing fertile offspring as a result of
their union; but such a mode of distinguishing species is impos-
sible of application among lower forms such as the sponges. In
these lower groups, accordingly, a species can only be defined as
an assemblage of individuals which so closely resemble one an-
other that they might be supposed to be the offspring of a parent
form similar to themselves in all the most essential features.
And, according to the view taken of the relative importance of
different points of colour, shape, and internal structure, the con-
ceptions of the species and their varieties and mutual relationships
formed by different observers must often differ widely from one
another.

General Form and Mode of Growth.—The simplest Sponges
are vase-shaped or cylindrical in form, either branched or un-
branched, and, if branched, with or without anastomosis or
coalescence between neighbouring branches. But the general
form of the less simple Sponges diverges widely from that of such
a branching cylinder as is presented by Sycon gelatinosum
(Fig. 69).

From the point to which the embryonic sponge becomes
attached it may spread out horizontally, following the irregulari-
ties of the surface on which it grows, and forming a more or less
closely adherent encrustation like that of an encrusting lichen
(Fig. 75, A). The surface of such an encrustation may be smooth;
more commonly it is raised up into elevations—rounded bosses,
cones, ridges or lamellae; and the edges may be entire or lobed.
In other cases the sponge grows at first more actively in the
vertical than in the horizontal direction, and the result may be a
long, narrow structure, cylindrical or compressed, and more or less
branched (Fig. 75, B). Sometimes vertical and horizontal growth
is almost equal, so that eventually there is formed a thick, solid
mass of a rounded or polyhedral shape (Fig. 75, C), with an even,
or lobed, or ridged surface. Very often, after active vertical growth
has resulted in the formation of a comparatively narrow basal part or stalk, the Sponge expands distally, growing out into lobes or branches of a variety of different forms, and frequently anastomosing. Sometimes, after the formation of the stalk with root-like processes for attachment, the Sponge grows upwards in such a way as to form a cup or tube with a terminal opening. Such a

![Diagram of various Sponges](Fig. 75)

A. Oscaria

B. Psammoclema

C. Euspongia

D. Poterion

Fig. 75.—External form of various Sponges. *A*, Oscaria, an encrusting form, with the upper surface raised up into a number of rounded prominences; *B*, Psammoclema, a ramifying subcylindrical Sponge; *C*, Euspongia (toilet sponge), a massive form with a broad base; *D*, Poterion (Neptune's Cup), an example of a complex Sponge assuming the form of a vase. (After Vosmaer.)

cup-shaped Sponge, exemplified in the gigantic Neptune's Cup (*Poterion*, Fig. 75, *D*), is not to be confounded with the simple vase or cup referred to above as the simplest type of Sponge, being a much more complex structure with many oscula. Sometimes the Sponge grows from the narrow base of attachment into a thin flat plate or lamella; this may become divided up into a number of parts or lobes, which may exhibit a divergent arrange-
ment like the ribs of an open fan. Often the lamella becomes folded, and sometimes there is a coalescence between the folds, resulting in the development of a honey-comb-like form of sponge.

Sponges resemble plants, and differ from the higher groups of animals, in the readiness with which, in many cases, their form becomes modified during growth by external conditions (environment). Different individuals of the same kind of sponge, while still exhibiting the same essential structure and the same general mode of growth, may present a variety of minor differences of form, in accordance with differences in the form of the supporting surface or in the action of waves and currents.

Leading Modifications of Structure.—Sycon gelatinosum belongs to a type of sponges intermediate between the very simplest forms on the one hand, and the more complex on the other. The simplest and most primitive of known sponges is one named *Ascetta primordialis* (Fig. 76). It is vase-shaped, contracted at the base to form a sort of stalk by the expanded extremity of which it is attached; at the opposite or free end is the circular osculum. So far there is a considerable resemblance to Sycon gelatinosum; but the structure of its wall in *Ascetta* is extremely simple. Regularly arranged over the surface are a number of small rounded apertures, the inhalant or incurrent pores; but, since the wall of the sponge is very thin, these apertures lead directly into the central or paragastric cavity (Fig. 77, A), the long passages or canals through which the communication is effected in Sycon being absent. The wall consists of the same three layers as in Sycon, but the middle one, though it contains a small number of spicules, is very thin. The ectoderm is a syncytium; the endoderm, which lines the paragastric cavity, consists throughout of flagellate collared cells similar to those of the flagellate canals of Sycon.
A somewhat more complex type of structure than that of Ascetella is exhibited by those Sponges in which the wall becomes thickened and perforated by radially-arranged canals, which open directly on the outer surface by means of inhalant pores, and lead directly into the paragastric cavity by means of apopyles—the whole inner surface as well as the radial canals being lined with flagellate endoderm cells. In forms which may be regarded as representing the next stage of development (Fig. 77, B; see also the figures of Sycon gellatinosum), there are formed by infolding of the surface, in the intervals between the radial canals, canal-like spaces, the incurrent canals, lined by ectoderm and communicating with the exterior on the one hand, either by a wide opening or by pores perforating a pore-membrane, and on the other by means of small openings, the prosopyles, with the radial canals. In some Sponges of this grade, as in those of the last described, the whole endoderm may consist of flagellate

Fig. 77.—Diagram of the canal system of various sponges, the ectoderm denoted by a continuous narrow line; the flattened endoderm by an interrupted line; the flagellate endoderm by short parallel strokes. A, cross-section through a part of the wall of an Ascon; B, cross-section through a part of the wall of a Sycon; C, cross-section through a part of the wall of Leucilla coarces; D, vertical section through Osmarella; a, spaces of the incurrent canal system; b, spaces of the eixcurrent canal system; os., osculum. (After Korschelt and Heider.)
collared cells, but in many, as in Sycon, these cells are found only in the radial canals, and not in the paragastric cavity, which is lined with flattened cells like those of the ectoderm. Sponges similar to Sycon gelatinosum, but with branching flagellate canals (Fig. 77, C), afford us the next grade of advancing complexity. In these the incumbent as well as the flagellate canals may form a branching system. In all the higher groups of Sponges (Fig. 77, D, and Fig. 78) the flagellate endoderm cells are confined to certain special enlargements of the canals—the so-called "ciliated chambers" C—and the rest of the canals are lined by flattened cells.

Special names have been applied to the main types of canal-system briefly sketched above. Forms in which the paragastric cavity is lined by flagellate cells are said to belong to the Ascon type, whether the paragastric cavity communicates directly or by flagellate canals with the exterior. Forms in which there is a paragastric cavity lined by flattened cells, and a system of radially arranged flagellate chambers, are said to possess the Sycon type of structure. Such Sponges as have small rounded flagellate chambers ("ciliated chambers"), communicating in most cases by narrow branching incumbent canals with the exterior (directly or indirectly) on the one hand, and by similar excurrent canals with the paragastric cavity on the other—the flagellate cells being confined to the flagellate chambers—are said to possess the Rhagon type of canal-system.

The development of branches from the originally simple Sponge, and the coalescence of neighbouring branches with one another, greatly obscure the essential nature of the Sponge as a colony of zooids similar to the branches of Sycon gelatinosum, and this effect is increased by the development of a variety of infoldings of the

![Diagram](image-url)
ectoderm which appear in the higher forms. The oscula distributed over the surface of the mass may indicate the component zooids, but these are not always recognisable, being carried inwards by the infoldings or closed up altogether.

A thicker or thinner specialised outer layer—the *dermal cortex*—situated immediately below the superficial ectoderm, is present in many Sponges. This is a layer of mesoderm with special skeletal elements, usually containing spaces and canals lined by ectoderm—subdermal cavities (Fig. 78, SD)—which communicate directly with the exterior, and, internally, usually with more deeply situated spaces (subcortical cavities), from which the incumbent canals lead to the ciliated chambers. This dermal cortex is present, though not highly developed, in *Sycon gelatinosum* (Fig. 72, de), and the enlarged outer ends of the incumbent canals lying in the dermal cortex, and closed externally by the pore-bearing membrane, may be regarded as representing dermal cavities. In most higher sponges a special inner layer is developed; this is the *gastral cortex*, represented in a rudimentary form in *Sycon gelatinosum* (Fig. 72, gc.) as the internal layer with special spicules, in which the incumbent canals are situated.

Histology.—In the protoplasmic elements or cells of the various groups of Sponges there is little variation, except in minor points. The cells of the ectoderm (Fig. 79) are flattened and form a syncytium; very rarely they assume other forms; in some cases each flattened ectodermal cell is provided with a flagellum. The endoderm consists of flattened cells similar to those of the ectoderm, or of flagellate collared cells. In the gelatinous substance of the mesoderm are embedded connective-tissue cells, amoeboid wandering cells, and, in certain positions (around orifices), muscle cells. Unicellular glands (see p. 22) are present in some sponges, both calcareous and siliceous; also cells containing the pigment to which the bright colour of many sponges is due, though in most cases the pigment is not confined to special cells, but occurs scattered through the connective-tissue cells and flagellate cells. Fresh-water Sponges are green, owing to the presence of chlorophyll, the colouring matter to which the prevailing green colour of plants is due. Sensory cells or nerve cells have been described; but the nature of the elements which have been so regarded cannot be said to have been placed beyond question.

![Fig. 79.—Cells of the ectoderm, very highly magnified. (After Von Lendenfeld.)](image-url)
The elements of the *skeleton* differ in character in the different classes. In the Calcarea they consist of calcareous spicules, usually triradiate in form. Each of these spicules is developed from a single cell—the *scleroblast*. In the Non-Calcarea the skeleton either consists of spongine fibres alone (Fig. 80, A), or of siliceous spicules alone, or of a combination of spongine fibres with siliceous spicules (B); in some Myxospongiae skeletal parts are altogether absent. Spongine is a substance allied to silk in chemical composition; the fibres are exceedingly fine threads, consisting of a soft granular core and an outer tube of concentric layers of spongine. These threads branch.

Fig. 80.—Microscopic structure of the skeleton in various sponges. *A,* Euspongia, network of spongine fibres; *B,* Pachychalina, spongine strengthened by siliceous spicules; *C,* Spongellia, spongine strengthened by various foreign siliceous bodies, fragments of spicules of other sponges, &c. (After Vosmaer.)
and anastomose, or are woven and felted together in such a way as to form a firm, elastic supporting structure. They are secreted by the activity of certain cells of the mesoderm, which are called the spongina-blasts. In certain exceptional cases the spongina assumes the form of spicules. The siliceous spicules (Fig. 81) are much more varied in shape than the spicules of the Calcarea, and in a single kind of Sponge there may be a number of widely differing forms of spicules, each form having its special place in the skeleton of the various parts of the Sponge-body. In most Non-Calcarea siliceous spicules and spongina fibres combine to form the supporting framework, the relative development of these two elements varying greatly in different cases. But in certain groups of the Non-Calcarea, including the common Washing-sponges (Fig. 80, A), spicules are completely absent, and the entire skeleton consists of spongina. In some Non-Calcarea which are devoid of spicules, the place of these is taken by foreign bodies—shells of Radiolaria, grains of sand, or spicules from other sponges (Fig. 80, C). In others, again, such as the Venus’s Flower-Basket (Enplectella), the Glass-Rope Sponge (Hyalonema), and others, the skeleton consists throughout of siliceous spicules bound together by a siliceous cement.

Reproduction in the Sponges is effected either sexually or asexually. The process by which, in all but the simplest forms of Sponges, a colony of zooids is formed from the originally simple cylinder or vase, may be looked upon as an asexual mode of reproduction by budding. Asexual multiplication also assumes the form in some cases of a process of production of internal buds in the shape of groups of cells called gemmules, which eventually become detached and develop into new individuals. In the Fresh-water Sponges (Spongillidae) multiplication takes place very actively by means of such gemmules, each of which is a spherical group of cells enclosed in an envelope composed of peculiarly shaped siliceous spicules, termed amphilides (Fig. 81,
right side). These gemmules are formed in the substance of the Sponge towards the end of the year; they are set free by the decay of the part of the parent sponge in which they are developed, and fall to the bottom. In spring the contained mass of protoplasmic matter reaches the exterior through an aperture—the microple—in the wall of the gemmule, and develops into the adult form.

All Sponges multiply by a sexual process—by means of male cells, or sperms, and female cells, or ova. These are developed from certain of the amœboid wandering cells of the mesoderm, which take up a special position, usually immediately below the collared cells of the endoderm. Ova and sperms are developed in the same Sponge, but rarely at the same time. The amœboid cell destined to form sperms divides into a number of small cells, giving rise to a rounded mass of sperms. The latter, when mature, have oval or pear-shaped heads and a long tapering appendage or tail. Each amœboid cell destined to form an ovum enlarges, and eventually assumes a spherical form. After a sperm has penetrated into its interior and effected impregnation, the ovum usually becomes enclosed in a brood-capsule formed for it by certain neighbouring cells, and in this situation, still enclosed in the parent Sponge, it undergoes the earlier stages of its development.

In Sycon the course of the development is as follows. Immediately after impregnation the ovum divides into two cells; each of these again divides into two, the plane of the second division being at right angles to that of the first. A vertical radial fissure then appears, dividing each of these four cells into two: so that the embryo (Fig. 82, b, c) now consists of eight cells, which are of a pyramidal shape, and arranged in one layer in a radiating manner, in such a way as to form a flat cone with a central aperture. The apices of the eight pyramidal cells are next separated off as a ring of eight small cells from the rest of the cells, which remain as eight larger cells. The eight small cells are the endoderm cells, the eight larger are the ectoderm cells. The cells are arranged so as to form the wall of a sphere—the blastula (Fig. 82, d)—with a central cavity, the ectoderm cells being on one side of the sphere and the endoderm cells on the other. The endoderm cells soon increase greatly in number by further division, and remain clear; the ectoderm cells divide more slowly, and become granular. The clear cells become elongated, and flagella are developed at their outer ends (Fig. 82, e). The granular cells become pushed inwards so as to be partially enclosed by the clear cells, the space (segmentation cavity or blastocoel) in the interior of the blastula becoming greatly reduced. In this stage of development—termed the amphiblastula (Fig. 82, e) the embryo Sycon escapes from the enclosing capsule into the flagellate canal and reaches the exterior. It is now an oval body consisting of a mass of cells, of which
those on the one side are numerous, clear, narrow, arranged parallel with one another, and provided with cilia at their free ends; while those on the other are fewer and larger, of rounded shape, coarsely granular and devoid of cilia: between these two sets of cells is a cavity in which are a few cells—the beginning of the middle layer. The clear cells next become pushed in or invaginated within the granular cells (Fig. 82, f) so that the embryo becomes converted into a double-walled cup—the gastrula—the outer layer of the wall of which is formed by the granular ectoderm cells, and the inner by the clear endoderm. The flagella of the
clear cells disappear at this stage, and the ectoderm cells become amœboid and lose their granular character. The opening of the cup or gastrula—the blastopore—at first a wide opening, soon becomes narrowed, and eventually closes up completely. A clear layer containing cells—the mesogloea—has now become developed between the other two, and in this the first spicules become developed. The embryo has meanwhile become fixed by the side on which the blastopore was situated (Fig. 82, g), and soon assumes a cylindrical form (Fig. 82, h, i). An aperture which is developed at the free end becomes the osculum, and small perforations in the sides of the cylinder form the inhalant apertures. As the wall of the cylinder increases in thickness by the growth of the mesogloea the radial canals are formed, the endoderm extending into them and its cells becoming flagellate.

The amphiblastula type of larva is characteristic of the Calcarea, and is probably universal in that sub-class, except in such primitive forms as Ascetta. In the latter there is an oval blastula with a wall composed of a single layer of flagellate cells. From the posterior pole of the blastula, where the cells are more granular, cells pass into the segmentation cavity, which they eventually completely fill. The central mass of cells thus formed gives rise to the collar-cells of the flagellate chambers, the outer layer to the flattened ectoderm.

In the Silicispongiae, on the other hand, the typical larva is a solid body with a superficial layer of ciliated, and an internal mass of granular cells. From the former, apparently, the collared cells of the flagellate chambers are formed; from the latter the external ectoderm and the flattened cells lining the canals. The granular cells break through the ciliated cells at one end and grow over the latter as an investing layer. This is a remarkable reversal of what, as will be seen subsequently, is to be observed in the Coelenterata and in fact in the rest of the Metazoa, but is readily reconcilable with what takes place in Sycon and the more complex Calcarea.

Distribution and Mode of Occurrence of Sponges, and their Position in the Animal Series.—Fossil remains of Sponges have been found in various formations from those of the Cambrian period onwards, the greatest abundance being found in the Chalk. No extinct class or order has been detected, the fossil forms being all members of existing groups. Some of the orders of existing Sponges—such as the Myxospongiae—are incapable of being preserved as fossils, and the fossil forms belong, as we should expect, to the more highly silicified Non-Calcarea and to the more complex groups of the Calcarea.

Fresh-water Sponges (Spongillidae) occur in rivers, canals, and lakes in all the great divisions of the earth's surface. Marine Sponges occur in all seas, and at all depths, from the shore
between tide-marks to the deepest abysses of the ocean. The Calcarea and the true horny sponges (*Ceratosa*) are most abundant in shallow water, and have not been found below 450 fathoms. The Sponges found at the greatest depths are members of the groups *Hexactinellida* and *Choristida* of the Non-Calcarea.

Sponges do not appear to be edible by Fishes or even the higher Crustaceans or Mollusces. Countless lower animal forms, however, burrow in their substance, if not for food, at least for shelter, and the interior of a Sponge is frequently found to be teeming with small Crustaceans, Annelids, Mollusces, and other invertebrates. None of the Sponges are true parasites. The little Boring Sponge, *Cliona*, burrows in the shells of Oysters and other bivalves, but for protection and not for food. But a Sponge frequently lives in that close association with another animal or plant to which the term *commensalism*, or commensalism, is applied, associations which benefit one or both. Thus some species of Sponge are never found growing except on the backs or legs of certain Crabs. In these cases the Sponge protects the Crab and conceals it from its enemies, while the Sponge benefits by being carried from place to place and thus obtaining freer oxygenation. Certain Cirripede crustaceans (members of the order to which the Barnacles and Acorn-shells belong) are invariably found embedded in certain species of Sponge. Frequently a Sponge and a Zoophyte grow in intimate association, so that they seem almost to form one structure. Thus the Glass-robe Sponge (*Hyalonema*) is always found associated with a Zoophyte (*Palythoa*), and there are many other instances. Sponges often also grow in very close association with certain low forms of plants (*Algae*).

The position of the Porifera in the animal series is unquestionably among the Metazoa. The view that they are compound Protozoa is now no longer maintained, since the significance of the facts of their development has been fully recognised. A Sponge is to be regarded as a colony of Protozoa only in the sense in which the same may be said of one of the higher animals. It consists of a complex of cells, some of which have a considerable degree of independence, and some of which have a close resemblance to certain Protozoa; but the same is true of one of the higher animals, the difference being one of degree and not of kind. Like the rest of the Metazoa, the Sponge develops from the oosperm by a process of yolk-division.

But the Porifera are perhaps somewhat nearer the Protozoa than are any of the other types of Metazoa; and among the Protozoa they appear to approach nearest to certain colonial Flagellata. The genus *Proterospongia* (Fig. 52), already referred to (p. 73), appears to be the member of the latter group which of all known forms most closely resembles a sponge. *Proterospongia* consists of a colony of collared Flagellates (*Choano-Flagellata*) embedded in a mass of gelatinous substance, in which there are
also amœboid zooids similar to the amœboid wandering cells of Sponges.

But, while the Porifera are clearly Metazoa, and not Protozoa, there is some room for difference of opinion as regards their relationships to the Cœlenterata, with which great type they are sometimes amalgamated. The reasons for and against such an arrangement will be discussed in considering the general relationships of the Cœlenterata.
SECTION IV

PHYLUM CŒLENTERATA

In the previous section we saw that the simplest type of Sponge has the general character of a cylinder, closed at one end and open at the other, and having walls perforated by minute pores, and composed of three layers—ectoderm, mesogloea, and endoderm, the last consisting of collared flagellate cells.

In such an organism as this, imagine the pores to disappear, the internal cavity thus coming to communicate with the exterior by a single terminal aperture; the mesogloea to be replaced by a very thin structureless layer containing no cells; the endoderm cells to lose their collars; and a circle of arm-like processes, or tentacles, formed of the same layers as the body-wall, to be developed around the terminal aperture. The result would be a polype, and would serve as a type of the general structure of the group of animals with which we are now concerned.

The most familiar examples of Cœlenterata are the horny, seaweed-like "Zoophytes," or, as they are sometimes called, "Corallines," to be picked up on every sea-beach, Jelly-fishes, Sea-anemones, and Corals. The phylum is divided into four classes as follows:

Class 1. HYDROZOA, including the Fresh-water Polypes, Zoophytes, many Jelly-fishes—mostly of small size—a few Stony Corals, and the peculiar Palæozoic fossils known as Graptolites.
Class 2. SCYPHOZOA, including most of the large Jelly-fishes.
Class 3. ACTINOZOA, including the Sea-anemones, and the vast majority of Stony Corals.
Class 4. CTENOPHORA, including certain peculiar Jelly-fishes known as "Comb-jellies."

CLASS I.—HYDROZOA.

1. Example of the Class—Obelia.

General Structure.—Obelia is a common zoophyte occurring in the form of a delicate, whitish or light brown, almost fur-like
growth on the wooden piles of piers and wharfs. It consists of branched filaments about the thickness of fine sewing-cotton: of these, some are closely adherent to the timber, and serve for attachment, while others are given off at right angles, and present at intervals short lateral branches, each terminating in a bud-like enlargement.

The structure is better seen under a low power of the microscope. The organism (Fig. 83) is a colony, consisting of a common stem or axis, on which are borne numerous zooids. The axis consists of a horizontal portion, resembling a root or creeping stem, and of vertical axes, which give off short lateral branches in an alternate manner, bearing the zooids at their ends. At the proximal ends of the vertical axes the branching often becomes more complex: the offshoots of the main stem, instead of ending at once in a zooid, send off branches of the third order on which the zooids are borne. In many cases, also, branches are found to end in simple club-like dilatations (Bd. 1, 2): these are immature zooids.

The large majority of the zooids have the form of little conical structures (P. 1—P. 4), each enclosed in a glassy, cup-like investment or hydrotheca (h.th), and produced distally into about two dozen arms or tentacles (t): these zooids are the polypes or hydrothecas. Less numerous, and found chiefly towards the proximal region of the colony, are long cylindrical bodies or blastostylces (bls), each enclosed in a transparent case, the gonotheca (g.th), and bearing numerous small lateral offshoots, varying greatly in form according to their stage of development, and known as medusa-buds (m.bd). By studying the development of these structures, and by a comparison with other forms, it is known that both blastostyles and medusa-buds are zooids, so that the colony is trimorphic, having zooids of three kinds.

To make out the structure in greater detail, living specimens should be observed under a high power. A polype is then seen to consist of a somewhat cylindrical, hollow body, of a yellowish colour, joined to the common stem by its proximal end, and produced at its distal end into a conical elevation, the manubrium or hypostome (mnb), around the base of which are arranged the twenty-four tentacles in a circle. Both body and manubrium are hollow, containing a spacious cavity, the enteron (ent), which communicates with the outer world by the mouth (mth), an aperture placed at the summit of the manubrium. The mouth is capable of great dilatation and contraction, and accordingly the manubrium appears now conical, now trumpet-shaped. Under favourable circumstances small organisms may be seen to be caught by the polypes and carried towards the mouth to be swallowed.

The hydrotheca (h.th) has the form of a vase or wine-glass, and is perfectly transparent and colourless. A short distance from its
Fig. 33.—Obelia sp. A, portion of a colony with certain parts shown in longitudinal section; B, medusa; C, the same with reversed umbrella; D, the same, oral aspect; Bd. 1, 2, buds; bls, blastostyle; co. coenosarc; ect. ectoderm; end. endoderm; ent. enteric cavity; g.th. gonotheca; h.th. hydrotheca; l. lithocyst; m.bd. medusa-bud; mnb. manubrium; msgl. mesoglea; mth. mouth; p. perisarc; P. 1, 2, 3, polypes; rad. e. radial canal; t. tentacle; vl. velum.
narrow or proximal end, it is produced inwards into a sort of circular shelf (sh), perforated in the centre; upon this the base of the polype rests, and through the aperture it is continuous with the common stem. When irritated—by a touch or by the addition of alcohol or other poison—the polype undergoes a very marked contraction: it suddenly withdraws itself more or less completely into the theca, and the tentacles become greatly shortened and curved over the manubrium (P. 2).

The various branches of the common stem show a very obvious distinction into two layers: a transparent, tough, outer membrane, of a yellowish colour and horny consistency, the perisare (p), and an inner, delicate, granular layer, the ecnosare (e), continuous by a sort of neck or constriction with the body of each hydranth. The cnenosare is hollow, its tubular cavity being continuous with the cavities of the polypes, and containing a fluid in which a flickering movement may be observed, due, as we shall see, to the action of cilia. At the base of each zooid or branch the perisare presents several annular constrictions, giving it a ringed appearance: for the most part it is separated by an interval from the ecnosare, but processes of the latter extend outwards to it at irregular intervals, and in the undeveloped zooids (Ed. 2) the two layers are in close apposition.

In the blastostyle both mouth and tentacles are absent, the zooid ending distally in a flattened disc: the hydrotheca of a polype is represented by the gonotheca (g.th), which is a cylindrical capsule enclosing the whole structure, but ultimately becoming ruptured at its distal end to allow of the escape of the medusa-buds. These latter are, in the young condition, mere hollow off-shoots of the blastostyle: when fully developed they have the appearance of saucers attached by the middle of the convex surface to the blastostyle, produced at the edge into sixteen very short tentacles, and having a blunt process, the manubrium, projecting from the centre of the concave surface. They are ultimately set free through the aperture in the gonotheca as little medusae or jelly-fish (B—D), which will be described hereafter.

The microscopical structure of a polype (Fig. 84) reminds us, in its general features, of that of such a simple sponge as Asceetta, but with many characteristic differences. The body is composed of two layers of cells, the ectoderm (ect) and the endoderm (end): between them is a very delicate transparent membrane, the mesogloea or supporting lamella (mgl), which, unlike the intermediate layer of sponges, contains no cells and is practically structureless. The same three layers occur in the manubrium, the ectoderm and endoderm being continuous with one another at the margin of the mouth. The tentacles are formed of an outer layer of ectoderm, then a layer of mesogloea, and finally a solid core of large endoderm cells arranged in a single series. The
coenosarc, blastostyles, and medusa-buds all consist of the same layers, which are thus continuous through the entire colony.

The perisarc or transparent outer layer of the stem shows no cell-structure, but only a delicate lamination. It is, in fact, not a cellular membrane or epithelium, like the ectoderm and endoderm, but a cuticle, formed, layer by layer, as a secretion from the ectoderm cells (see p. 29). It is composed of a substance of chitinoid or horn-like consistency, and, like the lorica of many Protozoa, serves as a protective external skeleton. When first formed it is of course in contact with the ectoderm, but when the full thickness is attained the latter retreats from it, the connection being maintained only at irregular intervals. In the same way the hydro- and gonothecae are cuticular products of the polypes and blastostyles respectively: in the young condition both occur in the form of a closely fitting investment of the knob-like rudiment of the zooid (Fig. 83, B, 1, 2).

The ectoderm has the general character of a columnar epithelium (see p. 22), but exhibits considerable differentiation of its component cells. It is mainly composed of large conical cells with their bases outwards, and having between their narrow inner ends clumps of small rounded interstitial cells, and occasional large branched nerve-
cells (Fig. 86, \textit{nv.c}). The tentacles and the manubrium contain, in addition, a layer of unstriped muscle-fibres between the ectoderm and the mesogloea; they are arranged longitudinally, and serve for the rapid shortening of the tentacles (Fig. 86, \textit{m.f}). This muscular layer is a derivative of the ectoderm, and may be looked upon as a rudimentary mesoderm.

Fig. 85.—Nematocysts of \textit{Hydra}. A, undischarged; B, discharged; C, nerve-supply; \textit{cnb}, cnidoblast; \textit{cnc}, cnidocil; \textit{nu}, nucleus; \textit{ntc}, nematocyst; \textit{nv.c}, nerve-cell. (From Parker's \textit{Biology}, after Schneider.)

Embedded in the ectoderm are numerous clear ovoid bodies, the stinging-capsules or nematocysts (Figs. 83—86, \textit{ntc}), organs closely resembling those of \textit{Epistylis umbellaria} (p. 84), and like them serving as weapons of offence. Each consists (Fig. 85, A) of a tough ovoid capsule, full of fluid, and invaginated at one end in the form of a hollow process continued into a long, coiled, hollow thread. The whole apparatus is developed in an interstitial cell called a \textit{cnidoblast} (\textit{cnb}), which, as it approaches maturity, migrates towards
the surface and becomes embedded in one of the large ectoderm cells. At one point of its surface the cnidoblast is produced into a delicate protoplasmic process, the *cnidocil* or *trigger-hair* (*cn*) when this is touched—for instance by some small organism brought into contact with the waving tentacle—the cnidoblast undergoes a sudden contraction, and the pressure upon the stinging capsule causes an instantaneous eversion of the thread (*B*), at the base of which are minute barbs. The threads are poisonous and exert a numbing effect on the animals upon which Obelia preys.

The endoderm also has the general character of a columnar epithelium. In the body of the polype the cells are very large and have the power of sending out pseudopods at their free ends (Fig. 84), which apparently seize and ingest minute portions of the partly-digested food. As in many Protozoa, the pseudopods may be drawn in and long flagella protruded, the contraction of which causes a constant movement of the food particles in the enteron. Amongst these large cells are narrow cells with very granular protoplasm: they are gland-cells, and secrete a digestive juice. In the manubrium a layer of endodermal muscle-fibres has been described taking a transverse direction, and so serving to antagonise the longitudinal muscles and contract the cavity. In the tentacles (Figs. 84 and 86) the endoderm (*end*) consists of a single row of short cylindrical cells, nearly cubical in longitudinal section; their protoplasm is greatly vacuolated and their cell-walls so thick that they may be considered as forming a sort of internal skeleton to the tentacles.

The structure of the **Medusa**—formed as we have seen by the development of medusa-buds liberated from a ruptured gonangium—yet remains to be considered. The convex outer surface of the bell or umbrella (Fig. 83, *B—D*) by which the zooid was originally attached to the blastostyle is distinguished as the *ex-umbrella*, the
concave inner surface as the *sub-umbrella*. From the centre of the sub-umbrella proceeds the manubrium (*mnb*), at the free end of which is the four-sided mouth (*mth*). Very commonly, as the medusa swims the umbrella becomes turned inside out, the sub-umbrella then forming the convex surface and the manubrium springing from its apex (Fig. 83, C, and Fig. 87).

The mouth (Figs. 83, 87, and 88, *mth*) leads into an enteric cavity which occupies the whole interior of the manubrium, and from its dilated base sends off four delicate tubes, the *radial canals* (*rad. c*), which pass at equal distances from each other through the substance of the umbrella to its margin, where they all open into a *circular canal* (*circ. c*), running parallel with and close to the margin. By means of this system of canals the food, taken in at the mouth and digested in the manubrium, is distributed to the entire medusa.

The edge of the umbrella is produced into a very narrow fold or shelf, the *velum* (Fig. 88, *vl*), and gives off the tentacles (*t*), which are sixteen in number in the newly-born medusa (Fig. 83), very numerous in the adult (Fig. 87). At the bases of eight of the tentacles—two in each quadrant—are minute globular sacs (*l*), each containing a calcareous particle or *lithite*. These are the *marginal sense-organs* or *lithocysts*: they were formerly considered to be organs of hearing, and are hence frequently called *oeocysts*: in all probability their function is to guide the medusa by enabling it to judge of the direction in which it is swimming. The marginal organs, in this case, may therefore be looked upon as organs of the sense of direction.

The manubrium (Fig. 88, *mnb*) of the medusa consists of

Fig. 87.—*Obelia* sp. A, mature medusa swimming with everted umbrella; B, one quarter of the same, oral aspect; *circ. c*, circular canal; *gen*, gonad; *l*, lithocyst; *mnb*, manubrium; *mth*, mouth; *rad. c*, radial canal; *t*, tentacle. (After Haeckel.)
precisely the same layers as that of the hydranth—ectoderm, mesogloea, and endoderm. The ectoderm is continued on to the sub-umbrella, and then round the margin of the bell on to the ex-umbrella, so that both surfaces of the bell are covered with ectoderm. The endoderm is continued from the base of the enteric cavity into the radial canals, and so to the circular canal, so that the whole canal-system is lined by endoderm. In the portions of the bell between the radial canals there is found, between the outer and inner layers of ectoderm, a thin sheet of endoderm, the endoderm-lamella (end. lam), which stretches between adjacent radial canals and between the circular canal and the enteric cavity. In the bell, as in the manubrium, a

layer of mesogloea everywhere intervenes between ectoderm and endoderm.

The velum (vl) consists of a double layer of ectoderm and a middle one of mesogloea: there is no extension of endoderm into it. The tentacles, like those of the hydranth, are formed of a core of endoderm covered by ectoderm, the cells of the latter being abundantly supplied with stinging-capsules.

Comparison of Polype and Medusa.—Striking as is the difference between a polype and a medusa, they are strictly homologous structures, and the more complex medusa is readily derivable from the simpler polype form. It is obvious, in the first instance, that the apex of the umbrella corresponds with the base of a hydranth (Fig. 89, A and D), being the part by which the zooid is attached in each case to the parent stem: the mouth and the manubrium are also obviously homologous structures.
the two cases. Suppose the tentacular region of a polype to be pulled out, as it were, into a disc-like form (B), and afterwards to be bent into the form of a saucer (C) with the concavity distal,

![Diagram](image_url)

Fig. 89.—Diagrams illustrating the derivation of the medusa from the polype. A, longitudinal, and A', transverse section (along the line ab) of polype-form; B, polype-form with extended tentacular region; C, vertical, and C', transverse section (along the line ab) of form with tentacular region extended into the form of a bell; D, vertical, and D', transverse section (along the line ab) of medusa. The ectoderm is dotted, the endoderm striated, and the mesogloea black; ccr. c. circular canal; cct. ectoderm; end. endoderm; ent. lam. endoderm lamella; ent. cav. enteric cavity; hyp. hypostome or manubrium; mnb. manubrium; mggl. mesogloea; mth. mouth; nv. ne', nerve-rings; t. tentacle; v. volum. (From Parker's Biology.)

i.e. towards the manubrium. The result of this will be a medusa-like body (C, C') with a double wall to the entire bell, the narrow space between the two layers containing a prolongation of the
enteron (*ent. cav*) and being lined with endoderm. From such a form the actual condition of things found in the medusa would be produced by the continuous cavity in the bell being for the most part obliterated by the growing together of its walls so as to form

![Diagram](image-url)

Fig. 90.—Projections of polype (A) and medusa (B), showing the various orders of radii; *gon.* gonad; *mnb.* manubrium.

the endoderm-lamella (*D’, *end. *lam*), and remaining only along four meridional areas—the radial canals (*rad. c*), and a circular area close to the edge of the bell—the circular canal (*cir. c*).

While both polype and medusa are radially symmetrical, the increase in complexity of the medusa is accompanied by a differentiation of the structures lying along certain radii. If a polype is projected on a plane surface (Fig. 90, A),
taken at right angles to its long axis, a large number of radii—about twenty-four—can be drawn from the centre outwards, all passing through similar parts, i.e. along the axis of a tentacle and through similar portions of the body and manubrium. But in the medusa (B) the case is different. The presence of the four radial canals allows us to distinguish four principal radii or per-radii. Half way between any two per-radii a radius of the second order, or inter-radius, may be taken; half way between any per-radius and the inter-radius on either side a radius of the third order, or ad-radius, and half way between any ad-radius and the adjacent per- or inter-radius, a radius of the fourth order, or sub-radius. Thus there are four per-radii, four inter-radii, eight ad-radii, and sixteen sub-radii. In Obelia the radial canals, the angles of the mouth, and four of the tentacles are per-radial, four more tentacles are inter-radial, and the remaining eight tentacles, bearing the lithocysts, are ad-radial. The sub-radii are of no importance in this particular form.

Reproduction.—In the description of the fixed Obelia-colony no mention was made of cells set apart for reproduction, like the ova and sperms of a sponge. As a matter of fact, such sexual cells are found only in their fully developed condition, at least in the medusa. Hanging at equal distances from the sub-umbrella, in immediate relation with the radial canal, and therefore per-radial in position, are four ovoid bodies (Figs. 87 and 88, gon), each consisting of an outer layer of ectoderm, continuous with that of the sub-umbrella, an inner layer of endoderm, continuous with that of the radial canal and enclosing a prolongation of the latter, and of an intermediate mass of cells which have become differentiated into ova or sperms. As each medusa bears organs of one sex only (testes or ovaries, as the case may be), the individual medusae are dioecious. It will be noticed that the gonad has the same general structure as an immature zoid—an outpushing of the body-wall consisting of ectoderm and endoderm, and containing a prolongation of the enteric cavity.

Development.—When the gonads are ripe the sperms of the male medusa are shed into the water and carried by currents to the females, impregnating the ova, which thus become oosperms or unicellular embryos. The oosperm undergoes complete segmentation (Fig. 91, A—F), and is converted into an ovoidal body called a planula (G, H), consisting of an outer layer of ciliated ectoderm cells and an inner mass of endoderm cells in which a space appears, the rudiment of the enteron. The planula swims freely for a time (H), then settles down on a piece of timber, seaweed, &c., fixes itself by one end (K), and becomes converted into a hydrula or simple polype (L, M), having a disc of attachment at its proximal end, and at its distal end a manubrium and circle of tentacles. Soon the hydrula sends out lateral buds, and, by a frequent repetition of this process, becomes converted into the complex Obelia-colony with which we started.

This remarkable life-history furnishes the first example we have yet met with of alternation of generations, or metagenesis (see p. 39).
The Obelia-colony is sexless, having no gonads, and developing only by the asexual process of budding; but certain of its buds—the medusae—develop gonads, and from their impregnated eggs new Obelia-colonies arise. We thus have an alternation of an asexual generation, or agamobium—the Obelia-colony, with a sexual generation, or gamobium—the medusa.

2. General Structure and Classification.

The Hydrozoa may be defined as multicellular animals in which the cells are arranged in two layers, ectoderm and endoderm, separated by a gelatinous, non-cellular mesogloea, and enclosing a continuous digestive cavity which communicates directly with the exterior by a single aperture—the mouth—and is lined throughout by endoderm. The ectoderm consists of epithelial cells, interstitial cells, muscle-fibres, and nerve cells. Certain of the interstitial cells give rise to characteristic organs of offence—the stinging-capsules. The endoderm consists of flagellate or amœboid cells, gland-cells, and sometimes muscle-fibres. There are two main forms of zooids, polypes or nutritive zooids, which are usually sexless, and medusae or reproductive zooids. In correspondence with its locomotive habits, the medusa attains a higher

Fig. 91.—Stages in the development of two Zoophytes (A—H, Laomedea, I—M, Eudendrium) allied to Obelia; A—F, stages in segmentation; G, the planula enclosed in the maternal tissues; H, the free-swimming planula; I—M, fixation of the planula and development of the hydra. (From Parker’s Biology, after Allman.)
degree of organisation than the polype, having more perfect muscular and nervous systems, distinct sense organs, and a digestive cavity differentiated into central and peripheral portions, the latter taking the form of radial and circular canals. The reproductive products are discharged externally, and are very commonly, though not always, of ectodermal origin.

Many Hydrozoa agree with Obelia in exhibiting alternation of generations, the asexual generation being represented by a fixed, more or less branched hydroid colony, the sexual generation by a free-swimming medusa. In other forms there are no free medusae, but the hydroid colony produces fixed reproductive zooids. In others, again, there is no hydroid stage, the organism existing only in the medusa-form. Then, while in most instances the only skeleton or supporting structure is the horny perisarc, there are some forms in which the coenosarc secretes a skeleton of calcium carbonate, forming a massive stony structure or coral. Lastly, there are colonial forms which, instead of remaining fixed, swim or float freely on the surface of the ocean, and such pelagic species are always found to exhibit a remarkable degree of polymorphism, the zooids being of very various forms and performing diverse functions.

Thus we have zoophyte colonies known to produce free medusae, zoophyte colonies known not to produce free medusae, and medusae known to have no zoophyte stage. Moreover, there are many medusae of which the life-history is unknown, so that it is uncertain whether or not a zoophyte stage is present. It is also found that in some cases closely allied zoophytes produce very diverse medusae, while similar medusae, in other cases, may spring from very different zoophytes. For these reasons a sort of double classification of the Hydrozoa has come about, some zoologists approaching the group from the point of view of the zoophyte, others from that of the medusa. On the whole the following scheme seems best adapted for bringing before the beginner the leading modifications of the class.

Order 1.—Leptolineae.

Hydrozoa in which there is a fixed zoophyte stage, and in which the sense organs are exclusively ectodermal.

Sub-Order a.—Anthomeduseae.

Leptolineae in which the polypes are not protected by hydrotheca or the reproductive zooids by gonothece: the medusae bear the gonads in the manubrium and have no lithocysts.

Sub-Order b.—Leptomeduseae.

Leptolineae in which hydro- and gonothece are present: the medusae bear the gonads in connection with the radial canals and usually have lithocysts.
Order 2.—Trachylinæ.

Hydrozoa in which no fixed zoophyte stage is known to occur, all members of the group being locomotive medusæ, some of which have been proved to develop directly from the egg. The sense organs are formed partly of endoderm.

Sub-Order a.—Trachymedusæ.

Trachylinæ in which the tentacles spring from the margin of the umbrella, and the gonads are developed in connection with the radial canals.

Sub-Order b.—Narcomedusæ.

Trachylinæ in which the tentacles spring from the ex-umbrella, some distance from the margin, and the gonads are developed in connection with the manubrium.

Order 3.—Hydrocorallina.

Hydrozoa in which a massive skeleton of calcium carbonate is secreted from the coenosarc, the dried colony being a coral.

Order 4.—Siphonophora.

Pelagic Hydrozoa in which the colony usually exhibits extreme polymorphism of its zooids.

Order 5.—Graptolithida.

An extinct group of Hydrozoa, found only in rocks of palæozoic age, in the form of the fossilised perisarc of the branched colonies.

Systematic Position of the Example.

Obelia, in virtue of the possession of gonozo- and hydrothecæ, and of gonads formed in connection with the radial canals, belongs to the sub-order Leptomedusæ. It is placed in the family Campanulariidae, distinguished by having cup-shaped thecae borne at the ends of distinct branchlets: the genus Obelia is distinguished from other genera of the same family by the fact that the reproductive zooids are free-swimming medusæ.

Order 1.—Leptolinæ.

The more typical members of this group agree in all essential respects with Obelia, consisting of branched colonies bearing two principal forms of zooids, which serve for nutritive and reproductive purposes respectively.

General Structure.—The form and size of the colonies are subject to great variation: they may be little insignificant tufts growing on shells, sea-weeds, &c., or may take the form of complex trees three feet in height, and containing many thousand
zooids. The hydranths may be colourless and quite invisible to the naked eye, or, as in some Tubulariae (Fig. 93, 5), may be brilliantly coloured, flower-like structures, nearly an inch in diameter. The medusae may be only just visible to the naked eye, or, as in Aequorea, may attain a diameter of 38 mm., or about 1.5 inches: they are often seen with great difficulty owing to the bubble-like transparency of the umbrella, but frequently the manubrium is brightly coloured, or brilliant dots of colour—the ocelli or eye-spots—may occur around the margin of the umbrella. They are also frequently phosphorescent, the phosphorescence of the ocean being often due to whole fleets of medusae liberated in thousands from the hydroid colonies beneath the surface.

The two sub-orders of Leptolineae are distinguished by the arrangement of the perisarc. In the Anthomedusae, of which Bougainvillaea (Fig. 92) is a good example, the cuticle stops short at the bases of the hydranths, and the reproductive zooids are not enclosed in gonothecæ. It is for this reason that, in classifications founded on the zoophyte stage, the Anthomedusae are called Gymnoblastea or naked-budded zoophytes (see also Fig. 93, 1, 2, 5). In the Leptomedusæ the cuticle is usually of a firmer consistency than in the first sub-order and furnishes hydrothecæ for the hydranths and gonothecæ for the reproductive zooids: they are hence often classified as Calyptoblastea or covered-budded hydroids. To this group belong the commonest species of hydroids found on the seaweeds, and often mistaken for sea-weeds, the “Sea-firs” or Sertularianæ.

The medusæ also exhibit characteristic differences in the two sub-orders. In the Anthomedusæ the umbrella is usually strongly arched, and may even be conical or mitre-shaped (Fig. 93, 7: Fig. 96, 1 and 2): its walls are thick owing to a great development of the gelatinous mesoglea of the ex-umbrella, that of the sub-umbrella remaining thin: and the velum is considerably wider than in Obelia. But the most important characteristics are the facts that the gonads (gon) are developed in the manubrium and that lithocysts are absent. Sense organs are, however, present in the form of specks of red or black pigment at the bases of the tentacles. These ocelli (œ) consist of groups of ectoderm cells containing pigment, and it has been proved experimentally that they are sensitive to light: they are, in fact, the simplest form of eyes. In the Leptomedusæ the umbrella is usually less convex, thinner, and of softer consistency than in the Anthomedusæ, the gonads are developed as buds formed in connection with the radial canals and projecting from the sub-umbrella, the velum is feebly developed, and sense organs take the form sometimes of ocelli, but usually of lithocysts.

In the majority of Leptolineae the coenosarc, as in Obelia, consists of a more or less branched structure attached to stones, timber, seaweeds, shells, &c., by a definite root-like portion. The
curious genus *Hydactinia* (Fig. 93, 1) is remarkable for possessing a massive coenosarc, consisting of a complex arrangement of branches which have undergone fusion so as to form a firm brownish crust on the surfaces of dead gastropod shells inhabited by Hermit-crabs. The constant association of *Hydactinia* with Hermit-crabs is a case of *commensalism*: the hydroid feeds upon minute fragments of the Hermit-crab’s food, and is thus its commensal or messmate, and the Hermit-crab is protected from its enemies by the presence of the inedible, stinging hydroid. *Hydactinia* belongs to the Anthomedusae: the Leptomedusan

Fig. 92.—**Bougainvillea ramosa.** A, entire colony, natural size; B, portion of the same magnified; C, immature medusa; *cir. c.* circular canal; *ent. c.* enteric cavity; *hyd.* polype or hydranth; *hyp.* hypostome or manubrium; *med.* medusa; *medb.* manubrium; *ent. c.* radial canal; *t.* tentacle; *v.* velum. (From Parker’s *Biology*, after Allman.)
Fig. 93.—Various forms of Leptolinæ. In 1, a shows the entire colony, b a portion highly magnified; in 7, a is a species producing medusa-buds from the manubrium, b from the bases of the tentacles; dz, ductyleozoids; m. and M. medusae; mnb, manubrium; mth, mouth; oc, eye-spots; mdt, e. radial canals; s, sporosacs; sp. spines; t, o, c, tentacles.
Clathrozooon, an Australian genus, resembles it in having branched and intertwined coenosarcal tubes, the perisarc of which under-

Fig. 94.—Hydra. A, vertical section of entire animal; B, portion of transverse section, highly magnified; C, two large ectoderm cells; D, endoderm cell of H. viridis; E, large nematocyst; F, small nematocyst; G, sperm; a, ingested diatom; bd. 1, bd. 2, buds; chr. chromatophores; cnbl. cnidoblast; encl. endodcil; ect. ectoderm; end. endoderm; ent. cav. enteric cavity; ent. cav'. its prolongation into the tentacles; fl. flagellum; hyp. hypostome or manubrium; int. c. interstitial cells; m. pr. muscle processes; mth. mouth; m. prl. mesoglea; ntc. large, and ntc'. small nematocysts; nu. nucleus; ov. ovum; ov. ovary; psd. pseudopods; spy. spermarj'. vac. vacuole.

goes fusion, but the complex mass thus produced, instead of forming an incrustation on a shell, is a large, abundantly branched,
tree-like structure, resembling some of the fan-corals or Gorgonacea (vide infra).

A great simplification of the colony is produced in Myriothela (Fig. 93, 2) in which the short coenosarc bears a single large terminal hydranth, and gives off numerous slender branches which bear the reproductive zooids (s). Even greater simplicity is found in Corymorpha (3), in which the entire organism consists of a single stalked polype, from the tentacular region of which the medusae (m) arise.

But the simplest members of the whole class, with the exception of one or two imperfectly known forms which will be referred to below, are the Fresh-water Polypes of the genus Hydra. The entire organism (Figs. 24 and 94) consists of a simple cylindrical body with a conical hypostome and a circlet of six or eight tentacles. It is ordinarily attached, by virtue of a sticky secretion from the proximal end, to weeds, &c., but is capable of detaching itself and moving from place to place after the manner of a looping caterpillar. The tentacles are hollow, and communicate freely with the enteron. There are no distinct muscle-fibres, but the large endoderm cells are produced into muscle processes (C, m. pr) which serve the same functions. There is no perisarc. Buds (bd. 1, bd. 2) are produced which develop into Hydras, but these are always detached sooner or later, so that a permanent colony is never formed. There are no special reproductive zooids, but simple ovaries (ovy) and testes (spy) are developed, the former at the proximal, the latter at the distal end of the body. Even simpler than Hydra are Protohydra (Fig. 95) and Microhydra, in which the tentacles are absent.

Fig. 95.—Protohydra leuckartii. (From Chun, after Greif.) The mouth is to the left, the disc of attachment to the right.

The polypes are usually cylindrical, as in Obelia, but in some genera they are widened out into a vase-like form (Fig. 93, 5), in others elongated into a spindle-shape (4). The tentacles may be disposed in a single circlet, as in Obelia and Hydra, or there may be an additional circlet round the hypostome (2, 5) or at the base of the polype, or they may be scattered irregularly over the whole surface (4). In Myriothela (2) they are short and so numerous as to have the appearance of close-set papillae. In some forms they are knobbed at the ends, the knobs being loaded with stinging-capsules (4).

In some species a dimorphism of the hydranths obtains, some of them being modified to form protective zooids. In Hydraetinia
(1) these are simply mouthless hydranths with very short tentacles abundantly supplied with nematocysts, capable of very active movements, and called *daetylozooids* (dz). In Plumularia there are small structures called "guard-polypes," resembling tentacles in structure, and each enclosed in a theca. In Hydraactinia the coenosarc is also produced into spines (sp), which may be much modified zooids.

But the most remarkable modifications occur in the reproductive zooids. In a large proportion of genera, both of Anthomedusae and Leptomedusae, these take the form of locomotive medusæ, agreeing in general structure with the descriptions already given, but exhibiting endless variety in detail. As to size they vary from about 1 mm. in diameter up to 400 mm. (16 inches). The number of tentacles may be very great (Fig. 96, 2) or these organs may be reduced to two (Fig. 96, 1), or even to one (Fig. 93, 3); in the last-named cases it will be noticed that the medusa is no longer radially, but bilaterally symmetrical, i.e. it can be divided into two equal and similar halves by a single plane only, viz., the plane passing through the one or two tentacles. With the increase in the number of the tentacles a corresponding increase in that of the radial canals often takes place (Fig. 96, 3).

Some medusæ creep over submarine surfaces, walking on the tips of their peculiarly modified tentacles (Fig. 93, 6) but the majority propel themselves through the water in a series of jerks by alternately contracting and expanding the umbrella, and so, by rhythmically driving out the contained water, moving with the apex foremost. In correspondence with these energetic movements there is a great development of both muscular and nervous systems. The velum and the sub-umbrella possess abundance of muscle-fibres, presenting a transverse striation, and round the margin of the umbrella is a double ring of nerve-cells and fibres, one ring being above, the other below the attachment of the velum (Fig. 89, D, \(\nu\nu, \nu\nu'\)). The meduse thus furnish the first instance we have met with of a central nervous system, i.e. a concentration of nervous tissue over a limited area serving to control the movements of the whole organism. It has been proved experimentally that the medusa is paralysed by removal of the nerve-ring. Over the whole sub-umbrella is a loose network of nerve-cells and fibres connected with the nerve-ring, and forming a peripheral nervous system.

In some medusæ the circular canal communicates with the exterior by minute pores placed at the summits of papillæ, the endoderm cells of which contain brown granules. There seems to be little doubt that these are *organs of excretion*, the cells withdrawing nitrogenous waste matters from the tissues and passing them out through the pores. If we except the contractile
Fig. 96 Various forms of leptoline Medusae. cir. c. circular canal; gon1, gon2, gonads; rad. c. radial canal; t. marginal tentacles; t'. oral tentacles; tp. tentacle-pouch; vl. velum. (After Haeckel.)
vacuoles of Protozoa, this is the first appearance of specialised excretory organs in the ascending series of animals.

Besides producing gonads, some medusae multiply asexually by budding, the buds being developed either from the manubrium (Fig. 93, 7a), or from the margin of the umbrella (7b). The buds always have the medusa form.

In many Leptolinae the reproductive zooids undergo a degradation of structure, various stages of the process being found in different species. Almost every gradation is found, from perfect medusae to ovoid pouch-like bodies called sporosacs (Fig. 93, 7b, 5, 8), each consisting of little more than a gonad, but showing an indication of its true nature in a prolongation of the digestive cavity of the colony, representing the stomach of the manubrium (Fig. 97). We thus have a reproductive zooid reduced to what is practically a reproductive organ. It is obvious that a continuation of the

Fig. 97.—Diagram illustrating the formation of a sporosac by the degradation of a medusa.

A, medusa enclosed in ectodermal envelope (c); B, intermediate condition with vestiges of umbrella (c) and radial canals (me); C, sporosac, c, ectoderm; en, endoderm; m, manubrium; ov, ovary; t, tentacle; v, velum. (From Lang’s *Comparative Anatomy.*)

same process might result in the production of a simple gonad like that of Hydra: there is, however, no evidence to show that the Fresh-water Polype ever produced medusae, and the probabilities are that its ovaries and testes are simply gonads, and not degenerate zooids. The case is interesting as showing how a simple structure may be imitated by the degradation of a complex one. It is quite possible, on the other hand, that the reproductive organs of the Leptomedusae (Fig. 88) are sporosacs, i.e. reproductive zooids, not mere gonads.

In Obelia we found the medusae to be budded off from peculiarly modified mouthless zooids—the blastostyles. This arrangement, however, is by no means universal: the reproductive zooids—whether medusae or sporosacs—may spring directly from the cecosacs, as in Bougainvillea (Fig. 92), or from the ordinary hydranths (Fig. 93, 4 and 5). The primitive sex-cells, from which ova or sperms are ultimately developed, are sometimes formed
from the endoderm or (more usually) ectoderm cells of the gonad; but in many cases originate in the coenosarc, and slowly migrate to their final destination in the gonad, where they metamorphose, in the usual way, into the definitive reproductive products.

The development of the Leptolinae frequently, but not always, begins within the maternal tissues, i.e. while the oosperm or impregnated egg-cell is still contained in the gonad of the medusa or in the sporosac. The oosperm divides into two cells, then into four, eight, sixteen, &c. Fluid accumulates in the interior of the embryo, resulting in the formation of a blastula or hollow globe formed of a single layer of cells (Fig. 97, A). The blastula elongates, and the cells at one pole undergo division, the daughter-cells passing into the cavity, which they gradually fill (B). At this stage the embryo is called a planula: it consists of an outer layer of cylindrical cells—the ectoderm—which acquire cilia, and an inner mass of polyhedral cells—the endoderm. In some cases the planula arises by a different process: a solid morula is formed, the superficial cells of which become radially elongated and form ectoderm, the central mass of cells becoming endoderm. By means of its cilia the planula swims freely, and before long a cavity appears in the middle of the solid mass of endoderm, the cells of which then arrange themselves in a single layer around the cavity or enteron (C, al). The planula then comes to rest, fixes itself at one end to some suitable support, and becomes converted into a simple polype or hydrida by the attached end broadening into a disc and the opposite extremity forming a manubrium and tentacles. The hydrida soon begins to send off lateral buds, and so produces the branched colony.
In Tubularia the oosperm develops, while still enclosed in the sporosac, into a short hydrula, which, after leading a free existence for a short time, fixes itself by its proximal end, buds, and produces the colony. In Hydra development begins in the ovary, and is complicated by the fact that the ectoderm of the morula gives rise to a sort of protective shell: in this condition the embryo is set free, and, after a period of rest, develops into the adult form.

Order 2.—Trachylineae

General Structure.—The members of this order are all medusae: no zoophyte stage is certainly known in any of them, and several species have been proved to develop directly from the egg. They thus differ from the members of the preceding order in the fact that there is no alternation of generations in their life-history.

Most species are of small or moderate size, the largest not exceeding 100 mm. (4 inches) in diameter. The gelatinous tissue or mesoglea of the ex-umbrella is usually well developed, giving the medusa a more solid appearance than the delicate jelly-fish of the preceding order: this is well shown in Fig. 99, in which the apical region of the umbrella has a comparatively immense thickness. The tentacles are also stiff and strong, and are always solid.
in the young condition, although they may be replaced in the adult by hollow tentacles.

But the most characteristic anatomical feature of the group is the structure of the **sense-organs**, which are club-shaped bodies (Figs. 99 and 100, \(tc \)) consisting of an outer layer of ectoderm enclosing a central axis of endoderm cells (Fig. 101): they have, therefore, the structure of tentacles. They contain one or more lithites, which are always derived from the endoderm. To distinguish them from the lithocysts of Leptomedusae, and to mark the fact that they are modified tentacles, they are called **tentaculocysts**. They may either project freely from the margin of the umbrella, or may become enclosed in a pouch-like growth of ectoderm and more or less sunk in the tissue of the umbrella.

The two sub-orders of Trachylinae are characterised by the mode of origin of the **tentacles**. In Trachy-

\[\text{medusae}, \text{as in the preceding order, they arise near the edge of the umbrella (Fig. 99), but in the Narcomedusae they spring about half-way between the edge and the vertex (Fig. 100), and are continued, at their proximal} \]

Fig. 100.—Two *Narcomedusae*, 2 in vertical section. *gon.* gonad; *mnb.* manubrium; *mth.* mouth; *pr.* peronidium; *t.* tentacle; *tc.* tentaculocyst; *tr.* tentacle-root; *vl.* velum. (After Haeckel.)

Fig. 101.—*Echinura myosura*, a tentaculocyst highly magnified. *ct.* ectoderm; *ctt.* ctenidial tentacle; *end.* endoderm; *l.* lithites; *mth.* manubrium; *n.m.c.* group of nerve-cells. (After Haeckel.)
ends, into the jelly of the ex-umbrella in the form of "tentacle-roots" (t.r).

As to the position of the reproductive organs, there is the same difference between the two sub-orders of Trachylinæ as between the two sub-orders of Leptolinæ. In the Trachymedusæ the gonads (Fig. 99, gon) are developed in the course of the radial canals; in the Narcomedusæ (Fig. 100) they lie in the manubrium, sometimes extending into pouch-like offshoots of its cavity.

There is always a well-developed velum, which, as in Fig. 100, 1, may hang down vertically instead of taking the usual horizontal position. In the Narcomedusæ the manubrium is short; in the Trachymedusæ it is always well developed, and is sometimes (Fig. 99, B) prolonged into a long, highly contractile peduncle, having its inner surface produced into a tongue-like process (tg) which protrudes through the mouth.

The simplest case of the development of Trachylinæ is seen in _Æginopsis_, one of the Narcomedusæ. The oosperm gives rise to a ciliated planula, which forms first two (Fig. 102), then four tentacles, and a mouth, hypostome, and stomach. The larva of _Æginopsis_ is thus a hydrula, closely resembling the corresponding stage of Tubularia. After a time the tentacular region grows out, carrying the tentacles with it, and becomes the umbrella of the medusa. Thus the actual formation of the medusa from the hydrula of _Æginopsis_ corresponds precisely with the theoretical derivation given above (p. 127). It will be seen that in the present case there is no metagenesis or alternation of generations, but that development is accompanied by a metamorphosis—that is, the egg gives rise to a larval form differing in a striking manner from the adult, into which it becomes converted by a gradual series of changes.

Metagenesis is, however, not quite unknown among the Trachylinæ. In a parasitic Narcomedusa (_Cunina parasitica_) the planula

Fig. 102.—Larva of _Æginopsis_. m. mouth; t. tentacle. (From Balfour, after Metschinkoff.)
fixes itself to the manubrium of one of the Trachymedusæ which serves as its host, and develops into a hydrula. But the latter, instead of itself becoming metamorphosed into a medusa, retains the polype form and produces other hydrulae by budding, these last becoming converted into medusæ in the usual way.

Order 3.—Hydrocorallina.

The best-known genus of Hydroid Corals is *Millepora*, one species of which is the beautiful Elk-horn Coral, *M. alcicornis*. The dried colony (Fig. 103 A) consists of an irregular lobed or branched mass of carbonate of lime, the whole surface beset with the numerous minute pores to which the genus owes its name. The pores are of two sizes: the larger are about 1 or 2 mm. apart, and are called *gastropores* (B, *g.p.*); the smaller are arranged more or less irregularly round the gastropores, and are called *dactylopores* (*d.p.*). The whole surface of the coral between the pores has a pitted appearance. Sections (C) show that the entire stony mass is traversed by a complex system of branched canals, which communicate with the exterior through the pores. The wide vertical canals in immediate connection with the gastropores are traversed by horizontal partitions, the *tabulae* (*t.b.*).

In the living animal each pore is the place of origin of a zooid; from the gastropores protrude polypes (Fig. 104, P) with hypostome

Fig. 103.—*Millepora alcicornis.* A, part of skeleton, natural size; B, portion of surface, magnified; C, vertical section, magnified; *d.p.*, dactylopores; *g.p.*, gastropores; *t.b.*, tabulae. (After Nicholson and Lydekker.)
and four knobbed tentacles; from the dactylopores long, filamentous, mouthless dactylozooids or feelers (D.Z), with irregularly disposed tentacles: the function of these latter is probably protective and tactile, like that of the guard-polypes of Plumularia and the dactylozooids of Hydractinia. The bases of the zooids are connected with a system of delicate tubes, which ramify through the canals of the coral, and represent a much-branched coenosarc. recalling that of Hydractinia (p. 134).

The coenosarcal tubes have the usual structure, consisting of ectoderm and endoderm, with an intervening mesoglea. From the relative position of the parts it will be obvious that the calcareous skeleton is in contact throughout with the ectoderm of the colony; it is, in fact, like the horny perisarc of the Leptolinae, a cuticular product of the ectoderm.

The only other genus to which we shall refer is Stylaster (Fig. 105), which forms a remarkably elegant tree-like colony, abundantly branched in one plane, and of a deep pink colour. On the
branches are little cup-like projections, with radiating processes passing from the wall of the cup towards the centre, and thus closely resembling the true cup-corals belonging to the Actinozoa (*vide infra*). But in the case of Stylaster each "cup" is the locus, not of one, but of several zooids: a polyp projecting from its centre, and a dactylozooid from each of the compartments of its peripheral portion.

The *gonads* of Millepora are formed in small capsules, occurring in the course of the coenosarcal canals; in Stylaster there are sporosacs or degraded reproductive zooids lodged in special chambers (*a*) of the coral.

The Hydrocorallina occur only in the tropical portions of the Pacific and Indian Oceans, where they are found on the "coral reefs" partly or entirely surrounding many of the islands in those seas. Fossil forms are found as far back as the Triassic epoch.

Order 4.—Siphonophora.

The diversity of form exhibited by the members of this order is so great that anything like a general account of it would only be confusing to the beginner, and the most satisfactory method of presentation will be by the study of a few typical genera.

Halistemma (Fig. 106 A) occurs in the Mediterranean and other seas, and consists of a long, slender, floating stem, to which a number of structures, differing greatly in form, are attached. At one—the uppermost—end of the stem is an ovoid, bubble-like body con-
Fig. 106.—*Halistemma* tergestinum. A, the entire colony; B, a single group of zooids: co, coenosare; dz, dactylozooid; hph, hydrophyllum or bract; nct, nectoedipyx or swimming-bell; etc, battery of nematoocysts; p, polyp; ph, pneumatophore or float; s, s', sperocysts; t, tentacle. (After Claus.)
taining air—the float or pneumatophore (\(p\)). Next come a number of closely set, transparent structures (\(net\)), having the general characteristics of unsymmetrical medusae without manubria, each being a deep, bell-like body, with a velum and radiating canals. During life these swimming-bells or nectocalyces contract rhythmically—i.e. at regular intervals—drawing water into their cavities, and immediately pumping it out, thus serving to propel the entire organism through the water. Below the last nectocalyx the character of the structures borne by the stem changes completely: they are of several kinds, and are arranged in groups which follow one another at regular intervals, and thus divide the stem into segments, like the nodes and internodes of a plant.

Springing from certain of the "nodes" are unmistakable polypes (\(p\)), differing however from those we have hitherto met with in having no circle of tentacles round the mouth, but a single long branched tentacle (\(i\)) arising from its proximal end, and bearing numerous groups or "batteries" of stinging-capsules (\(nte\)). In the remaining nodes the place of the polypes is taken by dactylozooids or feelers (\(dz\)—mouthless polypes, each with an unbranched tentacle springing from its base. Near the bases of the polypes and dactylozooids spring groups of sporosacs (\(B, s, s'\)), some male, others female; and finally delicate, leaf-like, transparent bodies—the braets or hydrophyllia (\(hp\)—spring from the "internodes" and partly cover the sporosacs.

It is obvious that, on the analogy of such a hydroid polype as Obelia, Halistemma is to be looked upon as a polymorphic floating colony, the stem representing a coenosarc, and the various structures attached to it zooids—the polypes nutritive zooids, the feelers tactile zooids, the sporosacs reproductive zooids, the braets protective zooids, and the swimming-bells locomotory zooids. The float may be looked upon as the dilated end of the stem, which has become invaginated or turned-in so as to form a bladder filled with air, its outer and inner surfaces being furnished by ectoderm, and the middle portion of its wall by two layers of endoderm, between which the enteric cavity originally extended (Fig. 107, \(pa\)). The upper or float-bearing end is proximal—i.e. answers to the attached end of an Obelia-stem: it is the opposite or distal end which grows and forms new zooids by budding.

In some Siphonophora the braets contain indications of radial canals, so that these structures, as well as the swimming-bells and sporosacs, are formed on the medusa-type, while the hydranths and feelers are constructed on the polype-type.

It will be noticed that the radial symmetry, so characteristic of most of the Hydrozoa previously studied, gives way, in the case of Halistemma, to a bilateral symmetry. The swimming-bells are placed obliquely, and the mouth of the bell is not at right angles to the long axis, so that only one plane can be taken
dividing these structures into two equal halves: the same applies to the polype and feelers with their single basal tentacle. When first formed the various zooids are all on one side of the stem, but the latter becomes spirally twisted during growth, and so causes them to arise irregularly.

The egg of Halistemma gives rise to a ciliated planula resembling that of the other Hydrozoa. At one pole the ectoderm becomes invaginated to form the float (Fig. 108, cp), the opposite extremity is gradually converted into the first polype (po), and
a bud appears on one side which becomes the first tentacle (t). By gradual elongation, and the formation of new zooids as lateral buds, the adult form is produced; the various zooids are all formed between the first polype and the float, so that the two become further and further apart, being always situated at the distal and proximal ends of the colony respectively.

In an allied form (Agalma) the first structure to appear in the embryo is not the float, but the first bract, which grows considerably and envelops the growing embryo in much the same way as the umbrella of a medusa envelops the manubrium. On this and other grounds some zoologists look upon the Siphonophore-colony as a medusa, the manubrium of which has extended immensely and produced lateral buds after the manner of some Anthomedusae (Fig. 93, a).

On this theory the entire conosarc is an extended manubrium, and the first or primary bract is the umbrella. But frequently—as in Halistemma—a primary bract is not formed, and when present there appears to be no reason against regarding it as a lateral bud of the axis, of quite the same nature as the remaining zooids.

In the well-known "Portuguese man-of-war" (Physalia) there is a great increase in proportional size of the float and a corresponding reduction of the rest of the conosarc. The float (Fig. 109, pm) has the form of an elongated bladder, from 3 to 12 cm. long, pointed at both ends, and produced along its upper edge into a crest or sail (cr): as a rule it is of a brilliant peacock-blue colour, but orange-coloured specimens are sometimes met with. At one end is a minute aperture communicating with the exterior. There are no swimming-bells, but from the under side of the float hang polypes (p), feelers, groups of medusoids looking like bunches.
of grapes of a deep blue colour, and long retractile tentacles, sometimes several feet in length and containing batteries of stinging-capsules powerful enough to sting the hand as severely as a nettle. The male reproductive zoid remains attached, as in

Halistemma, but the female apparently becomes detached as a free medusa.

In Diphyes the float is absent. Two swimming-bells (Fig. 110, m) of proportionally immense size are situated at the proximal end of the coenosarc, and are followed by widely-separated groups of

Fig. 109.—Physalia: the living animal floating on the surface of the sea. cr. crest; p. polype; pn. pneumatophore. (After Huxley.)
zooids (B), each group containing a polype (n) with its tentacles (i), a medusoid (g), and a large enveloping bract (t). The stem often breaks at the internodes, and the detached groups of zooids then swim about like independent organisms.

Porpita is formed on a different type, and has a close general resemblance to a medusa. It consists (Fig. 111) of a discoid body, enclosing a chambered chitinoid shell (sh) containing air, and obviously corresponding with the float of Physalia. The edge of the disc is beset with long tentacles (t), and from its lower surface depend numerous closely set feelers or dactylozooids (hy') and blastostyles bearing medusae, while in the centre is a single polype (hy'),

Fig. 110.— *Diphyes campanulata* A, the entire colony; B, single group of zooids; a, cazoosarum; c, cavity of swimming-bell; e, groups of zooids; g, medusoid; i, grappling line or tentacle; m, swimming-bell; n, polype; o, mouth of swimming-bell; t, bract. (From Parker’s Biology, after Gegenbaur.)
which is the only nutritive zooid, taking in food for the entire colony. The closely allied genus *Velella* is of rhomboidal form, and bears on its upper surface an oblique sail.

The reproductive zooids are liberated as free medusae. The eggs give rise to young which have a close resemblance to flat medusæ with manubrium, marginal tentacles, and an air-chamber or float developed in the ex-umbrella. Thus it is quite possible that the Siphonophora of the Porpita-type may be medusæ the sub-umbrella of which has given rise to buds forming the feelers and blastostyles. But, as their early development is not known, it is still quite legitimate to describe them in the same terms as the other Siphonophora—i.e. to consider them as hydroid colonies in which the eænosarc is represented by the discoid or rhomboid body with its contained air-chamber.

Order 5.—Graptolithida.

The "Graptolites" are fossil Hydrozoa found in the Upper Cambrian and Silurian rocks. They are known only by their fossilised chitinoid skeleton, all trace of the soft parts having, as in the majority of fossils, disappeared.
With one doubtful exception they are compound, consisting of an elongated tube, the perisarc of the common stem, having attached to it, either in a single or a double row, numerous small projections, the hydrothecae (Fig. 112, h. th.). The ecosarcal skeleton is strengthened by a slender axis, the virgula (v), the proximal end of which is connected with a small dagger-shaped body, the sicula (s), supposed to be the skeleton of the primary zooid at the budding of which the colony was produced. In connection with some species oval or cup-like capsules have been found; these may probably be of the nature of gonothece.

ADDITIONAL REMARKS ON THE HYDROZOA.

The vast majority of Hydrozoa are marine, the only exceptions being Hydra, found all over the world; Microhydra, at present known only in North America; Cordylophora, one of the Anthomedusa, found in Europe, America, Australia, and New Zealand; Polypodium, also an Anthomedusa, found in the Volga, where in one stage of its existence it is parasitic on the eggs of a Sturgeon; Limnocodium, a doubtful Trachymedusa, hitherto found only in a tank in the Botanical Gardens, Regent's Park, where it was probably introduced from the West Indies; and Limnocnida, found in Lake Tanganyika, Africa.

The oldest known Hydrozoa are the Graptolites, found first in the Cambrian rocks; Hydactinia occurs in the Cretaceous epoch, and Hydrocorallinae from the Cretaceous onwards.

Parasitism, although rare, is not unknown in the class. Polypodium, one of the Anthomedusa, is parasitic during part of its existence, in the ovary of the Sturgeon; and Cunina, one of the Narcomedusa, is parasitic on a Trachymedusa.

In the section on the Protozoa we saw that while the majority of species are independent cells, each performing alone all the essential functions of an animal, others, such as Pandorina, Volvox, and Proterospongia, consist of numerous unicellular zooids associated to form a colony in which a certain division of labour obtains, the function of reproduction, for instance, being assigned to certain definite cells and not performed by all alike. Thus the colonial Protozoa furnish an example of individually, numerous cells combining to form a colony in which the several parts are dependent one upon another, and which may therefore be said to constitute, from the physiological point of view, an individual of a higher order than the cell.
This is still more notably the case in the lower Metazoa, such as Ascetza and Hydra, in which we have numerous cells combined to form a permanent two-layered sac with a terminal aperture, some of the cells having digestive, others tactile, others reproductive functions. Thus while an Amœba or a Paramœcium is an individual of the first order, Hydra and Ascetza are individuals of the second order, each the equivalent of an indefinite number of individuals of the first order.

In the Hydrozoa we see this process carried a step further. Budding takes place and colonies are produced, the various zooids of which—each the equivalent of a Hydra—instead of remaining all alike, become differentiated both morphologically and physiologically, so as to differ immensely from one another both in form and function. In Obelia, for instance, reproduction is made over exclusively to the medusæ, while in Halistemma we have zooids specially set apart, not only for reproductive, but for tactile and protective purposes. Thus in Halistemma and the other Siphono-phora there is a very complete subordination of the individual zooids to the purposes of the colony as a whole, the colony thus assuming, from the physiological point of view, the characteristics of a single individual, and its zooids the character of organs. In this way we get an individual of the third order, consisting of an aggregate of polymorphic zooids, just as the zooid or individual of the second order is an aggregate of polymorphic cells or individuals of the first order.

CLASS II.—SCYPHOZOA.

1. Example of the Class—The Common Jelly-fish
(Aurelia aurita).

Aurelia is the commonest of the larger jelly-fishes and is often found cast up on the sea-shore, when it is readily recognisable by its gelatinous, saucer-shaped umbrella, three or four inches in diameter, and having near the centre four red or purple horseshoe-shaped bodies—the gonads—lying embedded in the jelly.

External Characteristics.—The general arrangement of the parts of the body is very similar to what we are already familiar with in the hydrozoan jelly-fishes (Figs. 113 and 114, A). Most conspicuous is the concavo-convex umbrella, the convex surface of which, or ex-umbrella, is uppermost in the ordinary swimming position. The outline is approximately circular, but is broken by eight notches, in each of which lies a pair of delicate processes, the marginal lappets (mg. Ip): between the pairs of lappets the edge of the umbrella is fringed by numerous close-set marginal tentacles (t).
Fig. 113.—*Aurelia aurita*. A, dorsal view, part of the ex-umbrella cut away to show part of the stomach and one of the four gastric pouches; B, ventral view—two of the oral arms are removed; *a.r.c.*, adradial canal; *g.f.*, gastric filaments; *gon*, gonads; *g.p.*, gastric pouch; *i.r.c.*, inter-radial canal; *m.g.p.*, marginal lappet; *m.th.*, mouth; *o.r.a.*, oral arm; *p.r.c.*, per-radial canal; *s.g.p.*, sub-gonial pit; *st.*, stomach; *t.*, tentacles.
In the centre of the lower or sub-umbrellar surface is a four-sided aperture, the mouth (mouth), borne at the end of an extremely short and inconspicuous manubrium: surrounding it are four long delicate processes, the oral arms (or. a), lying one at each angle of the mouth and uniting around it. Each arm consists of a folded membrane, tapering to a point at its distal end, beset along its edges with delicate processes, and abundantly provided with stinging-capsules. The angles of the mouth and the arms lie in the four per-radial, i.e., at the end of the two principal axes of the radially symmetrical body: of the marginal notches with their lappets, four are per-radial and four inter-radial.

At a short distance from each of the straight sides of the mouth, and therefore inter-radial in position, is a nearly circular aperture leading into a shallow pouch, the sub-genital pit (s.g. p), which lies immediately beneath one of the conspicuously coloured gonads (gon).

Digestive Cavity and Canal-System.—The mouth leads by a short tube or gullet (gul), contained in the manubrium, into a spacious stomach (st), which occupies the whole middle region of the umbrella, and is produced into four wide inter-radial gastric pouches (g. p), which extend about half-way from the centre to the circumference and are separated from one another by thick pillar-like portions of the umbrella-jelly. In the outer or peripheral wall of each gastric pouch are three small apertures, leading into as many radial canals, which pass to the edge of the umbrella and there unite in a very narrow circular canal (circ. c). The canal, which opens by the middle of the three holes, is of course inter-radial (i.r. c): it divides immediately into three, and each division branches again: the canals from the other two holes are adradial (a.r. c), and pass to the central canal without branching. There is also an aperture in the re-entering angle between each two gastric pouches: this leads into a per-radial canal (p.r. c), which, like the inter-radial, branches extensively on its way to the edge of the umbrella.

The general arrangement of the cell-layers in Aurelia is the same as in a hydroid medusa (Fig. 114, B). The main mass of the umbrella is formed of gelatinous mesogloea, which, however, is not structureless, but is traversed by branching fibres and contains ameboid cells derived from the endoderm. Both expanded sub-umbrellae are covered with ectoderm, and the stomach and canal-system are lined with endoderm, which is ciliated throughout. Some observations seem to show that the short tube described above as a gullet is lined, not by endoderm, but by an in-turned portion of the ectoderm, as we shall see to be the case in Actinozoa and Ctenophora; but this matter cannot be considered as definitely settled.

It was mentioned above that in the free medusa the gonads
appear through the transparent umbrella as coloured horseshoe-shaped patches. Their precise position is seen by cutting away a portion of the ex-umbrella so as to expose one of the gastric pouches from above (Fig. 113, A). It is then seen that the gonad (gon) is a frill-like structure lying on the floor of the pouch and bent in the form of a horse-shoe with its concavity looking inwards, i.e. towards the mouth. Being developed from

![Diagram](image)

Fig. 114. *Aurelia aurita*. A, side view, one-fourth of the umbrella cut away; B, diagrammatic vertical section, ectoderm dotted, endoderm striated, mesoglea black; circ. c, circular canal; g, F, gastric filaments; gon, gonad; g.p, gastric pouch; gut, gullet; h, hood; t.r.e. inter-radial canal; m.g.p, marginal lappet; mth, mouth; o.a, oral arm; s.g.p, sub-genital pit; s.t, stomach.

the floor of the enteric cavity, the gonad is obviously an endodermal structure: when mature, its products—ova or sperms—are discharged into the stomach and pass out by the mouth. Here, then, is an important difference from the Hydrozoa, in which the generative products are usually ectodermal, and are always discharged directly on the exterior. The sexes are lodged in distinct individuals.
Lying parallel with the inner or concave border of each gonad is a row of delicate filaments (g. f), formed of endoderm with a core of mesogloea and abundantly supplied with stinging-capsules. These are the gastric filaments: their function is to kill or paralyse the prey taken alive into the stomach. No such endodermal tentacles are known in the Hydrozoa.

Muscular and Nervous Systems.—The contractions of the bell by which the animal is propelled through the water are effected by means of a muscular zone round the edge of the sub-umbrella. The nervous system is formed on a different plan from that of the hydroid meduse. Instead of a double nerve-ring round the margin of the umbrella, there are eight groups of nerve-cells in connection with the marginal notches. The nerve-cells lie between the bases of the epithelial cells, and external to the muscular layer: they are obviously ectodermal structures.

The sense organs are lodged in the marginal notches in close relation with the nerve-patches: like the latter, therefore, four of them are per-radial and four inter-radial. Each consists of a peculiar form of sense-club or tentaculocyst, containing a prolongation of the circular canal, and thus representing a hollow instead of a solid tentacle. At the extremity are calcareous concretions or lithites (l) derived from the endoderm, and on the outer side is an ectodermal pigment-spot or ocellus (oc). The tentaculocysts are largely hidden by the marginal lappets (mg. lp) and by a hood-like process (h) connecting them; and in connection with each are two depressions, one on the ex-umbrella (olf. 1), the other immediately internal to the sense-club (olf. 2): these depressions are lined with sensory epithelium and are called olfactory pits.

The development and life-history of Aurelia present several striking and characteristic features. The impregnated egg-cell

Fig. 115.—Aurelia aurita. A, small portion of edge of umbrella, showing the relations of the tentaculocyst; B, vertical section of the same region (diagrammatic); h, hood; l, lithite; mg. lp, marginal lappet; oc, ocellus; olf. 1, olf. 2, olfactory pits. (Altered from Lankester.)
or oosperm divides regularly and forms a morula, which, by accumula-
tion of fluid in its interior, becomes a blastula—a closed sac with
to walls formed of a single layer of cells. One end of this sac becomes
invaginated to form the gastrula. The blastopore or gastrula-
mouth closes, the embryo being converted into a closed two-
layered sac or planula (Fig. 116, A), indistinguishable from that of
a Hydrozoan, although formed by a totally different process.

The planula swims about by means of the cilia with which its
ectodermal cells are provided, and, after a brief free existence,
settles down, loses its cilia, and becomes attached by one pole.
At the opposite pole a mouth is formed, the process taking place
by a sinking-in or invagination of the surface so as to produce a
depression lined with ectoderm (B, st.), the bottom of which
becomes perforated so as to communicate with the enteric cavity
(C, st.): the depression is the stomodaum, a structure of which
there is no trace in the Hydrozoan. On two opposite sides of the
mouth hollow processes grow out, forming the first two tentacles:
soon two others appear at right angles to these, the organism
thus being provided with four per-radial tentacles. Subsequently
four inter-radial and eight adradial tentacles appear. At the
same time the attached or proximal end is narrowed into a stalk-
like organ of attachment (E), and the endoderm of the enteric
cavity is produced into four longitudinal ridges, inter-radial in
position, and distinguished as the gastric ridges or tentioles (D, t.n.).
The mouth (E, mth.) assumes a square outline, and its edges become
raised so as to form a short manubrium (mnb.), and, finally, the
ectoderm of the distal surface—i.e. the region lying between the
mouth and the circle of tentacles—becomes invaginated in each
inter-radius so as to produce four narrow funnel-like depressions—
the septal funnels or infundibula (E and F, s. f.)—sunk in the four
gastric ridges.

The outcome of all these changes is the metamorphosis of the
planula into a polype (E), not unlike a Hydra or the hydrula-stage
of the Leptololiza, but distinguished by a pronounced differentiation
of structure, indicated by the sixteen tentacles developed in
regular order, the stomodaum, and the four gastric ridges with
their septal funnels. The Scyphozoon-polype is called a Scyphula
or Scyphistoma.

The Scyphula may grow to a height of half an inch, and some-
times multiplies by budding. After a time it undergoes a process
of transverse fission (G), becoming divided by a series of constric-
tions which deepen until the polype assumes the appearance of a
pile of saucers, each with its edge produced into eight bifid lobes,
four per- and four inter-radial. Soon the process of constriction
is completed, the saucer-like bodies separate from one another,
and each, turning upside down, begins to swim about as a small
jelly-fish called an Ephyrula (H, I). The umbrella of the ephyryula

VOL I
is divided into eight long bifid arms (a.) with deep (adradial) notches; it has of course carried away with it a segment of the stomach with the gastric ridges of the Scyphula: during the process

\[\text{Fig. 116.—Aurelia aurita, development. A, planula; B, C, formation of stomodeum; D, transverse section of young Scyphula; E, Scyphula; F, longitudinal section of same; the section passes through a per-radius on the left of the dotted line, through an inter-radius on the right; G, division of Scyphula into ephyrae; H, ephyra from the side; L, the same from beneath. In A—D and F the ectoderm is unhatched, the endoderm striated, and the mesogloea dotted. a, lobes of umbrella; mnb, manubrium; mth, mouth; s.f., septal funnel; st, stomodeum; t, tentacle; tn, tentacles. (From Korschelt and Heider's Embryology.)} \]

of constriction this becomes closed in on the proximal or ex-umbrellar side, while on the sub-umbrellar side it remains open, and its edges grow out to form a manubrium. On each gastric
ridge appears a single gastric filament, soon to be followed by others, and in the notches at the extremities of the eight arms tentaculocysts make their appearance. In the meantime the spacious enteric cavity is continued into the eight arms in the form of wide radiating canals.

As the ephyra grows the adradial regions—at first deeply notched—grow more rapidly than the rest, the result being that the notches become gradually filled up, and the umbrella, from an eight-rayed star, becomes a nearly circular disc. Four oral arms are developed, and numerous marginal tentacles, and the ephyra gradually assumes the form of the adult Aurelia. It seems probable that the sub-genital pits of the medusa are formed from sections of the septal funnels of the Scyphula.

Thus the life-history of Aurelia differs in several marked respects from that of any of the Hydrozoa. There is an alternation of generations, as in Obelia, the gamobium being represented by the adult Aurelia, the agamobium by the Scyphula. But instead of the medusa being developed either as a bud on a branched colony, as in Leptolinae, or by direct metamorphosis of a polype, as in Trachylinae, it is formed by the metamorphosis of an ephyra developed as one of several transverse segments of a polype.

It has been shown that, under exceptional circumstances, the egg of Aurelia develops directly—i.e., without the interposition of a Scyphula-stage—into the adult medusa. As we shall see, this is the normal mode of development of many allied forms.

2. General Structure and Classification.

The Scyphozoa may be defined as medusoid Cœlenterata, having the same general structure and arrangement of the layers as the medusoid Hydrozoa, but differing from them in the possession of endodermal gastric tentacles; in having endodermal gonads discharging their products into the digestive cavity; and, in nearly all cases, by the absence of a velum, and in the presence of sense-organs in the form of hollow sense-clubs or tentaculocysts. How far a stomodæum or ectodermal gullet is characteristic of the group is uncertain. As in the Hydrozoa, the medusa develops directly from the egg in some species, while in others there is an alternation of generations, a polype-form (gamobium) giving rise to the medusa-form (agamobium) by a process of transverse fission. In the majority of cases, however, nothing is known of the life-history, the process of development having been worked out only in a few cases.

As far as is known the segmenting embryo gives rise to a gastrula by invagination: by the closure of the blastopore a planula is produced, at one end of which a second invagination takes place, forming the stomodæum.
The Scyphozoa are divisible into four orders, as follows:—

Order 1.—**Stauromedusæ.**

Scyphozoa having a conical or vase-shaped umbrella, sometimes attached to external objects by an ex-umbrellar peduncle: no tentaculocysts.

Order 2.—**Peromedusæ.**

Scyphozoa having a conical umbrella divided by a transverse constriction: four inter-radial tentaculocysts.

Order 3.—**Cubomedusæ.**

Scyphozoa with a four-sided cup-shaped umbrella: our per-radial tentaculocysts.

Order 4.—**Discomedusæ.**

Scyphozoa with a flattened saucer- or disc-shaped umbrella: not fewer than eight tentaculocysts, four per- and four inter-radial.

Sub-Order a.—**Cannostomæ.**

Discomedusæ with a simple square mouth devoid of oral arms.

Sub-Order b.—**Semostomæ.**

Discomedusæ in which the square mouth is produced into four long oral arms.

Sub-Order c.—**Rhizostomæ.**

Discomedusæ having the mouth obliterated by the growth across it of the oral arms: the stomach is continued into canals which open by funnel-shaped apertures on the edges of the arms.

Systematic Position of the Example.

Aurelia aurita is one of several species of the genus Aurelia, and is placed in the family Ulmaridæ, the sub-order Semostomæ, and the order Discomedusæ.

Its saucer-shaped umbrella and eight tentaculocysts place it at once among the Discomedusæ: the presence of a distinct mouth surrounded by four oral arms excludes it from the first and third sub-orders of Discomedusæ and place it in the second sub-order or Semostomæ. The latter group contains six families, characterised mainly by differences in the canal-system: the Ulmaridæ are distinguished by narrow branched radial canals opening into a circular canal. Of the seven genera in this family, Aurelia stands alone in having its tentacles attached on the dorsal or ex-umbrellar side of the margin, and in the oral arms showing no trace of bifurcation. Eight species of Aurelia are recognised, *A. aurita* being distinguished by having the oral arms slightly shorter.
than the radius of the umbrella, and by having a trichotomous
inter-radial canal and two unbranched adradial canals springing
from each gastric pouch.

Order 1.—Stauromedusæ.

The simplest member of this order, and indeed of the whole class of Scyphozoa,
is *Tessera* (Fig. 117), a small medusa about 4 mm. in diameter. It is interesting

![Diagram](Fig. 117.—*Tessera princeps*. A, external view; B, vertical section; *g.f.*, gastric filament; *gon.*, gonad; *i.r.t.*, inter-radial tentacle; *mnb.*, manubrium; *mth.*, mouth; *p.r.t.*, per-radial tentacle; *st.*, stomach; *tn.*, tentacle. (After Haeckel.)

as having the same general characters as the Scyphula-stage of Aurelia, except
that the bell-shaped body is free-swimming. The edge of the umbrella is
surrounded by eight tentacles, four per- (*p.r.t.*) and four inter-radial (*i.r.t.*), and
movement is effected by a well-developed system of circular and radial muscles.
The simplicity of the genus is well shown in the total absence of sense-organs.
The manubrium (*mnb.*) leads into a spacious stomach (*st.*), from which four wide
per-radial pouches are continued into the umbrella, and are connected with
another by a spacious cavity passing round its margin and called the circular
sinus. There are only four gastric filaments (*g.f.*), one springing from each of the
four inter-radial gastric ridges or tentacles (*tn.*). The gonads (*gon.*) are horseshoe-
shaped, with their concavities directed towards the margin of the umbrella.
Lucernaria (Fig. 118), a genus not uncommon on the British coasts, is in one respect even more like a Scyphula, since it is attached by a peduncle developed from the centre of the ex-umbrella. The margin of the umbrella is prolonged into eight short hollow adradial arms, bearing at their ends groups of short adhesive tentacles (t.). As in the Scyphula, each gastric ridge contains an infundibulum, lined with ectoderm and opening on the sub-umbrella. The gastric filaments (g. f.) are very numerous—a distinct advance on Tessera—and the gonads (gon.) are band-like. There are no sense-organs in Lucernaria, but in an allied genus degenerate tentaculocysts are present.

Order 2.—Peromedusæ.

This group includes a small number of rare and beautiful Medusæ of curiously complex structure, of which Pericolpa may be taken as an example. The umbrella (Fig. 119) is always conical, and is divided by a horizontal furrow into an apical region or cone (cn.) and a marginal region or crown; the crown is again divided by a second, rather irregular horizontal furrow into a series of pedal lobes (pd. l.), adjacent to the cone, and a series of marginal lappets (mg. l.), forming the free edge of the bell.

Four of the pedal lobes, inter-radial in position, bear tentaculocysts (tc.), four others, per-radially situated, give origin to long, hollow tentacles (t.). In the more complex genera there are eight additional adradial tentacles.

The mouth (mth.) is very large, and leads by a wide manubrium (mnb.) into a spacious stomach (st.), which is continued quite to the apex of the cone. In the wall of the stomach are four wide per-radial slits, leading into an immense circular sinus (circ. s.). As in Lucernaria, there are four wide inter-radial infundibula. The gastric filaments (g. f.) are very numerous, and the elongated U-shaped gonads (gon.) are eight in number and adradial.

Order 3.—Cubomedusæ.

The Jelly-fishes forming this order are, as the name implies, of a more or less cubical form, resembling a deep bell with somewhat flattened top and square transverse section. They resemble the hydrozoan Medusæ more than any of the other Scyphozoa. The best known species, Charybdea marsumialis (Fig. 120), is about 5 cm. in diameter and of very firm consistency.
As in the lower Peromedusea, the margin of the umbrella bears four tentacles (t.) and four tentaculocysts (tc.), but the position of these organs is reversed, the tentaculocysts being per-radial, the tentacles inter-radial. The tentaculocysts are set in deep marginal notches, and the tentacles spring from conspicuous gelatinous lobes (l.), which probably answer to the pedal lobes of the preceding order.

The margin of the umbrella is produced, in most cases but not in all, into a horizontal shelf (rd.), resembling the velum of the hydroid Medusa, but differing from it in containing a series of branched vessels (vld. lam.) continuous with the canal-system, and of course lined with endoderm. In the Hydrozoa, it will be remembered, the velum is formed simply of a double layer of ectoderm with a supporting layer of mesoglea. Owing to this fundamental difference, the velum-like organ of the Cubomedusea is distinguished as the celarium.
The mouth is situated at the end of a short manubrium (\textit{mn}b.) leading into a wide stomach, from which go off four very broad per-radial pouches (\textit{rad.} \textit{p}.), occupying the whole of the four flat sides of the umbrella, and separated from one another by narrow inter-radial septa or partitions placed at the four corners. These pouches are equivalent to wide radial canals, and the partitions between them to a poorly developed endoderm lamella (\textit{end.} \textit{lam}.). At the margin of the umbrella the pouches communicate with one another by apertures in the septa, so that a kind of circular canal is produced (\textit{circ.} \textit{c}). Near the junction of the gastric pouches with the stomach are the usual four groups of gastric filaments (\textit{g.} \textit{f}).

The gonads (\textit{gon}.) are four pairs of narrow plate-like organs, attached one along each side of each inter-radial septum. The nervous system takes the form

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{fig}
\caption{\textit{Cnarybdæa marsupialis}. A, side view of the entire animal; B, vertical section passing on the left side through an inter-radius, on the right through a per-radius; C, transverse section; \textit{circ.} \textit{c}, circular canal; \textit{end.} \textit{lam}, endoderm lamella; \textit{end.} \textit{lam'}, its prolongation into the velarium; \textit{g.} \textit{f}, gastric filaments; \textit{gon}, gonad; \textit{gon'}, septum separating gonads; \textit{l}, lappet; \textit{mn}b, manubrium; \textit{rad.} \textit{p}, radial pouch; \textit{t}, tentacle; \textit{tc}, tentaculocyst; \textit{vl}, velarium. (After Claus, somewhat altered.)}
\end{figure}
of a sinuous nerve-ring round the margin of the bell, bearing a distinct group of nerve-cells at the base of each tentaculocyst and tentacle. The Cubomedusae are the only Scyphozoa which, like the Hydrozoa, have a complete nerve-ring. The tentaculocysts are very complex, each bearing a lithocyst and several eye-spots.

Order 4.—Discomedusæ.

The preceding orders are all small ones, i.e. include a small number of genera and species. The vast majority of Scyphozoa belong to the present order—the "Disc-jellies" or "Sea-blubbers" as ordinarily understood.

The umbrella is always comparatively flat, having the form of an inverted saucer. The edge is produced primitively into eight pairs of marginal lappets, but in some of the more highly differentiated forms the number both of lappets and of tentaculocysts becomes greatly increased. Many of the species belonging to the lowest sub-order—the Cannostoma—are small, not exceeding a few millimetres in diameter, but most of the Semostoma and Rhizostoma are large, and one of the former group—*Cyanea arctica*—may attain a diameter of 2 metres and upwards, while its marginal tentacles reach the astonishing length of 40 metres, or about 130 feet. But in spite of their size and apparent solidity, the amount of solid matter in these great jelly-fishes is extraordinarily small; some of them have been proved to contain more than 99 per cent. of sea-water.

The marginal tentacles are short and solid in the Cannostoma (Fig. 121), hollow and often of great length in the Semostoma (Fig. 113), and altogether absent in the Rhizostoma (Fig. 122). The oral arms are absent in the Cannostoma (Fig. 121), where there is a single square or four-rayed mouth: in the Semostoma there are four oral arms (Fig. 113, or. a.), each resembling a leaf.
folded along its midrib, and having more or less frilled edges: in the Rhizostome each of the original four arms (Fig. 122, or. a.) becomes divided longitudinally in the course of development, the adult members of the group being characterised by the presence of eight arms, often of great length, and variously lobed and folded so as to present a more or less root-like appearance.

The arrangement of the enteric cavity and its offshoots presents an interesting series of modifications. In the Cannostomae (Fig. 121) the resemblance to the Ephyryula-stage of Aurelia is very close, the stomach giving off eight pouches which bifurcate and enter the marginal lappets. In the Semostomae (Fig. 113) the stomach lobes give off well-defined radial canals, which are frequently more or less branched, often unite into complex networks, and sometimes open into a circular canal round the margin of the umbrella.

In the Rhizostome (Fig. 122, B) a similar network of canals is found in the umbrella, but an extraordinary change has befallen the oral or ingestive portion of the enteric system. Looking at the oral or lower surface of one of these Jellyfishes, such as Pilema, no mouth is to be seen, but a careful examination of the oral arms shows the presence of large numbers—hundreds, or even thousands in some cases—of small funnel-like apertures (B, C, s.mth.) with frilled margins. Rhizostomes have been found with prey of considerable size, such as fishes, embraced by the arms and partly drawn into these apertures, which are therefore called the suctorial mouths. They lead into canals in the thickness of the arms (B, c.), the lesser canals unite into larger, and then finally open into the stomach (st.). We thus get a polystomaeous or many-mouthed condition which is practically unique in the animal kingdom, the only parallel to it being furnished by the Sponges, in which the inhalant pores are roughly comparable with the suctorial mouths of a Rhizostome.

![Fig 122. Pilema pulmo. A, side view of the entire animal; B, vertical section, diagrammatic: C, one of the suctorial mouths, magnified; c, arm canal; g.f, gastric filaments; gen, gonads; or, a, oral arms; rad. c, radial canal; s. mth, suctorial mouths; st, stomach; t, t, 12, tentacles on oral arms. (After Cuvier, Claus, and Huxley.)](image-url)
It has been found that this characteristic arrangement is brought about by certain changes taking place during growth. The young Rhizostome has a single mouth in the usual position, and more or less leaf-like arms, folded along the midrib so as to enclose a deep groove, from which secondary grooves pass, like the veins of a leaf, towards the edge of the arm. As development proceeds, these grooves become converted into canals by the union of their edges, thus forming a system of branching tubes opening proximally into the angles of the mouth and distally by small apertures—the suctorial mouths—on the edges of the arms. At the same time the proximal ends of the arms grow towards one another and finally unite across the mouth, closing it completely, and forming a strong horizontal brachial disc, which in the adult occupies the centre of the sub-umbrellar surface.

In *Ephyra*, the lowest of the Cnemostome, only four gastric filaments are present, as in Tessera (p. 163) or a newly liberated Ephyra (p. 163), but as a rule these characteristic structures are very numerous. The lower forms, also, have no sub-genital pouches, or indeed anything corresponding to the septal funnels of the preceding orders. In the higher Rhizostome a remarkable modification is produced in connection with these cavities: the four pouches approach the centre and fuse with one another, forming a single spacious chamber, the sub-genital portico, which lies immediately below the floor of the stomach and above the brachial disc.

In many of the Discomedusae development takes place in the same general way as in Aurelia, i.e., the impregnated egg gives rise to a Scyphula or asexual polype stage, which, by transverse division, produces sexual medusae. But in other cases there is no alternation of generations, and development is direct. For instance, in *Pelagia* (Fig. 123)—one of the Semostome—a blastula is formed which becomes invaginated at one end, forming a gastrula. The blastopore or gastrula-mouth remains open, and a considerable space is left between the invaginated endoderm and the ectoderm. Next the mouth region becomes elevated, forming a manubrium, and around this a circular depression appears—the rudiment of the sub-umbrellar cavity—surrounded by a raised ridge, the umbrella margin, which soon becomes divided into lobes, the marginal lappets. Up to this time the embryo is ciliated externally, but soon the cilia disappear, and the little creatures assume somewhat the form of an Ephyra, which gradually develops into the adult Pelagia.

Additional Remarks on the Scyphozoa.

The Scyphozoa are all marine, and the majority are pelagic, i.e., swim freely on the surface of the ocean. A few inhabit the deep sea, and have been dredged from as great a depth as 2,000 fathoms.
Nearly all are free-swimming in the adult state: some, however, live on coral-reefs or mud-banks, and are found resting, in an inverted position, on the ex-umbrella: and a few, such as Lucernaria, are able to attach themselves at will by a definite ex-umbrellar peduncle.

Considering the extremely perishable nature of these organisms, and the fact that many of them contain not more than 1 per cent. of solid matter, it is not to be expected that many of them should have left traces of their existence in the fossil state. Nevertheless, in the finely grained limestone of Solenhofen, in Bavaria, belonging to the Upper Jurassic period, remarkably perfect impressions of Jelly-fishes have been found, some of them readily recognisable as Discomedusae.

Many of the Scyphozoa are semi-transparent and glassy, but often with brilliantly coloured gonads, tentacles, or radial canals. In many cases the umbrella, oral arms, &c., are highly coloured, and some species, e.g. Pelagia noctiluca, are phosphorescent. They are all carnivorous, and although mostly living upon small organisms, are able, in the case of the larger species, to capture and digest Crustaceans and Fishes of considerable size.

CLASS III.—ACTINOZOA

1. **Example of the Class—A Sea-Anemone (Tealia crassicornis).**

Sea-anemones are amongst the most abundant and best known of shore-animals. They are found attached to rocks, sea-weeds, shells, &c., either in rock-pools or on rocks left high and dry by the ebbing tide. Usually their flower-like form and brilliant colour make them very conspicuous objects, but many kinds cover themselves more or less completely with sand and stones, and contract so much when left uncovered by water, that they appear like soft shapeless lumps stuck over with stones, and thus easily escape observation. Any of the numerous species will serve as an example of the group: the form specially selected is the "Dahlia Wartlet" (Tealia crassicornis), one of the commonest British species.

External characters.—Tealia (Fig. 124, A) has the form of a cylinder, the diameter of which slightly exceeds its height. It is often as much as 3 inches (8 cm.) across, is of a green or red colour, and habitually covers itself with bits of shell, small stones, &c. It is attached to a rock or other support by a broad sole-like base, sharply separated from an upright cylindrical wall or column, the surface of which is beset with rows of adhesive warts or tubercles: at its upper or distal end the column passes into a horizontal plate, the disc or peristome. In the middle of the disc, and slightly elevated above its surface, is an elongated slit-like aperture, the
Fig. 124.—Tealia crassicornis. A, dissected specimen; B, transverse section, the half above the line ab through the gullet, the lower half below the gullet: m, mes. directive mesenteries; gm., gonads; gul., gullet; l.m., longitudinal muscle; lp., lappet; mes. 1, primary; mes. 2, secondary; mes. 3, tertiary mesenteries; mes. f, mesenteric filaments; mth., mouth; ost. 1, ost. 2, ostia; pm., parietal muscle; sgph., siphonoglyph; sph., sphincter muscle; t.m., transverse muscle.
mouth (mth.), from which streaks of colour radiate outwards. Springing from the disc and encircling the mouth are numerous short conical tentacles (t.), which appear at first sight to be arranged irregularly, but are actually disposed in five circles, of which the innermost contains five, the next five, the third ten, the fourth twenty, and the fifth or outermost forty, making a total of eighty.

Obviously the Sea-anemone is a polype, formed on the same general lines as a Hydra or a Scyphula, but differing from them in having numerous tentacles arranged in multiples of five, and in the absence of a hypostome, the mouth being nearly flush with the surface of the disc. Its great size and bulk, and the comparative firmness of its substance, are also striking points of difference between Tealia and the polypes belonging to the classes Hydrozoa and Scyphozoa.

Enteric System.—Still more fundamental differences are found when we come to consider the internal structure. The mouth does not lead at once into a spacious undivided enteric cavity, but into a short tube (gul.), having the form of a flattened cylinder, which hangs downwards into the interior of the body, and terminates in a free edge, produced at each end of the long diameter into a descending lobe or lappet (lp.). This tube is the gullet or stomodæum, a structure we have already met with in the Scyphozoa, but which here attains a far greater size and importance. Its inner surface is marked with two longitudinal grooves (A and B, sqph.), placed one at each end of the long diameter, and therefore corresponding with the lappets: they are known as the gullet-grooves or siphonoglyphs.

The gullet does not simply hang freely in the enteric cavity, but is connected with the body-wall by a number of radiating partitions, the complete or primary mesenteries (mes. 1): between these are incomplete secondary mesenteries (mes. 2), which extend only part of the way from the body-wall to the gullet, and tertiary mesenteries (mes. 3), which are hardly more than ridges on the inner surface of the body-wall. Thus the entire internal cavity of a Sea-anemone is divisible into three regions: (1) the gullet or stomodæum, communicating with the exterior by the mouth, and opening below into (2) a single main digestive cavity, the stomach or mesenteron, which gives off (3) a number of radially arranged cavities, the inter-mesenteric chambers or metentera. It is obvious that we may compare the gullet and stomach with the similarly named structures in the Scyphula-stage of Aurelia, and the mesenteries with the gastric ridges; indeed, there seems to be little doubt that these structures are severally homologous. A further correspondence is furnished by the presence of an aperture or ostium (ost. 1) in each mesentery, placing the adjacent intermesenteric chambers in direct communication with one another: in Tealia a second ostium (ost. 2) is present near the outer edge of the mesentery. Moreover, the free edge of the mesentery
below the gullet is produced into a curious twisted cord, the mesenteric filament (mes. f.), answering to the gastric filaments of the Scyphozoa.

The general arrangement of the cell-layers is the same as in the two preceding classes. The body-wall (Fig. 125)—base, column, and disc—consists of a layer of ectoderm outside, one of endoderm within, and between them an intermediate layer or mesoglea, which is extremely thick and tough. The gullet (gul.), which, like that of the Scyphula, is an in-turned portion of the body-wall, is lined with ectoderm, and its outer surface—i.e. that facing the inter-mesenteric chambers—is endodermal. The mesenteries (mes.) consist of a supporting plate of mesoglea, covered on both sides by endoderm. The tentacles (t) are hollow out-pushings of the disc, and contain the same layers.

Muscular System.—Sea-anemones perform various characteristic movements: the column may be extended or retracted, the tentacles extended to a considerable length, or drawn back and completely hidden by the upper end of the column being folded over them like the mouth of a bag; the gullet, and even the mesenteries, may be partially everted through the mouth; and lastly, the whole animal is able, very slowly, to change its position by creeping movements of its base.

These movements are performed by means of a very well-developed set of muscles. A mesentery examined from the surface
is seen to be traversed by definite fibrous bands, the two most obvious of which are the longitudinal or retractor muscle (Fig. 124, l.m.), running as a narrow band from base to disc, and the parietal muscle (p.m.), passing obliquely across the lower and outer angle of the mesentery. Both these muscles are very thick, and cause a projection or bulging on one side of the mesentery, specially obvious in a transverse section (B. l.m.): a third set of fibres, forming the transverse muscle (t.m.), crosses the longitudinal set at right angles, but is not specially prominent. The longitudinal muscles shorten the mesentery, and draw the disc downwards or towards the base, thus retracting the tentacles; the parietal muscles approximate the column to the base, and the transverse fibres produce a narrowing of the mesentery, and thus, opposing the action of the longitudinal muscles, act as extensors of the whole body. The withdrawal of disc and tentacles, during complete retraction, has been compared to the closure of a bag by tightening the string, and is performed in much the same way, the string being represented by a very strong band of fibres, the circular or sphencter muscle (s.m.), which encircles the body at the junction of the column and disc.

The foregoing muscles can all be seen by the naked eye, or under a low magnifying power. They are supplemented by fibres, only to be made out by microscopic examination, occurring both in the body-wall and in the tentacles. The latter organs, for instance, are able to perform independent movements of extension and retraction by means of delicate transverse and longitudinal fibres.

It was mentioned above that the thickness of the longitudinal and parietal muscles produces a bulging on one surface of the mesenteries. A transverse section shows that the arrangement of the mesenteries and of their muscles is very definite and characteristic (Fig. 124, B). At each end of the gullet, opposite the siphonoglyphe, are two mesenteries (d. mes.), having their longitudinal muscles turned away from one another: they are distinguished as the directive mesenteries, and, in the case of Tealia, there are two couples of directive mesenteries, one at each end of the long axis of the gullet. Of the remaining complete or primary mesenteries there are four couples on each side (mes. 1), differing from the directive couples in having the longitudinal muscles turned towards one another. The secondary and tertiary mesenteries (mes. 2, mes. 3) are also arranged in couples, and in all of them the longitudinal muscles of each couple face one another.

Symmetry.—It will be noticed that Tealia, unlike the typical hydrozoan and scyphozoan polypes, presents a distinct bilateral symmetry, underlying, as it were, its superficial radial symmetry. It is divisible into equal and similar halves by two planes only, viz. a vertical plane taken through the long diameter of the gullet, and a transverse plane taken through its short diameter.
The general **microscopic structure** of a Sea-anemone is well shown by a section through a tentacle (Fig. 126). Both ectoderm (ect.) and endoderm (end.) consist mainly of very long columnar, ciliated, epithelial cells, and the mesogloea (msgl.) is not only extremely thick, but has the general characters of connective tissue, being traversed by a network of delicate fibres with interspersed cells. The middle layer has, in fact, ceased to be a mere gelatinous supporting lamella or mesogloea, and has assumed, to a far greater extent than in any of the lower groups, the characters of an intermediate cell-layer or mesoderm.

Stinging-capsules occur in the ectoderm, and are also very abundant in the mesenteric filaments. They (Fig. 127) resemble in general characters the nematocysts of Hydrozoa, but are of a more elongated form, and the thread is usually provided at the base with very numerous slender barbs (B). Very frequently the coiled thread is readily seen in the undischarged capsule (A). Gland-cells (Fig. 128, gl.) are very abundant in the ectodermal lining of the gullet and in the mesenteric filaments: the latter are trilobed in section, and the gland-cells are confined to the middle portion, the lateral divisions...
being invested with ordinary ciliated cells (c). In virtue of possessing both stinging-capsules and gland-cells, the mesenteric filaments perform a double function. The animal is very voracious, and is able to capture and swallow small Fishes, Molluscs, Sea-urchins, &c. The prey is partly paralysed, before ingestion, by the nematocysts of the tentacles, but the process is completed, after swallowing, by those of the mesenteric filaments. Then as the captured animal lies in the stomach, the edges of the filaments come into close contact with one another and practically surround it, pouring out, at the same time, a digestive juice secreted by their gland-cells.

The muscles described above consist partly of spindle-shaped nucleated fibres, and partly of muscle-processes, like those of Hydra: the latter occur chiefly in the transverse muscular layer of the tentacles and are endodermal, the longitudinal layer is formed of distinct fibres of ectodermal origin: the great muscles of the mesenteries are of course endodermal. Although always derived either from the ectoderm or endoderm, many of the muscle-fibres of Tealia undergo a remarkable change of position by becoming sunk in the mesogloea, and thus appearing to belong to that layer (Fig. 126, l. m.). This fact is significant from the circum-

![Diagram](image-url)
stance that, as we shall see, the muscles of all animals above Coelenterata are mesodermal structures.

The nervous system is very simple. It consists of a layer of delicate fibres lying between the epithelial and muscular layers of the ectoderm. Among the fibres are found nerve-cells (Fig. 126, *av.e*), often of large size, and occurring chiefly in the disc and tentacles. Thus, as in the polype-forms previously described, the nervous system is in a generalised condition, and shows no concentration into a definite central nervous system such as occurs in Medusae.

Reproductive organs.—Sea-anemones are dioecious, the sexes being lodged in distinct individuals. The gonads—ovaries or testes—are developed in the substance of the mesenteries (Fig. 124, *gon.*), a short distance from the edge, and, when mature, often form very noticeable structures. The reproductive products are obviously, as in the Scyphozoa, endodermal. The sperms, when ripe, are discharged into the stomach and escape by the mouth: they are then carried, partly by their own movements, partly by ciliary action, down the gullet of a female, where they find their way to the ovaries and impregnate the eggs.

The development of Sea-anemones resembles, in its main features, that of Scyphozoa. The oosperm undergoes more or less regular division, the details differing considerably in individual cases, and becomes converted into a planula, an elongated ovoidal body with an outer layer of ciliated ectoderm, and an inner layer of large endoderm cells, surrounding a closed enteric cavity, usually filled with a mass of yolk, which serves as a store of nutriment.

In this condition the embryo escapes from the parent, through the mouth, swims about for a time, and then settles down, becoming attached by its broader or anterior end. At the opposite or narrow end a pit appears, the rudiment of the stomodæum; this deepens and, its lower or blind end becoming perforated, effects a communication with the enteron.

The mesenteries are developed in regular order, but in a way which would certainly not be suspected from their arrangement in the adult. First of all, a single pair of mesenteries (Fig. 129, A, 1) grow from the body-wall to the gullet, being situated one on each side of the vertical plane, at right angles to the long diameter of the stomodæum, and near one end of that tube. The enteron thus becomes divided into two chambers, a larger or dorsal and a smaller or ventral, and the embryo acquires a distinct bilateral symmetry. Next a pair of mesenteries (2) appear in the dorsal chamber, dividing it into a median and two lateral compartments; then a third pair (3) in the ventral chamber, producing a similar division; then a fourth pair (4) in the middle compartment of the dorsal chamber; then a fifth pair (B, 5) in the lateral compartments of the dorsal chamber; and a sixth (6) in the lateral compartments of the ventral chamber. Soon the longitudinal muscles are developed, and the fate of these primitive pairs of mesenteries can be seen. The third and fourth pairs become the two directive couples of the adult; another couple of primary mesenteries is constituted, on each side of the vertical plane, by one of the mesenteries of the first
and one of the sixth pair; a third couple is similarly formed by a mesentery of the second and one of the fifth pair. Thus it is only in the case of the directive mesenteries that an adult couple coincides with an embryonic pair: in other instances the two mesenteries of a couple are of different orders, belonging to distinct embryonic pairs.

The tentacles are developed in a somewhat similar order. The first to make its appearance is connected with the larger or dorsal enteric chamber mentioned above: for some time it remains much longer than any of its successors, and thus accentuates in a marked degree the bilateral symmetry of the embryo.

It will be noticed that the development of the Sea-anemone is accompanied by a well-marked metamorphosis, but that there is no alternation of generations. In this respect its life-history offers a marked contrast with that of Obelia or of Aurelia.

2. DISTINCTIVE CHARACTERS AND CLASSIFICATION.

The Actinozoa are Cœlenterata which exist only in the polype-form, no medusa-stage being known in any member of the class. The actinozoan differs from the hydrozoan polype mainly in possessing a stomodaæum the relative size and physiological importance of which are far greater than in the Scyphozoa, the first group in which this structure is met with: it differs from both hydrozoan and scyphozoan polypes in the possession of mesenteries or vertical radiating partitions, which extend inwards from the body-wall, and in some cases join the stomodaæum. The free margins of the mesenteries bear coiled mesenteric filaments, which appear to answer to the gastric filaments of Scyphozoa, but may be partly ectodermal in origin. The mesenteries are developed

Fig. 129.—Transverse sections of early (A) and later (B) stages of an embryo Sea-anemone (Actinia). The mesenteries are numbered in the order of their development; std. stomodaæum. (After Korschelt and Heider.)
in pairs symmetrically on each side of a vertical plane: their final radial position is secondary.

The body-wall consists of ectoderm and endoderm separated by a stout mesoglea containing fibres and cells. The stomodæum consists of the same layers reversed—i.e. its lining membrane is ectodermal. The mesenteries are formed of a double layer of endoderm with a supporting plate of mesoglea. *Nematoceysts,* frequently of a more complex form than those of *Hydrozoa* and *Scyphozoa,* are present in the tentacles, body-wall, stomodæum, and mesenteric filaments. The muscular system is well developed, and contains both ectodermal and endodermal fibres and endodermal muscle-processes. The nervous system consists of irregularly disposed cells and fibres; there is no concentration of these elements to form a central nervous system.

The gonads are developed in the mesenteries, the sex-cells are endodermal, and the ripe sexual products are discharged into the enteron. The impregnated egg develops into a planula, which, after a short free existence, settles down and undergoes metamorphosis into the adult form. Except in one doubtful instance there is no alternation of generations.

In some *Actinzoa* the animal remains simple throughout life, but in most members of the class an extensive process of budding takes place, the result being the formation of colonies of very various form and often of great size. Some kinds, again, resemble *Tealia* in having no hard parts or skeletal structures of any kind; but the majority possess a skeleton, formed either of carbonate of lime or of a horn-like or chitinoid material, and developed, in most cases though not in all, from the ectoderm.

The Actinzoa are classified as follows:—

Sub-Class I.—Zoantharia.

Actinzoa in which the tentacles and mesenteries are usually very numerous and are arranged, as a rule, in multiples of five or six. The tentacles are usually simple, unbranched, hollow cones. There are commonly two siphonoglyphes and two pairs of directive mesenteries: the remaining mesenteries are usually arranged in couples with the longitudinal muscles of each couple facing one another.

Order 1.—*Actiniaria*.

Zoantharia which usually remain simple, but in a few instances form small colonies. The tentacles and mesenteries are numerous, and there is no skeleton. This order includes the Sea-anemones.

Order 2.—*Madreporaria*.

Zoantharia which resemble the *Actiniaria* in the general structure of the soft parts, but which usually form colonies, and
always possess an ectodermal calcareous skeleton. This order includes the vast majority of Stony Corals (Figs. 133 and 143).

Order 3.—Antipatharia.

Compound, tree-like Zoantharia in which the tentacles and mesenteries are comparatively few (6—24) in number. A skeleton is present in the form of a branched chitinoid axis, developed from the ectoderm, which extends throughout the colony. This order includes the “Black Corals” (Fig. 137).

Sub-Class II.—Alcyonaria.

Actinozoa in which the tentacles and mesenteries are always eight in number. The tentacles are pinnate, i.e. produced into symmetrical branchlets. There is never more than one siphonoglyphe, which is ventral in position, i.e. faces the proximal end of the colony. The mesenteries are not arranged in couples, and their longitudinal muscles are all directed ventrally, i.e. towards the same side as the siphonoglyphe.

Order 4.—Alcyonacea.

Alcyonaria in which the skeleton usually consists of calcareous spicules or small irregular bodies, found in the mesogloea, but probably originating from wandering ectoderm cells. The common “Dead men’s fingers” (*Alcyonium*, Fig. 140) has a skeleton of this type. In some cases the spicules become aggregated so as to produce a coherent skeleton, which may form a branched axis to the whole colony, as in the precious Red Coral (*Corallium*, Fig. 132), or a series of connected tubes for the individual polyps, as in the Organ-pipe Coral (*Tubipora*, Fig. 135). In the “Blue Coral” (*Heliotheca*) the skeleton is a massive ectodermal structure resembling that of the Madreporaria. Most genera are compound; a few, such as *Hartea* (Fig. 131), are simple.

Order 5.—Gorgonacea.

Compound tree-like Alcyonaria, with a calcareous or horny skeleton of ectodermal origin forming a branched axis throughout the colony. Spicules are present in the mesogloea. There is no siphonoglyphe. The beautiful “Sea-fans” belong to this group (Fig. 141).

Order 6.—Pennatulacea.

Alcyonaria in which the colony is usually elongated, and has one end embedded in the mud at the sea-bottom, while the opposite or distal end bears the polyps, usually on lateral
branches. The stem is supported by a calcareous or horny skeleton. The polyps are dimorphic. The "Sea-pens" (*Pennatula*), are the commonest members of this group (Fig. 134).

Systematic Position of the Example.

Tealia crassicornis is one of several species of the genus *Tealia*: it belongs to the family *Tealidæ*, which, with several other families, make up the tribe *Hexactiniae*, of the order *Actiniaria*, of the sub-class *Zoantharia*.

The presence of numerous tentacles, arranged in multiples of five, places it at once among the *Zoantharia*. The fact that it is simple and devoid of a skeleton causes it to be assigned to the *Actiniaria*. This order is divided into tribes characterised by differences in the arrangement of the mesenteries, especially by the presence of one or two couples of directive mesenteries, and by the direction in which the longitudinal muscles are turned. In the *Hexactiniae* the mesenteries are all arranged in couples with the longitudinal muscles of each turned towards one another, except in the case of the two directive couples. The mesenteries are in multiples of five, and the stomodæum has two siphonoglyphes and two lappets.

The family *Tealidæ* is characterised by the possession of numerous mesenteries, tentacles of moderate length, which are completely covered by the closed-in disc during retraction, and by the presence of a large endodermal sphincter muscle. The genus *Tealia* is distinguished from other members of the same family by being broader than high, by having numerous retractile, equal-sized tentacles, and by the presence of longitudinal series of warts on the column. The species *crassicornis* is distinguished from other species of the genus by the warts being of approximately equal size.

3 **General Organisation.**

The chief variations in the **external form** of the Actinozoa are due to the diverse modes of budding: as we shall see, the structure of the individual polyps or zooids is remarkably uniform—at least as regards all the essentials of their organisation.

Nearly all the *Actiniaria* or Sea-anemones are simple, and, in the few instances where colonies are formed, these are usually small, and contain a very limited number of zooids. In *Zoanthus* (Fig. 130), for instance, the original polype sends out a horizontal branch or *stolon* (*st.*), from which new polypes arise. Besides the Sea-anemones the only simple forms are certain Madreporarian corals, such as *Flabellium* (Fig. 142, A, B), and three genera of Aleyonacea, of which *Harleia* (Fig. 131) may be taken as an example.
The simplest mode of budding is that just described in Zoanthus, in which new zooids are developed from a narrow band-like or tubular stolon (Fig. 130, st.). A more usual method resembles that we are already familiar with in Hydrozoa, new buds being formed as lateral outgrowths, and a tree-like colony arising with numerous zooids springing from a common stem or coenosarc. Corallium and Gorgonia (Figs. 132 and 141) are good examples of this type of growth. In other cases the buds grow more or less parallel with one another, producing massive colonies either of close-set zooids or of zooids separated by a solid coenosarc. As examples of this type we may take Palythoa, the most complex of the Actiniaria, and many of the common Madreporaria, such as Astraea (Fig. 133). In the Sea-pens (Pennatulae) the proximal end of the elongated colony (Fig. 134) is sunk in the mud, and the distal end bears zooids springing either directly from
the coenosarc or, as in *Pennatula* itself, from flattened lateral branches.

A very peculiar mode of budding occurs in the Organ-pipe Coral (*Tubipora*). The base of the original polype (Fig. 135) grows out into a flattened expansion from which new polypes arise, diverging slightly from one another as they grow, and separated by tolerably wide intervals. The distal ends of the polypes then grow out into horizontal expansions or platforms (*pl.*), formed at first of ectoderm and mesoglea only, but finally receiving prolongations of the endoderm. The platforms extend, come in contact with one another, and fuse. In this way platforms of considerable extent are formed (*A, pl.*), uniting the polypes with one another. From the upper surfaces of the platforms, between the older polypes, new buds arise, and in this way the colony tends to assume the form of an inverted pyramid, the number of zooids, and consequently the diameter of the colony, increasing *pari passu* with the vertical growth of the latter. The skeleton of this remarkable coral will be referred to hereafter.

Although the general structure of the individual polypes of the Actinozoa is, as mentioned above, very uniform, the variations in detail are numerous and interesting, especially among the Actiniaria. One of the most important points to consider is the *arrangement of the mesenteries*. In *Edwardsia* (Fig. 136), a genus which burrows in sand, instead of attaching itself to
Fig. 134.—**Pennatula sulcata.** A, entire colony; B, portion of the same magnified. l, lateral branch; p, polype; s, siphoneozoid. (After Koelliker.)

Fig. 135.—**Tubipora musica.** A, skeleton of entire colony; B, transverse sections of polype; C, single polype with tube and commencement of platform; D, growth of new polypes from platform; l, m, longitudinal muscles; pl, p, polypes; pl, platform; siphph, siphonoglyphe; sp, spicules; std. stomodeum. (After Cuvier, Quoy and Gaimard, and Hickson.)
rocks, &c., there are only eight mesenteries (B), the usual two couples of directives, and two others on each side of the vertical plane, having their longitudinal muscles directed ventrally, and therefore not arranged in couples. The adult Edwardsia thus corresponds with a temporary stage in the development of one of the more typical sea-anemones, viz., the stage with eight mesenteries shown in Fig. 129, A; it is probably to be looked upon as the most primitive or generalised member of the order. In Zoanthus (Fig. 130, B) the dorsal directives (d.d.) do not reach the gullet, and each lateral couple consists of one perfect and one small and imperfect mesentery. In Cerianthus, another burrowing form, there is a couple of very small ventral directives, and the remaining mesenteries are very numerous, not arranged in couples, and all directed ventrally at their outer ends, so as to have a very obviously bilateral arrangement: in this genus as growth proceeds, new mesenteries are added on the dorsal side, and not, as is usual, between already formed couples. On the other hand, the newly discovered Gyaedes exhibits a perfectly radial arrangement: the mesenteries are all arranged in couples with the longitudinal muscles facing one another. Lastly, in all the more typical Sea-anemones (forming the tribe Hexactiniu) there are either six, eight, or ten pairs of perfect mesenteries, which, as well as the secondary and tertiary cycles, are all arranged in couples, the longitudinal muscles of all but the one or two directive couples facing one another.

In the Madreporaria the mesenteries are arranged, so far as is known, in the way just described for the Hexactiniae. In the Antipatharia there are six primary, and sometimes either four or six secondary, mesenteries. In the whole of the Alcyonaria the mesenteries are eight in number; they are not arranged in couples, and their longitudinal muscles are all turned the same way, viz., towards the ventral aspect (Fig. 135, B). In this whole sub-class, therefore, the resemblance to Edwardsia is very close, the main difference being that the longitudinal muscles of the ventral directives are turned inwards in the Alcyonaria, outwards in Edwardsia.

The tentacles in Zoantharia are usually very numerous, and in nearly all cases have the form of simple glove-finger-like out-
pushings of the disc. In Edwardsia, however, they may be reduced to sixteen, and in some genera of Sea-anemones they are branched. In the Antipatharia (Fig. 137) they vary in number from six to twenty-four. In the Aleyonaria on the other hand, the tentacles, like the mesenteries, are eight in number and are always pinnate, i.e. slightly flattened and with a row of small branchlets along each edge (Fig. 131). Many Actiniaria have the tentacles perforated at the tip (Fig. 125, A, p.), and in some species these organs undergo degeneration, being reduced to apertures on the disc, which represent the terminal pores of the vanished tentacles, and are called stonidia.

Many Sea-anemones possess curious organs of offence called acontia (Fig. 125, A, and Fig. 144, ac.). These are long delicate threads springing from the edges of the mesenteries: they are loaded with nematoceysts, and can be protruded through minute apertures in the column, called "port-holes" or einelides (cn.).

Enteric System.—The gullet in the Actiniaria presents some remarkable modifications. It is usually a compressed tube with two siphonoglyphes, but in Zoanthus and some other genera the ventral gullet-groove alone is present (Fig. 130, B), and in Gyraeatis both grooves are absent, and the tube itself is cylindrical with a circular mouth. The ordinary compressed form of gullet often assumes, in the position of rest, a α-shaped transverse section, owing to its walls coming together in the middle and leaving the two ends wide open. In a deep-sea form, Halecanpoidea, there is a longitudinal partition dividing the stomodœum into dorsal and ventral tubes, the latter of which is said to serve for the egestion of waste matters, and so act as an intestine. In some forms the bluntly-pointed proximal or aboral end of the body is perforated by a small aperture which seems to serve as an anus. In two recently described genera, Fenja (Fig. 138) and Αегігі, a very remarkable modification is described: the gullet is continued to the aboral end, when it opens on the exterior by an anus (a.), thus forming a complete digestive tube. By this arrangement the inter-mesenteric chambers are shut off from all communication with the digestive tube, and together constitute a cavity surrounding the latter and reminding us of the body-cavity met with in most of the higher animals. In Fenja each inter-mesenteric chamber
communicates separately with the exterior by an aperture near the anus, through which the genital products escape.

Fixed and Free Forms.—A large proportion of Actinozoa are permanently fixed, such, for instance, as most of the Stony Corals, the Sea-fans, Black Corals, &c. Most Sea-anemones are temporarily attached by the base, but are able slowly to change their position: some forms, such as *Edwardsia* (Fig. 136) and *Cerianthus*, usually live partly buried in sand enclosed in a tube formed of discharged stinging-capsules, the oral end with its crown of tentacles alone being exposed: others, such as *Peachia* and *Penja*, live an actually free life, habitually lying on the sea-bottom with the longitudinal axis horizontal like that of a worm: a few, such as *Minyas* (Fig. 139), have the aboral end dilated into a sac containing air and serving as a float; by its means these animals can swim at the surface of the sea, and are thus, alone among the Actinozoa, pelagic.

Dimorphism.—With the exception of one genus of Stony Corals, the Zoantharia are all homomorphic, i.e. there is no differentiation of the zooids of a colony. But in the Aleyonaria dimorphism is common: the ordinary zooids or polypes are accompanied by smaller individuals, called *siphonozooids* (Fig. 134, s.), having no tentacles, longitudinal muscles, or gonads.

None of the Actiniaria have a true **skeleton**: in some, however, there is a thick cuticle, and several kinds enclose themselves in a more or less complete tube (Fig. 136), which may be largely

Fig. 138.—*Penja mirabilis*. A, the entire animal; B, with the body-wall divided longitudinally (After Daniel.)

Fig. 139.—*Minyas*. f. float. (After Andree.)
formed of discharged nematocysts. The simplest form of skeleton is found in the solitary Alcyonianarian genus Hartca (Fig. 131), already referred to, in which minute irregular deposits of calcium carbonate, called spicules (sp.), are deposited in the mesoderm. A similar spicular skeleton occurs in the "Dead-men's fingers" (Alcyonium, Fig. 140), where spicules of varying form are found distributed throughout the mesoderm of the coenosarc. In Tubipora (Fig. 135), the "Organ-pipe Coral," the mesodermal spicules become closely fitted together, and form a continuous tube for each polype, the tubes being united by horizontal calcareous platforms (pl.) formed by deposits of spicules in the expansions of the same name already referred to. The skeleton of Tubipora is, therefore, an internal skeleton, and in the living state is covered by ectoderm. In the Red Coral of commerce (Corallium, Fig. 132) the originally separate spicules are embedded in a cement-like deposit of carbonate of lime, the result being the production of an extremely hard and dense branched rod, which extends as an axis through the coenosarc.

Another type of skeleton is found in the Antipatharia (Fig. 137) and in the Gorgonacea (Fig. 141). It also consists of an axial rod, extending all through the colony and branching with it, but is
formed of a black horn-like material. Moreover it is not mesodermal, but ectodermal in origin; in close contact with it is an epithelium, from the cells of which it is produced as a cuticular secretion, and this epithelium is formed as an invagination of the base of the colony. In addition to its axis, Gorgonia contains numerous spicules in the mesoderm of the coenosarc. In some of the Gorgonacea the axial skeleton is partly horny, partly calcareous.

In the Sea-pen (Pennatula, Fig. 134) and its allies the stem of the colony is supported by a horny axis which is unbranched, not extending into the lateral branches. In this case the axis is contained in a closed cavity lined by an epithelium, the origin of
which is still uncertain. Spicules occur in the mesoderm, some of them microscopic, others readily visible to the naked eye.

In the Madreporaria we have a skeleton of an entirely different type, consisting, in fact, of a more or less cup-like calcareous structure, secreted from the ectoderm of the base and column of the polype. When formed by a solitary polype, such a "cup-coral" is known as a corallite; in the majority of species a large number—sometimes many thousands—of corallites combine to form a coralium, the skeleton of an entire coral-colony.

The structure of a corallite is conveniently illustrated by that of the solitary genus Flabellum (Fig. 142, A, B). It has the form of a short conical cup, much compressed so as to be oval in section. Its wall or theca (th.) is formed of dense stony calcium carbonate, white and smooth inside, rough and of a brownish colour outside, except towards the margin, where it is white. Its proximal or aboral end is produced into a short stalk or peduncle, by which the Coral is attached in the young state, becoming free when adult: in many other simple Corals there is no stalk, but attachment to the support is effected by means of a flattened proximal surface or basal plate (C, b. pl.). From the inner surface of the theca a number of radiating partitions, the septa (sep.), proceed inwards or towards the axis of the cup, and, like the mesenteries of a polype, are of several orders, those extending furthest towards the centre being called primary septa, the others secondary, tertiary, and so on. Towards the bottom of the cup the primary septa meet in the middle to form an irregular central mass, the columna (col.). In some Corals the columnella is an independent pillar-like structure arising from the basal plate (D, col.).

In many Corals there is a distinct calcareous layer investing the proximal portion of the theca, and called the epitheca (C, e.th.). Some species have the inner portions of the septa detached so as to form a circlet of narrow upright columns, the pali. In others there are horizontal partitions or dissepiments passing from septum to septum, and in others, again, complete partitions or tabulae, like those of Millepora (p. 145), extending across the whole corallite. In the Mushroom-coral (Fungia), the corallite is discoid, the theca is confined to the lower surface, and small calcareous rods, the synapticulae, connect the septa with one another.

In the living condition the polype fills the whole interior of the corallite and projects beyond its edge to a greater or less degree according to its state of expansion (C). The proximal part of the body-wall is thus in contact with the theca, which has the relation of a cuticle, and is, in fact, a product of the ectoderm. The free portion of the body-wall is frequently, in the extended state, folded down over the edge of the theca so as to cover its distal portion. The septa alternate with the mesenteries, each lying in the space between the two mesenteries of one couple, and each being in-
vested by an in-turned portion of the body-wall (E, F). Thus the septa, which appear at first sight to be internal structures, are really external: they lie altogether outside the enteric cavity, and are in contact throughout with ectoderm.

The ectodermal nature of the entire corallite is further proved by its development. The first part to appear is a ring-shaped deposit of carbonate of lime between the base of the polype and the body to which it adheres: sections show this ring to be formed by the ectoderm cells of the base. The ring is soon converted into a disc, the basal plate, from the upper surfaces of which a number of ridges arise, arrayed in a star-like fashion: these are the rudiments of the septa. Here, again, sections show that each septum corre-

Fig. 142.—A, B, two views of Flabellum curvatum. C, semi-diagrammatic view of a simple coral; D, portion of a corallite; E, F, diagram of a simple coral in longitudinal and transverse section; ectoderm dotted, endoderm striated, skeleton black. b. pl., basal plate; col., columella; c. th., epitheca; gul., gullet; mes. mes. 1, mes. 2, mesenteries; mes. f., mesenteric filaments; sep., septa; t., tentacle; th., theca. (A and B after Moseley; C and D after Gilbert Bourne.)
sponds with a radial in-pushing of the base, and is formed as a secretion of the invaginated ectoderm. As the septa grow they unite with one another at their outer ends, and thus form the theca. In some cases, however, the theca appears to be an independent structure.

The almost infinite variety in form of the compound corals is due, in the main, to the various methods of budding, a subject which has already been referred to in treating of the actinozoan colony as a whole. According to the mode of budding, massive Corals are produced in which the corallites are in close contact with one another, as in Astræa (Fig. 133); or tree-like forms, such as Dendrophyllia (Fig. 143, A), in which a common calcareous stem, the coenenchyma is formed by calcification of the coenosarc (cs.), and gives origin to the individual corallites. It is by this last-named method, the coenosarc attaining great dimensions and the individual corallites being small and very numerous, that the most complex of all Corals, the Madrepores (Madrepora, Fig. 143, B) are produced.

The microscopic structure of corals presents two main varieties. In what are called the oporose or poreless corals, such as Flabellum, Astræa, &c., the various parts of the corallite are solid and stony, while in the perforate forms, such as Madrepora, all parts, both of

Fig. 143.—*Dendrophyllia nigrescans*, B, *Madrepora aspera*. cs. coenosarc; p. polypes. (After Dana.)
the corallites and of the connecting coenenchyma, have the character of a mesh-work, consisting of delicate strands of carbonate of lime united with one another in such a way as to leave interstices, which in the living state are traversed by a network of interlacing tubes, representing the coenosarce, and placing the polypes of the colony in communication.

The Blue Coral (Heliopora) one of the Alcyonacea, has a massive corallum having the same general appearance as a Madreporarian. The lobed surface bears apertures of two sizes, the larger being for the exit of the ordinary polypes, the smaller for the siphonozoooids. Tabulæ are present, and septum-like ridges, which, however, have no definite relations to the mesenteries, and are inconstant in number.

Colour.—The Actinooza are remarkable for the variety and brilliancy of their colour during life. Every one must have noticed the vivid and varied tints of sea-anemones; but most dwellers in temperate regions get into the habit of thinking of Corals as white, and have no conception of their marvellously varied and gorgeous colouring during life. The Madrepores, for instance, may be pink, yellow, green, brown, or purple: Tubipora has green polypes, contrasting strongly with its crimson skeleton; and the effect of the bright red axis of Corallium is greatly heightened by its pure white polypes. In Heliopora the whole coral is bright blue; the tropical Alcyonide are remarkable for their elaborate patterns and gorgeous colouration; and Pennatula, in addition to its vivid colours, is phosphorescent.

In most cases the significance of these colours is quite unknown. In some species, however, "yellow-cells" or symbiotic Alge have been found in the endoderm, where they probably serve the same purpose as the similar structures which we have already studied in Radiolaria (p. 61).

Many Actinoza, like many sponges (p. 116), furnish examples of **commensalism**, a term used for a mutually beneficial association of two organisms of a less intimate nature than occurs in symbiosis. An interesting example is furnished by the Sea-anemone Adamsia palliata (Fig. 144). This species is always found on a univalve shell —such as that of a Whelk— inhabited by a Hermit-crab. The Sea-anemone is carried from place to place by the Hermit-crab, and in this way secures a more varied and abundant food-supply than would fall to its lot if it remained in one place. On the other hand, the Hermit-crab is protected from the attack of predaceous Fishes by retreating into its shell and leaving exposed the Sea-anemone, which, owing to its toughness, and to the pain caused by its poisonous stinging-capsules, is usually avoided as an article of food.

Other Sea-anemones—such as the gigantic Discosoma of the great Barrier Reef—are found associated with Small Fishes or
Crustacea, which have their abode in the enteric cavity. In this case the Fish secures shelter in a place where it is very unlikely to be disturbed, and the two animals are strictly commensals or "mess-mates" since they share a common table. A somewhat similar instance is furnished by the Blue Coral (Heliopora), already referred to more than once. The corallum contains, not only the apertures for the polypes and siphonozoids, but also tubular cavities of

Fig. 144.—Adamsia palliata, four individuals attached to a Gastropod shell inhabited by a Hermit-crab. ac, ac'. aconitia; sh. shell of Gastropod. (After Anders.)

an intermediate size, in each of which is found a small chaetopod Worm, belonging to the genus Leucodora. As the polypes are frequently found retracted at a time when the Worms are protruded from their holes in search of food, it is not surprising that the latter should have been credited with the fabrication of the coral. Trapezia, a genus of Crabs, always lives in interstices of a particular species of Madrepore.

The distribution of the Actiniaria is world-wide, and in
many cases the same genera are found in widely separated parts of the world. They are, however, larger and of more varied form and colour in tropical regions, for instance on coral-reefs. The largest reef-anemone, Discosoma, found also in the Mediterranean, attains a diameter of 2 feet. Most members of the order are littoral, living either between tide-marks or at slight depths, but a few are pelagic, and several species have been dredged from depths of from 10 to 2,900 fathoms.

The Madreporaria, taken as a whole, have also a wide distribution; but the number of forms in temperate regions is small, and the majority—including the whole of what are called reef-building Corals—are confined to the tropical parts of the Atlantic, Indian, and Pacific Oceans, flourishing only where the lowest winter temperature does not sink below 68° F. (20° C.). Thus their northernmost limits are the Bermudas in the Atlantic, and Southern Japan in the Pacific; their southernmost limits, Rio and St. Helena in the Atlantic, Queensland and Easter Island in the Pacific: in other words, they extend to about 30° on each side of the equator. Moreover, they have a curiously limited bathymetrical distribution, flourishing only from high-water mark down to a depth of about 20 fathoms, but not lower.

Many of the Pacific Islands are formed entirely of coral rock, others are fringed with reefs of the same, and the whole east coast of Northern Queensland is bounded, for a distance of 1,250 miles, by the Great Barrier Reef, a line of coral rock more or less parallel to and at a distance of from 10 to 90 miles from the land. Such reefs consist of gigantic masses of coral rock fringed by living coral, the latter growing upon a basis of dead coral, the interstices of which have been filled up with débris of various kinds, so as to convert the whole into a dense limestone.

The Antipatharia, and many of the Alcyonaria, such as the Gorgonacea and Pennatulaeae, have also a world-wide distribution, and, even in temperate regions, both Black Corals and Sea-pens may attain a great size: the members of both these groups, as well as the Sea-pens, are found at moderate depths. The Red Coral is found only in the Mediterranean, at a depth of 10 to 30 fathoms. Tubipora and Heliopora have the same distribution as the reef-building Corals.

From the palæontological point of view, corals are of great importance: they are known in the fossil condition from the Silurian epoch upwards, and in many formations occur in vast quantities, forming what are called coral limestones. The majority of fossil forms are referable to existing families, but in the Palæozoic era the dominant group was the Rugosa, the affinities of which are still very obscure. The corallites are usually bilaterally symmetrical, the septa are arranged in multiples of four, and the cup presents on one side a pit, the fossula, where the septa are greatly reduced.
CLASSE IV.—CTENOPHORA.

1. Type of the Class—Hormiphora plumosa.

External Characters.—Hormiphora is a pear-shaped organism, about 5–20 mm. in diameter, and of glassy transparency (Figs. 145 and 146). The species *H. plumosa* is found in the Mediterranean; allied forms belonging either to the same genus (often called *Cyclippe*) or to the closely allied genus *Pleurobrachia* are common pelagic forms all over the world.

From opposite sides of the broad end depend two long tentacles (*t*), provided with numerous little tag-like processes, and springing each from a deep cavity or sheath, into which it can be completely retracted (Fig. 146, *t.sh.*). At the narrow end—where the stalk of a pear would be inserted—is a slit-like aperture, the mouth (*mth.*); this end is therefore oral. At the opposite or aboral pole is a slight depression, in which lies a prominent sense-organ (*s.o.*), to be described hereafter.

But the most striking and characteristic feature in the external structure of Hormiphora is the presence of eight equidistant meridional bands (*s.pl.*), starting from near the aboral pole, and extending about two-thirds of the distance towards the oral pole. Each band is constituted by a row of transversely arranged comb-like structures, consisting of narrow plates frayed at their outer ends. During life the frayed ends are in constant movement, lashing to and fro,

Fig. 145.— *Hormiphora plumosa.* A, from the side; B, from the aboral pole. *mth.* mouth; *s.pl.* swimming plates; *t.* and *b.* tentacles. (After Chun.)
Fig. 146. *Hormiphora plumosa.* A, dissected specimen having rather more than one quarter of the body cut away. B, transverse section; diagrammatic. *adr. c.* adradial canal; *inf. infundibulum; inf. c.* infundibular canal; *int. c.* inter-radial canal; *med. c.* meridional canal; *oth. mouth; ov. ovary; per. c.* per-radial canal; *s. o.* sense-organ; *s. pl.* swimming-plate; *spy.* spermory; *std.* stomecheum; *std. c.* stomecheal canal; *std. r.* stomecheal ridges; *t.* tentacle; *t. b.* base of tentacle; *t. c.* tentacular canal; *t. sh.* tentacular sheath.
and so propelling the animal through the water. The combs are, in fact, rows of immense cilia, fused at their proximal ends: their presence and mode of occurrence—arranged in meridional comb-ribs or swimming-plates—are strictly characteristic of the class, and indeed give it its name.

It will be seen at once that—apart from all considerations of internal structure—Hormiphora presents a similar combination of radial with bilateral symmetry as some Hydrozoa, such as Ctenaria (Fig. 96, 1), and as the majority of Actinozoa. The swimming-plates are radially arranged, and mark the eight adradii, but the slit-like mouth and the two tentacles indicate a very marked and characteristic bilateral symmetry. A plane passing through the longitudinal axis of the body, parallel with the long axis of the mouth, is called, as in Actinozoa (see p. 176), the vertical plane: it includes two per-radii, which are respectively dorsal and ventral. A plane at right angles to this, passing through both tentacles, and including right and left per-radii, is called the transverse plane.

Enteric System.—The mouth leads into a flattened tube (Fig. 146, std.), often called the stomach, but more correctly the gullet or stomodæum. It reaches about two-thirds of the way towards the aboral pole, and its walls are produced internally into ridges (std. r.), which increase the area for the absorption of digested food. Living prey is seized by the tentacles, ingested by the aid of the mobile edges of the mouth and digested in the stomodæum, which is thus physiologically, though not morphologically, a stomach. The products of digestion make their way into the various parts of the canal-system, presently to be described, and indigestible matters are passed out at the mouth.

Towards its upper or aboral end the stomodæum gradually narrows and opens into a cavity called the infundibulum (inf.), which probably answers to the stomach of an Actinoozoon or a medusa, and is flattened in a direction at right angles to the stomodæum—i.e. in the transverse plane. From the infundibulum three tubes are given off: one, the infundibular canal (inf. c.), passes directly upwards, and, immediately beneath the aboral pole, divides into four short branches, two of which open on the exterior by minute apertures, the excretory pores (Fig. 147, A, ex. p.). The two other canals given off from the infundibulum are the per-radial canals (per. c.): they pass directly outwards, in the transverse plane, and each divides into two inter-radial canals (int. c.), which in their turn divide each into two adradial canals (adr. c.). These successive bifurcations of the canal-system all take place in a horizontal plane (Fig. 147, B), and each of the ultimate branches or adradial canals opens into a meridional canal (mdr. c.), which extends upwards and downwards beneath the corresponding swimming-plate. Furthermore, each per-radial canal gives off a stomodacal canal (std. c.), which passes downwards, parallel to and in close contact
Fig. 147.—Hormiphora plumosa, diagrammatic longitudinal (A) and transverse (B) sections. The ectoderm is dotted, the endoderm striated, the mesogloa black, and the muscular axis of the tentacles gray. Lettering as in Fig. 146, except for excretory pore.
with the stomodeum, and a tentacular canal (t. c.) which extends outwards and downwards into the base of the corresponding tentacle. Each tentacle presents a thickened base (t. b.), closely attached to the wall of the sheath, and giving off a long flexible filament, beset with processes of two kinds—one simple and colourless, the other leaf-like, beset with branchlets, and of a yellow colour.

Cell-layers.—The body is covered externally by a delicate ectodermal epithelium (Fig. 147), the cells from which the combs arise being particularly large. The epithelium of the stomodeum is found by development to be ectodermal, that of the infundibulum and its canals endodermal; both are ciliated. The interval between the external ectoderm and the canal-system is filled by a soft jelly-like mesogloea. The tentacle-sheath is an invagination of the ectoderm, and the tentacle itself is covered by a layer of ectoderm, within which is a core or axis formed by a strong bundle of longitudinal muscular fibres, which, as we shall see, are of mesodermal origin, and which serve to retract the tentacle into its sheath.

Delicate muscle-fibres lie beneath the external epithelium and beneath the epithelium of the canal-system, and also traverse the mesogloea in various directions. The feeble development of the muscular system is, of course, correlated with the fact that the swimming-plates are the main organs of progression, the Ctenophora differing from all other Coelenterata in retaining cilia as locomotory organs throughout life.

A further striking difference between our present type and the Coelenterata previously studied is the absence, in Hormiphora, of stinging-capsules. The place of these structures is taken by the
peculiar adhesive-cells with which the branches of the tentacles are covered. An adhesive-cell (Fig. 148, ad. c.) has a convex surface produced into small papillae, which readily adheres to any object with which it comes in contact and is with difficulty separated. In the interior of the cell is a spirally coiled filament, the delicate inner end of which can be traced to the muscular axis of the tentacular branch. These spiral threads act as springs, and tend to prevent the adhesive-cells being torn away by the struggles of the captured prey.

Both the central nervous system and the principal sense-organ are represented by a peculiar apparatus situated, as already mentioned, at the aboral pole. In this region is a shallow depression (Fig. 149, c.p.) lined by ciliated epithelium and produced in the transverse plane into two narrow ciliated areas, the polar plates (p.pl.). From the depression arise four equidistant groups of very large S-shaped cilia (sp.), united to form as many springs (sp.), which support a mass of calcareous particles (l.), like the lithites of Hydrozoa and Scyphozoa. From each spring a ciliated groove (c.gr.) proceeds outwards, bifurcates, and passes to the two swimming-plates of the corresponding quadrant. The otolithic mass, with its springs, is enclosed in a transparent case or bell (b.), formed of coalesced cilia. It appears that the whole apparatus acts as a kind of steering-gear, or apparatus for the maintenance of equilibrium. Any inclination of the long axis must cause the otolithic mass to bear more heavily upon one or other of the springs; the stimulus appears to be transmitted by the corresponding ciliated groove to a swimming-plate, and results in a vigorous movement of the combs. Thus the sensory pit acts as a central nervous system, and the ciliated grooves as nerves.

Reproductive Organs.—The animal is hermaphrodite, the organs of both sexes being found in the same individual. The gonads are developed in the meridional canals (Fig. 146, B), each of which has an ovary (ovy.) extending along the whole length of one side, a spermary (spy.) along the whole length of the opposite side. The organs are so arranged that in adjacent canals those of the

![Diagram](https://via.placeholder.com/150)
same sex face one another. It will be seen that the reproductive products have, as in Scyphozoa and Actinozoa, the position of endoderm-cells: whether they are developed, in the first instance, from that layer is uncertain.

When ripe the ova and sperms are discharged into the canals, make their way to the infundibulum, thence to the stomodaeum, and finally escape by the mouth. Impregnation takes place in the water.

Development.—The process of development has been traced in several genera closely allied to Hormiphora, so that there is every reason to believe that, in all essential particulars, the following description will apply to that genus.

The egg (Fig. 150) consists of an outer layer of protoplasm (plsm.) containing the nucleus (nu.), and of an internal mass of a frothy or vacuolated nature (yk.): the vacuoles contain a homogeneous substance which serves as a store of nutriment to the growing embryo, and apparently corresponds with the yolk which we shall find to occur in a large proportion of animal eggs. Enclosing the egg is a thin vitelline membrane (v.m.), separated by a considerable space, filled with a clear jelly, from the protoplasm.

After impregnation the oosperm segments, but the details of the process are very different from those we are familiar with in

![Fig. 150.—Ovum of Lampetia. nu. nucleus; plsm. protoplasm; v. m. vitelline membrane; yk. yolk. (After Chun.)](image)

![Fig. 151.—Segmentation of the oosperm in Ctenophora. mg. megameres; mi. micromeres; plsm. protoplasm; yk. yolk. (Modified from Korschelt and Heider.)](image)

the other Coelenterata. The protoplasmic layer accumulates on the side which will become dorsal, and the oosperm divides along
a vertical plane, forming two cells each with a sort of protoplasmic cap (Fig. 151, A, \(p.l.s.m. \)). A second division takes place at right angles to the first, producing a four-celled stage (B), and each of the four cells divides again into daughter-cells of unequal size, the result being an eight-celled embryo, each cell with a protoplasmic cap at its dorsal end (C, D). Next a horizontal division takes place, dividing off the protoplasmic caps as distinct cells, and so producing a sixteen-celled stage (E, F) in which we can distinguish eight large, ventral, yolk-containing cells or \(m.e.g. m.e. \), and eight small, dorsal, protoplasmic cells or \(m.i.m.e. \).

The micromeres increase rapidly in number by division, and are further added to by new, small cells being budded off from the megameres (Fig. 151, G, H, and Fig. 152, A). The result of this increase is that the micromes gradually overspread the megameres (Fig. 152, C), the final result being the production of an embryo consisting of a central mass of large yolk-containing cells (ma.), partly surrounded by an epithelium-like layer, incomplete below, of small cells (\(m.i.). \) This stage corresponds with the gastrula of preceding types, the micromeres forming the ectoderm, the megameres the endoderm, and the ventral edge of the ectodermal investment representing the blastopore. There is, however, no archenteron or gastrula-cavity, and the stage has been produced, not by a process of invagination or tucking-in, but by one of \(e.p.i.b.o.l.y \) or overgrowth.

The endoderm-cells increase in number, and become much elongated, and arranged obliquely, their long axes radiating, upwards and outwards, from the long axis of the entire embryo (Fig. 153, A). Their lower (ventral) ends then become divided off, forming a number of small cells, which constitute the rudiment of a true middle cell-layer or \(m.e.s.o.d.e.r.m \) (A, \(m.e. \)). A kind of invagination of the megameres with their mesoderm cells then takes place, resulting in the formation of a cavity—the infundibulum (B, d.)—bounded below by the megameres, now placed horizontally, and above by the mesoderm. The mesoderm gradually retreats to the dorsal surface (C), finally spreading out between the dorsal ectoderm and the infundibulum. At the same time the ectoderm cells bounding the aperture of the infundibulum grow into it so
as to line its ventral portion: in this way the stomodeum (st.) is produced. The remainder of the cavity widens out and becomes

the definitive infundibulum (d.), and before long sends off four adradial pouches, the rudiments of the canal-system. At the same time a gelatinous layer (Fig. 154, g.), the mesogloea, makes its appearance between the ectoderm and endoderm.

The later processes of development may be described very briefly. The canal-system gradually assumes its adult complexity and the swimming-plates appear. A thickening of the ectoderm on each side of the body gives rise to the epithelium of the tentacle and of its pouch. The muscle-fibres forming the axis of the tentacle (B, me.) are derived from the mesoderm, which also gives rise to the contractile fibres of the mesogloea (me.). The otoliths are formed in the ectoderm-cells of the apical pole, but gradually make their way on to the free surface of the cells and become supported on four groups of fused cilia. Four outer groups of cilia unite with one another to form the bell (sph.).

The most noteworthy points in this somewhat complex process of development are the following:

1. The distinction between a purely protoplasmic part of the egg and a yolk-containing portion. In the Hydrozoa and Actinozoa the yolk-material is small in amount and evenly distributed. The egg being described as alecithal or
yolkless. In the present instance the yolk is at first accumulated in the centre of the egg, which is thus centrolecithal or mid-yolked, but soon the protoplasm accumulates at one end and the yolk at the opposite end of the developing embryo, producing a telolecithal or end-yolked condition.

2. The fact that segmentation is unequal, there being a distinction into large cells or megameres, containing yolk, and purely protoplasmic small cells or micromeres.

3. The formation of a peculiar type of gastrula by epiboly or overgrowth, the ectoderm cells (micromeres) growing over and partly enclosing the endoderm cells (megameres).

4. The presence, for the first time in the ascending animal series, of a true middle embryonic layer or mesoderm. In the other Coelenterata, as well as in the Sponges, two embryonic layers only are formed, and the intermediate layer of the adult is formed by the comparatively late separation of muscle-cells and connective-tissue fibres either from ectoderm or endoderm. In the present case a definite layer of mesoderm cells becomes separated from the endoderm during the gastrula stage.

2. DISTINCTIVE CHARACTERS AND CLASSIFICATION.

The Ctenophora are pelagic Coelenterata in which the formation of colonies is entirely unknown. No indication of a polype-stage, so characteristic of the remaining Coelenterata, can be detected either in the adult or in the embryonic condition. Ciliary movement, instead of being a merely-embryonic form of locomotion as in the preceding classes, is retained throughout life, the cilia being fused to form comb-like structures, which are arranged in eight meridional rows or swimming-plates. Tentacles, when present, are usually two in number, situated in opposite (right and left) per-radii, and retractile into pouches. The enteron communicates with the exterior by a large stomodeum which functions as the chief digestive cavity. From the enteron is given off a system of canals, the ultimate branches of which are adradial and have a meridional position, lying beneath the swimming-plates: a single axial canal is continued to the aboral pole, where it commonly opens by two excretory pores. There are no gastric filaments. The central nervous system is represented by a ciliated area on the aboral pole, and is connected with a single sensory organ, having the character of a peculiarly modified lithocyst. The organs of both sexes are lodged in the same individual, the ovaries and testes being formed on opposite sides of the meridional canals. The oosperm undergoes unequal segmentation, the gastrula is formed by epiboly or overgrowth, and a definite mesoderm is established during the gastrula stage. There is no alternation of
generations; but in some cases development is accompanied by a well-marked metamorphosis.

The Ctenophora are divisible into four orders as follows:—

Order 1.—Cydippida.

Ctenophora having two tentacles, retractile into sheaths, and unbranched meridional and stomodaeal vessels. The body is either circular in section or is slightly compressed in the transverse plane (Figs. 145 and 155).

Order 2.—Lobata.

Ctenophora having numerous non-retractile lateral tentacles contained in a groove; the bases of the two principal tentacles are also present, but have no sheaths. The stomodaeal and meridional vessels unite with one another. The body is compressed in the vertical plane, and is produced into two large oral lobes or lappets and into four pointed processes or auricles (Fig. 156).

Order 3.—Cestida.

Ctenophora having a band-like form owing to the extreme compression of the body in the vertical plane. The bases of the two principal tentacles are present, enclosed in sheaths, and there are also numerous lateral tentacles contained in a groove. Union or anastomosis of the meridional and stomodaeal vessels takes place (Fig. 157).

Order 4.—Beroïda.

Ctenophora having no tentacles. The mouth is very wide, and the gullet occupies the greater part of the interior of the body. The meridional vessels are produced into a complex system of anastomosing branches (Fig. 158).

Systematic Position of the Example.

Hormiphora plumosa is a species of the genus *Hormiphora*, belonging to the family *Pleurobrachiidae* and to the order *Cydippida*. The presence of two tentacles, retractile into sheaths, and of unbranched meridional canals places it in the order Cydippida. In this order there are three families, amongst which the *Pleurobrachiidae* are distinguished by the absence of any compression of the body, the transverse section being circular. The genus *Hormiphora* is distinguished by having a rounded body somewhat produced at the oral pole, and by the aperture of the tentacle-sheath being on a higher level than the funnel. In the species *plumosa* the stomodaeal ridges are of a brown colour, and the leaf-like branchlets of the tentacles yellow.

Compared with the two former classes of Ccelenterates, the Hydrozoa and Actinozoa, the organisation of the Ctenophora is remarkably uniform. This is due to the fact that all the species are pelagic, none are colonial, and none form skeletons. Nevertheless a very great diversity of form is produced in virtue of differences in proportion and modifications of the tentacular and canal systems.

The Cydippida agree in all essential respects with Hormiphora, the most important deviation from the type-form being the compression of the body in the transverse plane in some genera, e.g. Euchlora (Fig. 155, 2), the result being an oval instead of a circular transverse section, with the tentacles at the end of the

![Diagram of Ctenophora](image_url)

Fig. 155.—Three Cydippida. *ah p.* aboral process; *mth.* mouth. (After Chun.)

long axis. The aboral pole may be produced into wing-like appendages, as in Callianira (1), and in Lampetia (3) the mouth is so dilatable as to form, when expanded, a sole-like plate by which the animal retains itself on the surface of the water or creeps over submarine objects. In Euchlora rubra minute nematocysts have been found, and there is reason to believe that it was by the modification of these characteristic ccelenterate organs of offence that the adhesive cells of Ctenophora were evolved.

The Lobata, for instance Deiopa, are distinguished, as their name implies, by the presence of a pair of large lappets (Fig. 156, *lp.*), into which the oral surface is produced at either end of the vertical plane. Four of the swimming

VOL. 1.

P
plates are shorter than the others, and at their bases arise elongated processes called auricles (aur.), which bear swimming-plates. The meridional canals (mdr.c) unite with one another, and, with the oesophageal canals, are continued into the lappets, where they become curiously coiled. The principal tentacles are usually absent in the adult, but are represented by their basal portions, which are small, situated at the oral end, and devoid of sheaths. From each tentacle-base grooves are continued along the oral surface to the auricles, and from the grooves depend numerous small lateral tentacles (l.t.). In the young condition the Lobata resemble such compressed Cydippida as Enchloa, having a pair of long principal tentacles, no lappets, and unbranched vessels (B).

The Cestida are represented by the remarkable "Venus's Girdle" (Cestus veneris), a band-shaped Ctenophore (Fig. 157) which sometimes attains a length of 1½ metre, or nearly 5 feet. The body is greatly elongated horizontally in the vertical, and compressed in the transverse, plane, so as to have the form of a ribbon, which progresses by undulations of the whole body as well as by the action of its swimming-plates. Four of the swimming-plates (s.pl.) are very small; the other four (s.pl.) are continued all along the aboral edge of the body. The bases of the two principal tentacles (t.) are large and are enclosed in sheaths, and, as in Lobata, numerous small lateral tentacles (l.t.) spring from grooves.
which, in the present case, are continued the whole length of the oral edge. The young of Cestus (B) resembles a compressed Cydippid which undergoes gradual elongation in the median plane.

Beroë, the principal genus of the Beroida, has the form of a cylinder (Fig. 158), one end of which is rounded and bears the sense-organ, the other truncated and occupied entirely by the immense mouth (mth.). The greater part of the body is taken up by the huge gullet; the infundibulum (inf.), per-radial and infundibular canals, &c., being all crowded into a small space at the aboral pole. The meridional canals send off' branches which unite with one another, forming a complex network of tubes, and at their oral ends the four meridional canals of each (right and left) side and the corresponding stomodeal canal unite into a horizontal tube, which runs parallel with the margin of the mouth. There is no trace of tentacles either in the adult or in the embryonic condition.

The Ctenophora are usually perfectly transparent, and quite colourless, save for delicate tints of red, brown, or yellow, in the tentacles and stomodeal ridges. Cestus has, however, a delicate violet hue, and when irritated shows a beautiful blue or bluish-green fluorescence. Beroë is coloured rose-pink.

Ctenophora are found in all seas from the arctic regions to the tropics. As is to be expected from their perishable nature, there is no trace of the group in the fossil state.

A very remarkable fact has been made out with regard to Bolina hydatina, one of the Lobata, a Ctenophore which attains a diameter of 25-40 mm. While still in the larval or cydippid condition, and not more than 0.5-2 mm. in diameter, it becomes sexually mature, the gonads producing ripe ova and sperms, and the eggs are impregnated and develop in the usual manner. Soon the gonads degenerate, the larva metamorphoses into the adult form, and a second period of sexual maturity supervenes. This precocious ripening of sex-cells occurs, as we shall see, in other animal groups and is called pedogenesis.
APPENDIX TO CTENOPHORA

Ctenoplana and Cceloplana.

Before leaving the Ctenophora mention must be made of two remarkable organisms which have been supposed to connect the present class with the Turbellaria Polycladida, or Planarians, a group of worms to be described in the following section.

Ctenoplana (Fig. 159) is a small marine animal, nearly circular in outline, flattened dorso-ventrally, and about 6 mm. in diameter. It has hitherto been found only twice—one in the Indian Ocean and once in New Britain. Instead of swimming freely, like a Ctenophoran, it creeps on its ventral surface, like a worm. In the centre of the dorsal surface is a vesicle (s.o.) containing an otolith surrounded by eight radiating ridges (r.r.), alternating with which are as many clefts (cl.), each containing a protrusible row of stiff processes, resembling the swimming-plates of Ctenophora. The mouth is in the centre of the ventral surface, and leads into a stomach, from which are given off numerous anastomosing canals, as well as a vertical canal which passes upwards and ends beneath the sense-organ. In diverticula of this system are formed the testes, which have independent ducts opening on the exterior. There are two solid tentacles contained in sacs, and a nerve-centre lies beneath the sense-organ (s.o.). Beneath the ectoderm is a basement-membrane, which acts as an organ of support, and the muscular system is complex. Near each tentacle is an aperture leading into a branched canal which is probably excretory, like the nephridial tubes of flat-worms.

Cceloplana is found in the Red Sea. It is also flattened dorso-ventrally, but is oval instead of circular in outline, its dimensions being about 6 by 4 mm. It resembles Ctenoplana in its ventral mouth, dorsal sense-organs, paired retractile tentacles, and complex system of anastomosing canals from the stomach. There are, however, no swimming-plates, and the ectoderm is ciliated.

Nothing is known of the development of either genus.
THE RELATIONSHIPS OF THE CÉLENTERATA

There can be little doubt that the lowest célenterate form known to us is the simple hydrozoan polype, represented by Hydra and by the hydrula stage of many Hydroida. Somewhat more complex, in virtue of its stomódaum and gastric ridges and filaments, is the scyphozoan polype, represented by the Scyphula of Aurelia. Still more complex is the actinózoan polype, or Actinula, as it may be called, with its large stomódaum, mesenteries and mesenteric filaments, and elaborate muscular system. Speaking generally, one may say that these three polype-forms represent as many grades of organisation along a single line of descent.

The medusa-form in the Hydrozoa is, as we have seen, readily derived from the hydrula by the widening out of the tentacular region into an umbrella. We may thus conceive of the Trachyline, or hydroid medusae with no fixed zoophyte stage, as being derived from a pelagic hydrula.

The Leptoline may be considered to have arisen in consequence of the adoption of asexual multiplication, by budding, during the larval or hydrula stage. Instead of the hydrula giving rise directly to a medusa, we may suppose it to have formed a temporary colony, by budding, after the manner of Hydra, the individual zooids being ultimately set free as medusae. The next stage would be the establishment of a division of labour, in virtue of which a certain proportion only of the zooids became medusae, the rest retaining the polype-form, remaining permanently attached, and serving for the nourishment of the asexual colony.

The Hydrocorallina appear to be a special development of the leptoline stock, the nearest affinities of the order being with such forms as Hydractinia.

The Siphonophora may be conceived as having originated from a hydrula specially modified for pelagic life by the conversion of the basal disc into a float—something after the fashion of Minivas (Fig. 139). In such a form extensive budding, accompanied by division of labour, would give rise to the complex siphonophoran colony.

The lowest Scyphozoa are the Stauromedusae, some of which, however, show evidence of degeneration, so that it is quite possible to conceive them as having been derived from more highly organised forms, instead of springing directly from simple polypes of the Scyphula type. The Cannostomeæ, Semostomeæ, and Rhizostomeæ clearly represent three grades of increasing complexity along the same general line of descent. So little is known
of the development of the remaining Scyphozoa that it is advisable to leave their position an open question.

The close similarity of Edwardsia and the Alcyonaria in the number and arrangement of the mesenteries seems to indicate the derivation of both Zoantharia and Alcyonaria from a common ancestor in the form of a simple actinozoan polype or actinula. Edwardsia clearly leads us to the Hexactinia or typical Scypho-za, and the Madreporaria are undoubtedly to be looked upon as skeleton-forming Hexactinia.

The relationships of the Ctenophora to the other Ccelenterata are very doubtful. Ctenaria, one of the Anthomedusa (Fig. 96, 1), presents some remarkable resemblances to a Cydippid, such as Hormiphora. It has two tentacles, situated in opposite per-radii, and each having at its base a deep pouch in the umbrella resembling the sheath of Hormosira. There are eight radial canals formed by the bifurcation of four inter-radial offshoots of the stomach, and corresponding with them are eight bands of nematocysts diverging from the apex of the ex-umbrella. If these striking resemblances indicate true homologies we must compare the whole sub-umbrellar cavity of Ctenaria with the stomodaeum of Hormiphora, the margin of the bell of Ctenaria with the mouth of Hormiphora, and the mouth of Ctenaria with the aperture between the stomodaeum and the infundibulum of Hormiphora. But, as we have seen, the gullet of Ctenophora is a true stomodaeum developed as an in-pushing of the oral ectoderm, and has therefore a totally different origin from the sub-umbrella of a medusa. Moreover the tentacles of Ctenaria have no muscular base contained in the sheath, but spring from the margin of the umbrella as in other Hydrozoa: its gonads are developed in the manubrium, not in the radial canals, and there is no trace of an aboral sense-organ.

On the other hand, the resemblance between transverse sections of an embryo Ctenophore (Fig. 160, B) and of an embryo Actinian (A) is very striking, and the presence of a well-developed stomodaeum, and of gonads developed in connection with the endoderm
and discharging their products through the mouth, may be taken as further evidences of affinity between the Ctenophora and the Actinozoa.

The special characteristics of the Ctenophora are, however, so numerous and so striking, and their development so utterly unlike that of any of the other Cœlenterata, that in our present state of knowledge it is impossible to determine their affinity with the other classes with any degree of certainty.

As to the orders of Ctenophora, it seems tolerably clear that both Lobata and Cestida are derived from cydippid forms, since they both pass through, in the course of development, a stage closely resembling the lower Cydippida. The Beroïda are more highly organised in certain respects, e.g. in the details of their histology, than the other Ctenophora, and it seems quite possible that they may be derived from tentaculate forms.

These relationships are expressed in the following diagram:

![Diagram](image)

Fig. 161.—Diagram illustrating the mutual relationships of the Cœlenterata.

By many authors the Sponges have been looked upon as so closely related to the Cœlenterata to be capable of being regarded as members of the same great phylum. The points of resemblance are readily to be recognised: the simple structure, with the large central cavity into which a wide opening—the mouth or the osculum, as the case may be—leads; the absence of a well-developed mesoderm, the fixed mode of life, and, associated with it, the tendency to form compound structures or colonies by a process of budding. In addition, the occurrence in both groups of the planula and
gastrula larval stages constitutes an important connecting link. But a closer examination of the subject shows that some of these apparent points of resemblance are superficial only, and establishes a number of differences between Sponges and Ccelenterates too important to allow us to suppose that a close relationship exists. One of these differences stands out beyond the others as the most radical. The osculum of a sponge is found, when we trace the development of the larva, to correspond in no sense with the mouth of the cœlenterate. The latter corresponds with the blastopore or gastrula mouth. In the Porifera the gastrula mouth is (Fig. 82, p. 114) found in all cases in which the details have been made out with certainty to become applied to the substratum when the larva fixes itself, and the osculum is developed at the opposite extremity of the body. This alone, apart from important differences in the adult structure, such as the presence in the wall of the sponge of the system of inhalant apertures, the presence of the peculiar collared endoderm cells, and the absence of stinging capsules would suffice to remove the Sponges from the Cœlenterata, and place them in a phylum apart. On the other hand, that the Sponges and Ccelenterates were originally derived by a common root from the Protozoa—i.e. possessed a common metazoan ancestor—is rendered very probable when we consider the similarity that exists between the members of the two groups in the earlier stages of their development.

APPENDIX TO THE CŒLENTERATA

THE MESOZOA.

Under the designation Mesozoa have been comprised certain lowly organised animal forms, formerly supposed to afford us something of the nature of a connecting link between the Protozoa and the Metazoa, but now more generally looked upon as degenerate members of the latter sub-division. It has been proposed to term them the Planuloidea, from the resemblance which they bear to the Planula larva of the Ccelenterates.

They are all multicellular, with an ectoderm composed of a single layer of cells ciliated in whole or in part, and an endoderm either composed of a single elongated cell or of several cells; a mesoglea is not represented. The Mesozoa comprise three families, the Dicyemida, the Heteroecyemida, and the Orthocotida, all the members of which are internal parasites.

The Dicyemida are parasites in the kidneys of various Cuttle-fishes and Octopi (Cephalopoda). The animal (Fig. 162), the length of which is between 0.75 and 6 or 7 millimetres, consists of a head-part and an elongated body. The form of the head varies a good deal, according to age: in young specimens it is isotropic (i.e. symmetrical around the long axis): in the adult condition ventral and dorsal sides are distinguishable. It consists of a swollen disc of four cells and a ring of four or five pole cells. The cells of the head all bear cilia, which are shorter and thicker than those of the body cells.

The body consists of a single large axial endoderm cell and of a single layer of ectoderm cells, which completely invest the axial cell. The ectoderm cells which follow immediately on the head are distinguishable from the rest by their granular contents, and by their being dilated internally in such a way that the apex of the axial cell is constricted. Originally all the ectoderm cells are
cubical; afterwards they become drawn out so as to be more spindle-shaped, and at the same time become bent in such a way as to present a concave internal and a convex external surface; the latter is always covered with long cilia. The two most posterior are usually semi-cylindrical and surround the posterior end of the endoderm cell.

The endoderm cell is either almost completely cylindrical or spindle-shaped. It is covered in its entire extent by ectoderm cells. There is a differentiated cortical layer, beneath which the finely granular gelatinous contents are at first homogeneous, but afterwards become vacuolated. In the middle of the cell is a large oval or ellipsoidal nucleus. In addition to the nucleus of the endoderm cell itself other nuclei also occur in it; these are the nuclei of the germ-cells.

Two forms of adults are to be distinguished, termed respectively the nematogene and the rhomboogene: the former (Fig. 163) give rise to vermiform embryos. The rhombogenes are shorter and thicker than the nematogenes; the number of ectoderm cells is smaller, and the germ-cells small and produced endogenously in the axial cell, instead of being formed in special cells enclosed in the axial. The rhomboogene and nematogene forms may be phases in the life-history of the same individual; but some always possess the nematogene form.

The first-formed germ-cells are derived by cell-division, accompanied by mitosis, from the nucleus of the axial cell. Subsequently they increase in numbers by division. A germ destined to give rise to one of the vermiform

Fig. 162.—Dicyema paradoxum, with infusoriform embryos. (From Bronn's "Thierreich.")

Fig. 163.—Dicyema paradoxum, with vermiform embryos. (From Bronn's "Thierreich.")
embryos goes through a process similar to segmentation. Of the cells thus formed one gives rise to the axial cell; the others, increasing in numbers and becoming smaller, gradually grow over the axial cell until they at length completely enclose it. This process is a simple form of epiboly, and the part which is last to be covered by ectoderm cells (the posterior end) corresponds to the blastopore. The embryo increases greatly in length, and escapes from the interior of the parent by perforating the body-wall.

The germ destined to give rise to an infusoriform embryo likewise undergoes segmentation and epibolic gastrulation. The fully formed infusoriform embryo (Fig. 164) is pear-shaped, the broader (head) end being that which is directed forward in swimming, and is completely bilaterally symmetrical. The ectoderm cells enclose an axial cell containing several smaller multi-nucleated cells which can be ejected—apparently voluntarily. The fate of these embryos is not known; it has been suggested that they may be males, and that the cells thrown out may be male cells.

The Heterocotylidae, which are also parasites of the Cephalopoda, resemble the Dicyemidae in most respects, but want the head.

The family Orthonectidae comprises only one genus—Rhopalura—with two species, one of which is parasitic in the genital pouches of an Ophiuroid, while the other is a parasite of a Nemertean worm. In form they are spindle-shaped,
usually rounded at the ends, without any trace of bilateral symmetry. The body is divided into several rings or segments. Beneath the single layer of cells constituting the ectoderm is a layer of muscular fibres. In the centre is a mass of endoderm cells. There are distinct male (Fig. 165) and female (Fig. 166) individuals, the former fusiform in shape, the latter oval, cylindrical, or compressed. In one of the species there are two different forms of females, the one producing only male young, the latter only female.

Motile sperms are developed in the interior of a mass of sperm-cells—the testis. When mature these pass out between the muscular fibres; the ectoderm cells disintegrate and the sperms escape, the animals perishing. In the cylindrical female the conical anterior segment of the body becomes separated off from the rest as a sort of operculum, permitting of the discharge of the ova. In the compressed forms the body becomes broken up into fragments, in which the ova lie embedded. After impregnation the eggs are developed in the interior of protoplasmic masses, one such mass in some cases containing only male or only female embryos, in other cases both. The male ovum (Fig. 167) divides into two cells, a smaller and a larger; the latter remains for a time undivided, but subsequently segments to form the cells of the endoderm. The former at once divides to form a number of small cells, which grow over the large cell to form a continuous ectoderm layer by a process of epiboly. There is some discrepancy between the statements of different authors as to the development of the females; but there appears to be unequal segmentation followed by epiboly, the peripheral layer of the endoderm afterwards giving rise to the middle fibrous stratum (mesoderm).

Salinella.

Perhaps having more claim than the Orthonectidae and Dicyemidae to a position intermediate between the Protozoa and the Metazoa is a remarkable infusorian—
like animal, Salinella, found in brackish water from the Argentine Republic. Salinella (Figs. 168 and 169) is a minute animal in the form of a somewhat depressed cylinder, open at both ends and with a wall composed of a single layer of cells. The anterior end is somewhat pointed; around the anterior opening or mouth, which is ventrally directed, is a circle of fifteen to twenty long whip-like cilia. The posterior aperture (anus), which is usually closed, is surrounded by a few stiff setae. The ventral surface is flattened, and is covered with fine vibratile cilia, while on the dorsal surface and the sides are regularly arranged rows of straight setae (non-motile cilia). The internal cavity (citeron) is found to contain sand, plant fragments, and Bacteria; its surface is beset with long cilia. Multiplication takes place by transverse fission; and a process of conjugation followed by encystation has also been observed.

TRICHOPLAX.

Another aberrant multicellular animal having affinities with the Protozoa, and not assignable to any of the recognised groups of the Metazoa, is Trichoplax (Fig. 170). Trichoplax is a compressed plate-like body of irregular and extremely variable shape, but circular in the resting condition, without trace of radial or bilateral symmetry. The whole surface is covered with cilia, by means of which the animal performs slow gliding movements, always in close contact with the substratum. Frequently it puts forth a process, or more than one, which may extend to a considerable distance and assume a variety of shapes. There are three distinct cell-layers—an upper epidermis, consisting of flattened cells closely united by their edges so as to form a syncytium like that of the ectoderm of Sponges; a lower epidermis, composed of pyramidal cells, the apices of which are produced and unite with the elements of the middle layer; and a middle layer of spindle-shaped or slightly branched cells, which anastomose to form a network containing in its meshes hyaline, fluid ground-substance. In addition to their nuclei, these cells of the middle layer enclose several kinds of highly retracting granules and spherules. There are no stinging-cells, and no trace of internal organs of any kind. Little hyaline papille which appear round the edges may be for temporary fixation. Multiplication by simple fission has alone been observed.

The position of Trichoplax and of the nearly allied Trypocelis is quite uncertain. It cannot be a larval form, as it has been kept under observation for nearly a year without exhibiting any change. It is possible that both it and Salinella, neither of which have been observed in quite natural circumstances, may be abnormal modifications brought about by the influence of exceptional conditions.

Trichoplax has only been observed in marine aquaria; Salinella only in water in which salts from certain saline springs in South America had been dissolved.
A number of classes of Metazoa, some a little, others very decidedly, higher in organisation than the Coelenterata, are commonly regarded as constituting one great sub-kingdom or phylum—the Vermes or Worms. The groups ordinarily referred to the Vermes differ, however, very widely from one another; points of agreement, except such as are merely negative, are, in fact, frequently hardly recognisable; and rather than group together under one common designation such a heterogeneous assemblage of forms, it seems better to avoid the term Vermes altogether and to endeavour to divide the “worms” into phyla the members of which shall have points of positive resemblance to one another. The four phyla Platyhelminthes, Nemathelminthes, Trematodina, and Annelida, with their appendices, all consist of forms which are or have been comprised in the Vermes. They differ from the Coelenterata in the presence of three well-developed body-layers—of which the middle one, or mesoderm, is of relatively predominant importance; and, for the most part, in the much higher stage of complexity attained by the various systems of organs. The first four phyla present no metameric segmentation; in the Annelida, metamerism is more or less strongly pronounced.

The Platyhelminthes or Flat-Worms are a group of soft-bodied, bilateral, usually flattened animals, which are devoid of true metameric segmentation (p. 41). With a sufficient degree of uniformity of structure to render the phylum a fairly compact and well-defined one, there is yet a considerable range in complexity, from the simplest forms, certain of which have been supposed to be nearly connected with the Ctenophora among the Coelenterata, to the highest, which have all the various systems of organs very much more highly developed. The body is built up from three embryonic layers—ectoderm, mesoderm, and endoderm—as in
all higher groups of animals. An excretory vascular system of a peculiar kind—the water-vascular system—is present in all members of the phylum. A body-cavity or coelome (p. 279) is not present, the spaces between the various organs and the wall of the body being filled up with a peculiar form of connective-tissue termed the parenchyma. The egg is composite, the egg-shell enclosing not only the oosperm or impregnated ovum, but a quantity of nutrient material or food-yolk, derived in most instances from a special set of glands, the yolk or vitelline glands.

The main features which distinguish the Platyhelminthes from the Cœlenterata are, the pronounced bilateral symmetry with the many secondary features which it involves, the presence of a middle embryonic layer or mesoderm, and the non-occurrence of fixed colonies formed by budding.

I. EXAMPLES OF THE PHYLUM.

i. A Fresh-water Triclad (Planaria or Dendrocoelum). 1

General Features.—Species of fresh-water Planarians of the genera Planaria and Dendrocoelum are common in the mud at the bottom of ponds of fresh-water in all quarters of the globe. They are small, thin, flattened worms a few millimetres in length, broader at one end, the anterior, than at the other, the posterior, which is more or less pointed. The animal (Figs. 171–173) is very readily recognised to be bilaterally symmetrical, with an upper or dorsal and a lower or ventral surface, right and left borders, and anterior and posterior ends. The colour varies in different species and in different individuals; but is usually gray, red, brown, or black. Movements of locomotion in the direction of the long axis of the body are recognisable in the living animal. Sometimes this is a steady gliding movement, which is brought about by the action of a coating of vibratile cilia on the surface; sometimes the worm moves along somewhat after the fashion of a Leech, the ventral surface of the anterior end of the body being of a sticky adhesive character, and performing the part of the anterior sucker of the Leech.

Close to the anterior extremity on the dorsal surface are two rounded black spots, the eyes (Fig. 172). On the ventral surface, a considerable distance behind the middle of the body, is the opening of the mouth (Fig. 171, mo.), and further back still, near the posterior pointed end, is a smaller median opening, the genital aperture (Fig. 173).

Digestive System.—The mouth (Fig. 171, mo.) leads through a short mouth-cavity into a cylindrical thick-walled chamber, the

1 The account is sufficiently general to apply to species of either of these genera.
pharynx (ph.), which is highly mobile, and is capable of being thrust out as a proboscis through the mouth, beyond which it may then be extended to a relatively considerable distance. When retracted it lies within an enclosing muscular sheath. The
cavity of the pharynx opens in front into the intestine (int.), which almost immediately divides into three narrow main branches, one running forward in the middle line, the other two running backwards. Each of these three main branches gives off numerous smaller branches, which in turn become branched, so that the whole intestine forms a ramifying system, extending throughout the greater part of the body; all the branches terminate blindly, an anal aperture being absent.

A system of vessels—the water-vessels or vessels of the excretory system (ex.)—sends ramifications through all parts of the body. There are two main, considerably coiled, longitudinal trunks, right and left, which open externally on the dorsal surface by means of several minute pores: in front they are connected together by a transverse vessel. Each main trunk gives origin to a number of branches, which in turn give off a system of extremely fine capillary vessels, many of which terminate in flame-cells (Fig. 203, p. 253). A flame-cell is a nucleated cell having in its protoplasm a small space, into which one of the capillaries leads; in this space lies a bundle of vibratile cilia, or a single thick cilium, which performs regular undulating movements, giving it somewhat the appearance of a flickering candle-flame. Cilia also occur in the course of some of the capillaries. This system of vessels is usually regarded as excretory; but it may also have a respiratory function.

A well-developed nervous system (Fig. 172) is present. At the anterior end is a central knot of nerve-matter, the brain (br), from which proceed backwards two longitudinal nerve-cords (l.ne.). The brain consists partly of transverse fibres connecting together the two longitudinal nerve-cords, partly of groups of nerve-cells situated at the ends, or in the course of, the nerve-fibres. The nerve-cords give off both internally and externally numerous transverse branches, which divide into finer twigs; the internal branches of the two cords frequently anastomose, thus forming commissures or connecting nerve-strands between the two. A number of nerves extend forwards to the anterior margin, which is highly sensitive.

Reproductive System.—The reproductive organs (Fig. 173) are hermaphrodite or monocious in their arrangement, both male and female organs occurring in the same individual. The genital aperture leads into a small chamber, the genital cloaca, which is common to both the male and the female reproductive systems.

The male part of the apparatus consists of testes, vasa deferentia, and cirrus or penis. The testes (tes.) are numerous rounded glands, situated near the right and left borders. Two ducts, the right and left vasa deferentia (v.d.), run backwards from the neighbourhood of the testes and unite in the middle line posteriorly. The median duct formed by the union of the two vasa deferentia traverses a
protrusible muscular organ, the cirrus or penis (p), to open into the genital cloaca. At the base of the penis, where the vasa differentia meet, the median canal is slightly enlarged to form a rounded dilatation, the vesicula seminalis. Into the median canal open the narrow ducts of a number of unicellular glands, the prostate glands (pr).

The female part of the reproductive apparatus consists of ovaries, oviducts, vitelline glands, uterus, and muscular sac. The ovaries (ov.) are two in number—small rounded bodies situated near the anterior end, each connected with an elongated duct, the oviduct. The two oviducts (od.) unite posteriorly to form a short median common oviduct opening into the genital cloaca. With this cavity are connected also the uterus (ut.), a median rounded chamber, and a thick-walled muscular body, the muscular sac (m.). Numerous branching tubes—the vitelline glands (vit.)—open into the oviducts.

Reproduction is entirely sexual. The oosperm is enclosed within a protecting case or shell, which contains also a quantity of food-yolk derived from the vitelline glands. When the larva has reached a certain stage it develops a temporary larval mouth and gullet and swallows the food-yolk, by the aid of which it grows rapidly. The larval mouth disappears, and a new one—the permanent mouth—is developed in its place. When the embryo leaves the shell it has assumed the characteristic

![Diagram of Planaria reproductive system](image-url)
ii. The Liver-Fluke (*Distomum hepaticum*).

General Features.—The Liver-Fluke of the Sheep, which is to be found in the interior of the larger bile-ducts of the infested animal, is a soft-bodied worm of flattened leaf-like shape (Fig. 175), with a triangular process, the head-lobe, projecting from the broader end. The symmetry of the parts is distinctly bilateral as in the Planarian. Externally the body is quite equilateral, the right and left portions exactly balancing one another, but, as will appear subsequently, this complete symmetry does not extend to all the internal organs.

The surface is devoid of vibratile cilia, but is covered with innumerable minute *spinules* or *papillae*, which are prolongations of the homogeneous external layer or *cuticle* investing the whole animal. At the extreme anterior end of the triangular head-lobes is the small opening of the mouth (*mo.*), surrounded by a muscular *oral sucker*. Some distance back on the ventral surface, just behind the head-lobes, is a second much larger *posterior sucker* (*sckr.*). Between the two suckers, but rather nearer the posterior one, is a median aperture, the *genital opening* (*repr.*), through which a curved muscular process, the *cirrus* or *penis* may be protruded. In the middle of the posterior end of the body is a minute opening, the *excretory pore* (*excr.*).

Body-wall.—The body-wall (Fig. 176) is found on section to comprise three layers:—(1) A homogeneous *cuticle* (*cut.*), of which the spinules (*sp.*) are special developments; (2) a layer of circularly
disposed muscular fibres (circ. mus.); (3) a layer of longitudinal muscular fibres (long. mus.). A cellular epidermis is wanting. Beneath the muscles are numerous unicellular glands (gl.), the ducts of which, in the form of processes of the cells, open on the outer surface. Internally, the interspaces between the organs are filled by a peculiar form of connective-tissue, the parenchyma.

Digestive System.—The mouth (Fig. 177) leads to a small rounded bulb-like body, the pharynx (ph.), with thick muscular walls and a small cavity. From this a short passage, the oesophagus leads to the intestine. The latter (int.) is frequently a very conspicuous structure, owing to its being filled with the dark biliary matter on which the Fluke feeds. It divides almost immediately into two main limbs, right and left, and from each of these are given off, both internally and externally, a number of blind branches or caeca, those on the inner side being short and simple, while those on the outer side are longer and branched. The two limbs of the intestine with their branches thus form, as in the Planarian, a complicated system, the ramifications of which extend throughout the whole of the body. There is no aperture of communication between the intestine and the exterior, the only external opening of the alimentary system being through the mouth.

A branching system of water-vessels or vessels of the excretory system throughout the body. A longi-
taneous of the excretory pore posterior end. In front it and four large trunks, each of which branches repeatedly, the branches giving off smaller vessels, and these again still smaller twigs, until we reach a system of extremely fine microscopic vessels or capillaries. Each of these ends internally in a slight enlarge-
ment situated in the interior of a large cell, an excretory cell or flame-cell, similar to the flame-cells of the Planarian.
The Liver-Fluke has a well differentiated nervous system, which shares in the prevailing bilateral arrangement of the parts. The central part of this system consists of a ring of nerve matter which surrounds the oesophagus, and presents two lateral thickenings, or ganglia, containing nerve-cells, and a single ganglion in the middle line below. From this are given off a number of nerves, of which the chief are a pair of lateral cords running posterior end and giving off numerous branches. There are no organs of special sense.

The reproductive organs (Fig. 177) are constructed on the hermaphrodite plan, i.e. both male and female organs occur in the same individual. The male part of the apparatus consists of
testes, vasa deferentia, and ciri. The testes (to.) are two greatly ramified tubes, which occupy the middle part of the body, one situated behind the other. From each testis there runs forwards a duct, the vasa deferentia (v.d.) opening anteriorly into an elongated sac, the vesicula seminalis (v.s.), from which a narrow tube—the ejaculatory duct (Fig. 178 v.d.)—leads to the male aperture at the extremity of the penis. The female part of the reproductive apparatus consists of a single ovary, an oviduct, a uterus, vitelline glands, vitelline ducts, and shell-glands. The ovary (Fig. 177, ov.) is a branched tube situated on the right-hand side in front of the testes; the branches open into a common narrow tube, the oviduct (od.). The vitelline glands (vit.) consist of very numerous, minute, rounded follicles, which occupy a considerable zone in the lateral regions of the body. On each side are two large ducts, anterior and posterior, uniting to form a single main lateral duct, right or left; and these run nearly transversely inwards to open into a small sac, the yolk reservoir. From this a single median vitelline duct runs backwards for a short distance to join the oviduct. Around the junction are grouped a mass of unicellular shell-glands (sh. gl.), each of which is produced into a narrow process or duct opening into the end of the oviduct or the beginning of the uterus. The uterus (ut.) is a wide convoluted tube, formed by the union of the oviduct and median vitelline duct; in front it opens close to the base of the penis. When the penis is withdrawn, a small cavity, the genital sinus or cloaca, is formed, common to the external apertures of both male and female ducts. A canal, termed the canal of Laurer, leads from the junction of the oviduct and median vitelline duct to open externally on the dorsal surface.

Development.—Each ovum on impregnation becomes surrounded by a mass of vitelline matter or yolk derived from the yolk-glands. It then becomes enclosed in a chitinous shell, the substance of which is derived from the shell-glands. The completed egg remains for a little time in the uterus while the contained ovum is undergoing the process of segmentation; eventually it is discharged, and passing down the bile-ducts of the Sheep.
into the intestine, reaches the exterior with the feces. A portion of the egg-shell at one end then becomes separated off as a sort of lid or operculum, and gives exit to the contained embryo. This, the ciliated embryo (Fig. 179, A), is a somewhat conical body covered all over with vibratile cilia, and with two spots of pigment, the eye-spots (eye), near the broader or anterior end, which is provided with a triangular head-lobe (pop.). There is no vestige of internal organs, with the exception of a pair of flame-cells. The ciliated larva swims about in water, or moves over damp herbage for a time, and perishes unless it happens to reach a Pond-snail (*Lymnaea*) or a Land-snail (*Helix*), as a parasite of which it is alone able to enter upon the next phase in its life-history. When it meets with the Snail, the embryo bores into it by means of the head-lobe. Established in the interior of the
snail, it loses its ectoderm and grows rapidly into the form of an elongated sac, the sporocyst (Fig. 179, B), with an internal cavity, with remnants of the eye-spots, and with flame-cells. The sporocyst may divide into two similar bodies by a process of transverse fission, but this is exceptional. Eventually cells are budded off from the layer that lines the internal cavity of the sporocyst, and these undergo a process of segmentation similar to the holoblastic segmentation of the impregnated ovum, resulting in the formation of a morula, which becomes converted into a stage resembling a gastrula. The gastrula elongates and gives rise to a body called a redia (C), which begins to move about, and eventually forces its way out of the interior of the sporocyst. When fully formed, the redia is a cylindrical body with a pair of short processes (proc.) near the posterior end, and with a circular ridge near the anterior end (D). It possesses a mouth leading to a pharynx and simple sac-like intestine, and there is a system of excretory vessels. In the interior of the redia cells are budded off and develop into gastrulae, exactly as in the case of the sporocyst: these gastrulae either develop into a fresh generation of rediae, or give rise to bodies termed cercariae. The latter (D) are provided with long tails: they have anterior and posterior suckers, and a mouth and pharynx, followed by a bifid intestine. An opening, birth-opening (b. op.), is formed in the wall of the redia near the circular ridge, and through this the cercariae escape: they move actively by means of their tails, and force their way out of the body of the Snail. They then, losing the tail, become encysted, attached to blades of grass or leaves of other herbage. The transference of the larval Fluke in this stage to its final host, the Sheep, is effected if the latter swallow the grass on which the cercariae has become encysted. The young Fluke then escapes from the cyst and forces its way up the bile-duets to the liver, in which it rapidly grows, and, developing reproductive organs, attains the adult condition.

iii. The Common Tape-Worm of Man (Taenia solium).

General Features.—Taenia solium occurs as a parasite in the intestine of man. It has the form of a narrow ribbon (Fig. 180), which may attain a length of several yards, attached at one end to the wall of the intestine, the remainder hanging freely in the interior. Towards the attached end the ribbon becomes very much narrower than it is towards the opposite end; and at this narrower extremity is a small, rounded, terminal knob, which is known as the head or scolex; the rest of the animal is termed the body or strobila; the narrow part immediately behind the head is sometimes termed the neck. The attachment of the Tape-worm to the
wall of the intestine is slight and temporary; it is effected by certain organs of adhesion, the hooks and suckers on the head.

The head (Fig. 181) may be roughly described as pear-shaped, but becomes four-sided at the broader end. In the middle of this broader, anterior end is a rounded prominence, the rostellum, round the base of which there is a double row of usually about twenty-eight curved and pointed chitinous hooks. The rostellum is capable of being protruded and retracted to a slight extent, and the position
of the hooks varies accordingly; when the rostellum is fully retracted the points of the hooks are directed forwards, and may even meet in the centre; as the rostellum is protruded the hooks become rotated until their apices come to be directed backwards. Four cup-shaped suckers project slightly from the surface behind the circle of hooks.

The body or strobila has a jointed appearance, owing to its being made up of a string of segments, or proglottides—about 850 altogether. These are narrower and shorter in front, gradually increasing in size towards the posterior free extremity. The neck or part immediately following the head is devoid of any trace of segmentation. The two surfaces of the proglottides are not to be distinguished by any differences visible to the unassisted eye; but that side towards which the female reproductive organs are more nearly approximated is regarded as the central, the opposite as the dorsal surface. On one border, sometimes the right, sometimes the left, of each proglottis, is a little prominence, the genital papilla, on which is the opening of a chamber, the genital cloaca, into which both the male and female reproductive ducts open.

An examination of entire living, and of preserved and stained Tape-Worms under the microscope shows (1) that an alimentary

system is not present: (2) that nervous and excretory systems are represented; (3) that there is a complete set of reproductive organs, constructed on the same general plan as those of the Liver-Fluke, present in each of the proglottides.

The nervous system consists of two not very well-defined ganglia—united by a broad transverse commissure—in the head; of
slender nerves passing from these to the suckers, and of two longitudinal nerves which run backwards through all the proglottides to the posterior end of the body. The ganglia obviously correspond to the ganglia on the nerve-ring of the Liver-Fluke.

The **excretory organs** consist of a richly branched system of excretory vessels. There are four main trunks (Fig. 183, can. excret.), which extend throughout the entire length of the body, two near each lateral margin. The two pairs of longitudinal vessels are connected together in the head by a ring-like vessel, and in each proglottis near its posterior margin by a straight, transverse, connecting branch. Posteriorly the longitudinal trunk opens into a pulsatile caudal vesicle, communicating with the exterior. These main trunks of the excretory system give origin to a number of branches, and these in turn give off numerous fine canalicules, or capillaries, terminating in flame-cells similar to those of Distomum hepaticum.

The **reproductive organs** (Fig. 183) repeated in each fully formed proglottis, are in essential respects very similar to those of the Liver-Fluke. In the most anterior proglottides they are not developed; it is only at about the 200th proglottis that they first appear: at first the male parts of the system are alone differentiated; then in the succeeding proglottides, till we approach near the posterior extremity of the body, the female organs are likewise developed. In the most posterior segments modifications and reductions of some of the parts take place, owing to the great increase in size of the uterus. The male portion of the apparatus consists of the testis with their efferent ducts, the vas deferens (vas. def.), and the cirrus or penis, with its sac. The testes consists of numerous rounded lobes situated nearer the dorsal than the ventral

Fig. 183.—A proglottis of *Taenia solium* with mature reproductive apparatus. **can. excret.** longitudinal excretory canals with transverse connecting vessels; **gl. vit.** vitelline glands; **nerv. l.** longitudinal nerves; **ov.** ovaries; **por. gen.** genital pore; **schild.** shell-glands; **uter.** uterus; **vag.** vagina; **vas. def.** vas deferens. The numerous small round bodies are the lobes of the testes. (After Lenckart.)
surface, and extending throughout the greater part of the length and breadth of the proglottis. With each lobe is connected a fine efferent duct; the ducts of neighbouring lobes unite together to form somewhat larger ducts; and the larger ducts, receiving numerous tributaries, eventually open into the inner extremity of the vas deferens, or main duct of the testis. The vas deferens is a convoluted tube which extends outwards towards the lateral margin (right or left as the case may be) of the proglottis.

The terminal part of the vas deferens, which is somewhat narrower than the rest, traverses a narrow protrusible process, the cirrus or penis, and opens at its extremity by the male genital aperture. The cirrus is enclosed at the base by a muscular sac, the cirrus sac.

The ovary (ov.) differs from that of the Liver-Fluke in being a paired organ, consisting of two approximately equal, right and left, halves. It is situated towards the posterior border of the proglottis. Like that of the Liver-Fluke, it consists of a number of branching tubes, in the interior of which the ova are developed. From opposite sides these tubes converge towards the median line, where they open into the oviduct. A yolk-gland (gl. vit.), of less relative extent than in the Liver-Fluke, consists of a number of minute lobules; a duct, the yolk-duct, which runs forward from it, opens into the oviduct. The numerous lobules of a rounded shell-gland (schild.) surround the yolk-duct where it passes forward to join the oviduct: and the uterus (uter.) opens into it at this point. A short distance from its origin the oviduct presents a dilatation, the receptaculum seminis, in which the secretion of the testes is stored during copulation. The remainder of the oviduct, frequently known as the vagina (vag.), is a long narrow tube leading to the female generative opening. The uterus is, in the segments in which it first makes its appearance, a simple cylindrical diverticulum of the oviduct: it retains its simple form as far back as about the 600th proglottis, where it begins to branch, the ramifications increasing in extent and volume in the posterior segments.

The testicular secretion (probably from the same proglottis) passes in the act of copulation along the vagina to the receptaculum seminis. Here, or in the proximal part of the oviduct, it fertilises the ova as they ripen and become discharged from the ovary. As in the case of the Liver-Fluke, the oosperm proper becomes surrounded by a quantity of food-yolk developed in the yolk-glands, and is then enclosed in a firm chitinous shell formed for it by the secretion of the shell-gland. It then passes into the uterus. The first completed eggs are found in the uterus in some proglottis between the 400th and the 500th. From this point backwards they rapidly accumulate, until the cavity of the uterus, which now becomes branched, is filled and distended with them. Eventually in the most posterior, so-called "ripe" proglottides
(Fig. 184), the uterus, with its contained accumulation of eggs, becomes so large as to fill the greater part of the interior of the proglottis, the remainder of the reproductive apparatus meanwhile having become absorbed.

Development.—When the ripe proglottides are detached they pass to the exterior with the faces of the host. For a time they exhibit movements of contraction. The embryos contained within the eggs have meantime assumed the form of rounded bodies, each armed with six chitinoid hooks—the six-hooked or hexacanth embryo (Fig. 185, A)—enclosed within two membranes. If the proglottides or the eggs which have escaped from them, should now be taken into the alimentary canal of the Pig, which forms the ordinary second host of the parasite, the hooked embryos, becoming freed from their coverings, bore their way with the aid of their hooks through the wall of the alimentary canal, and reach the voluntary
muscles. Here they increase greatly in size, and develop into rounded cysts with a large cavity filled with watery fluid—the proscolex stage (B). On the wall of the proscolex, at one side, is formed a hollow ingrowth, or invagination (C); and on the inner surface of this are developed the hooks and suckers characteristic of the head or scolex of the adult (D). When these are fully formed the hollow ingrowth becomes everted (E), the suckers and hooks thus coming to be situated on the outer surface (F). The whole embryo has now the form of a bladder or vesicle, with which is connected at one point a process having all the characters of the head and neck of the mature Tænia solium; this is the bladder-worm stage, or Cysticercus. If a portion of Pig’s muscle containing Cysticerci which have not been killed by cooking, is taken into the stomach of Man, the bladder is thrown off, the scolex attaches itself to the wall of the intestine by its hooks and suckers, and develops the series of proglottides of the adult Tape-Worm.

2. Distinctive Characters and Classification.

The Platyhelminthes are bilaterally symmetrical, usually dorso-ventrally compressed animals, devoid of hard supporting skeleton, either external or internal, and devoid of metameric segmentation; with three embryonic layers—ectoderm, mesoderm, and endoderm—entering into the formation of the body. A body-cavity is not present. There is a system of excretory vessels, communicating in the majority of cases with the exterior, and furnished with ciliary flames. There is no blood-vascular system. An enteric cavity may be absent, may be rudimentary, or may be highly developed: it is never provided with an anal aperture. The completed egg contains, in addition to the oosperm, a quantity of yolk-matter, usually in the form of definite yolk-cells, and usually produced by a special set of yolk-glands. Development is sometimes direct, sometimes accompanied by a metamorphosis.

CLASS I.—TURBELLARIA.

Mostly non-parasitic Platyhelminthes with a ciliated cellular epidermis; with a digestive cavity (except in the sub-division Acoela).

Order 1.—Polycladida.

Flattened leaf-shaped Turbellaria, without separate yolk-glands: testes and ovaries numerous; male and female genital apertures usually separate; intestine complexly branched.

Order 2.—Triclaidida.

Turbellaria with elongate depressed body: with numerous yolk-glands, two ovaries, numerous testes; a single genital aperture:
intestine consisting of a median anterior division and two lateral posterior limbs which are provided with side branches.

Order 3.—Rhabdocelida.

Comparatively small Turbellaria, with the body usually elongate and cylindrical or compressed; with simple, or nearly simple, sac-like intestine; with or without yolk-glands; with one or two ovaries and two or many testes.

Class II.—Trematoda.

Ecto- or endo-parasitic Platyhelminthes devoid of cilia, or of a cellular epidermis; with a well-developed digestive apparatus.

Order 1.—Monogenetica.

Mostly ecto-parasitic Trematodes; with direct development.

Order 2.—Digenetica.

Endo-parasitic Trematodes with complicated life-history.

Class III.—Cestoda.

Endo-parasitic Platyhelminthes without cilia and without digestive cavity, the animal consisting in most cases of a rounded head bearing organs of adhesion in the form of suckers and hooks, and an elongated compressed body consisting of a string of similar proglottides, each containing a complete set of hermaphrodite reproductive organs.

Order 1.—Monozoa.

The body not divided into proglottides.

Order 2.—Polyzoa.

The body consisting of head or scolex, and string of proglottides.

Systematic Position of the Examples.

Planaria and Dendrocoelum are genera of the family Planaridae, or fresh-water Planarians, which is one of the two families of the order Tricladida, differing from the other family, the Geoplanidae or Land Planarians, mainly in having the body less elongated and more dorso-ventrally compressed.

Distomum hepaticum is one of the very many species of the genus Distomum, which is distinguished from the other three

1 Except in certain species of Temnocephala.
2 Except in the Temnocephala and Actinodactyella.
genera of the family Distomidae by being hermaphrodite (two of the genera—Bilharzia and Kollikeria—having the sexes distinct), and by having both anterior and posterior suckers, but no retractile tentacles (present in the genus Rhopalophorus). The Distomidae are a family of the order Digenetica, and differ from the remaining families by the union of the following characters:—The anterior sucker is perforated for the mouth; the posterior sucker is on the ventral surface and not terminal; the sexual aperture is usually on the ventral surface and in the anterior third of the body, in front of the posterior sucker; the eggs are almost always furnished with an operculum.

Tania solium is one of the many species of the genus Tania, of the family Taniidae, which is distinguished from the other families of Cestodes by the possession of four suckers, with or without a circlet of hooks, and by the development of well-defined proglottides which become separated off when mature.

General External Features.—As the name of the phylum denotes, the body in the Platyhelminthes is, in the great majority of cases, much compressed in the dorso-ventral direction; very thin, so that when very short it may be described as leaf-like, or, when more elongated, as ribbon-like; or thickish in the middle and becoming thinner towards the margin. Some, however, have the body comparatively thick, usually with a certain amount of dorso-ventral compression; a few are approximately cylindrical or fusiform. The symmetry is always bilateral (p. 41), the radial arrangement of parts so prevalent in the Cælenterata and primarily, as we have seen, associated with a fixed or stalked condition, never being observable. A Flat-Worm has dorsal and ventral surfaces, right and left sides or borders, and anterior and posterior ends. The anterior end is that which is directed forwards in ordinary locomotion; it usually has one or other of the characters of a head-end; but a distinct head is rarely distinguishable, and the mouth, when present, is usually placed some distance back on the ventral surface.

In the Turbellaria (Fig. 186) the leaf-form is the prevailing one, a general shape resembling that of Planaria being very common. In many, however, the body is greatly elongated, and it may assume the shape of a thin ribbon with puckered edges, as in some marine forms; or may be thickened and band-like, as in the Land Planarians; or it may approach the shape of a cylinder, as in some Rhabdocoeles. A head-region is not usually distinct: but there is always something to mark off the anterior from the posterior end—a difference in shape, the presence of eyes, and, sometimes, of a pair of short tentacles:
in some a slight constriction separates off an anterior lobe, on which the eyes are borne, from the rest of the body. In others the anterior end is retractile, and may be everted as a proboscis. The mouth is never at the extreme anterior end, but always ventrally placed, sometimes behind the middle. In some Polycladida there is a large ventral sucker serving for temporary fixation; and in some Rhabdocoels both the anterior and posterior ends, though not provided with suckers, are adhesive, so that the animal can loop along like a Hydra or a Caterpillar. There is never

any external appearance of segmentation, though in at least one exceptional instance (Gunda segmentala, Fig. 187) the internal parts may be so disposed as to approximate to the metameric arrangement (pseudo-metamerism). A number of transverse muscular septa are present, imperfectly dividing the body internally into a series of segments; and various internal organs—intestinal ceca, gonads, transverse commissures of the nervous system—are arranged in pairs following this division. A few multiply by budding, and these form long chains, having something in common with the string of proglottides of a Cestode, but differing radically, as will be shown later, in the mode of development. Colour is very general in the Turbellarian, though some are transparent and

Fig. 180.—Various Planarians. A, Convoluta; B, Vortex; C, Monostus; D, Thysanozoon; E, Rhynchodemus; F, Bipalium; G, Polycelis. All natural size. (After Von Graf.)
Ph. 187.—Gunda segmentata. General view of the organisation. br. brain; eye eye; gen. ap. genital aperture; int. intestine with its ove; long. ac. longitudinal nerve cord; ov. ovary; ovd. oviduct; pe. penis; ph. pharynx; hs. testes; ut. uterus. (After Lang.)
colourless. The most vivid coloration characterises some of the marine Planarians, the Rhabdocoeles being comparatively obscure. The surface is covered with a coating of fine *vibratile cilia*, the vibration of which subserves respiration as well as (in the smaller forms) locomotion. Among the ordinary cilia are frequently disposed longer whip-like cilia or flagella, likewise motile; and sometimes non-motile (sensory) cilia may occur here and there.

The *Trematodes*, nearly related to the Turbellarians in internal organisation, resemble them also in external form, with certain modifications connected with a parasitic mode of life. As in the latter class, the leaf-shape prevails; an elongated form also occurs, though more rarely. The body is usually thicker and more solid than in most Turbellaria. The anterior end is distinguished from the posterior by its shape, by the arrangement of the suckers, and, in many of those *Trematodes* that are external parasites, by the presence of eyes. Suckers, present in the Turbellaria only in some of the Polycladida, are universal in their occurrence. They are always ventrally placed, their chief function being to fix the parasite to the surface of its host in such a way as to facilitate the taking in by the mouth of animal juices and epithelial débris. Their number and arrangement vary considerably. There are nearly always present an anterior set of suckers (or a single anterior sucker surrounding the mouth) and a posterior set, or a single large posterior sucker. The arrangement already described as characterising the Liver-fluke is that which is typical in the digenetic forms: a single anterior and a single posterior sucker.
In the Monogenetica the suckers are often more numerous: in the family Gyrodactylidae (Fig. 189, A) there is no anterior sucker, but at the posterior end one or two discs armed with hooks; in the Polystomidae (Fig. 189, B) there is also a posterior disc on which are
six suckers with several hooks; in the *Temnocephalae* (Fig. 190) there is no anterior sucker, but the anterior end develops a row of adhesive tentacles, while in *Actinodactylella* (Fig. 191) a series of marginal tentacles are present in addition to both anterior and posterior suckers. In general the monogenetic forms, being ex-

Fig. 190.—Temnocephala. c. cirrus; i. intestine; m. mouth; ov. ovary; ph. pharynx; r. r. receptaculum vitelline; t. testes; t. s. terminal sac of excretory system; v. v. vitellarium; v. s. vesicula seminalis. (After Haswell.)

ternal parasites, require more powerful organs of adhesion, and have the suckers better developed than the digenetic, and often armed with bristles or hooks. The suckers are used also in locomotion, and here also there is necessity for greater development in the case of the external parasites, which in many cases move about with considerable activity after the looping fashion of
Leeches. Save in two exceptional cases (*Tenniscella*) vibratile cilia are not known to occur on the surface in the adult condition; in some there are groups of non-motile cilia, situated on little conical elevations—the *tactile cones*. Pigment is rare in the endoparasitic Digenea, save in a few that live in the interior of transparent animals, though many appear coloured variously by the internal organs shining through the translucent body wall, or are stained by some fluid derived from their host. But pigment is found in some of the ectoparasitic forms.

The relationship of the *Cestoda* to the Trematoda is, as will be subsequently shown, fairly close: but, though there are connecting forms between the two classes, the shape of the average Cestode
is very different from that of such an average Trematode as the Liver-fluke. The body of an ordinary Cestode is of great length, sometimes extending even to a good many feet, and relatively narrow, being compressed into the form of a ribbon. The anterior end is attached to the host by means of suckers and hooks placed on a rounded lobe, the head or scolex, connected with the body by a narrow part or neck. The head is usually rather radially than bilaterally symmetrical, with four suckers and a circllet of hooks. The hooks, when present, are borne on a longer or shorter retractile process, the rostellum, the long axis of which is in line with the long axis of the body. In Tetrarhynchus (Fig. 192) there are four very long and narrow rostella covered with hooklets.

The Cestoda are devoid of mouth, and in most of them the genital apertures are marginally placed, so that, externally, there is, except in the case of a few in which the genital apertures are not marginal, nothing to distinguish the dorsal surface from the ventral. The body, or strobila, which is narrower in front than it becomes further back, is made up throughout its length of a series of segments, or proglottides, which become larger and more distinctly marked off from one another as we pass backwards. Tænia
echinococcus (Fig. 193) is exceptional in possessing only three or four proglottides. In a few (Ligula and its allies—Fig. 194),

though the body has the normal elongated ribbon-like form, the segments are not distinct, and in Caryophyllaeus (Fig. 195),

Amphilina, Amphiptyches (Fig. 196), and Archigetes (Fig. 197), (Monozoa), segmentation is entirely absent, the whole body in
these genera consisting of a single proglottis. The surface in the Cestodes is devoid of cilia, and there is no pigment.

Integument and Muscular Layers.—In the Platyhelminthes in general there are *integumentary* layers and underlying layers of *muscle*, which are more highly differentiated than in the Coelenterates. But considerable differences exist between the members of the three classes. In the Turbellaria (Fig. 198) there is, as already noticed in the account given of the Planarian, a distinct *epidermis* (Fig. 198, *ep*) in the form of a layer of cells, most of which are ciliated. A delicate *cuticle* is usually, though not always, distinguishable, investing the epidermis externally. In one family the cuticle is developed, along the margin of the body, into a series of chitinous bristles. Among the ordinary epidermal cells there are in the Polycladida numerous cells containing short rod-like bodies—the *rhabdites* (*rh.*); in the other orders of the Turbellaria these rhabdite-forming cells are sunk deeply within the parenchyma, and, in the Rhabdocoela, have very long ducts, formed of processes of the cells, by means of which the rods, together with a viscid matter, reach the exterior at certain points of the surface, chiefly around the anterior extremity. The function of these rhabdites is not in all cases certain; they have been supposed to add to the sensitiveness of the parts in which they are situated after the fashion of hairs or nails, or to have a skeletal function. In the Rhabdocoela and Tricladida they undoubtedly aid in adhesion, and probably have the function of assisting in the entanglement and capture of food. In certain of the Turbellaria stinging capsules occur similar to those of the Cœlenterata, and transition forms between rhabdites and stinging capsules occur in some cases. *Adhesive cells* with processes also frequently occur in the epidermis. Beneath the epidermis is a *basement membrane* (*b. m.*), which in the Polycladida is of a thick resistant character, and contains stellate cells.

In a small number of the Trematoda three distinct layers are distinguishable in the integument—a homogeneous, or nearly

![Fig. 198.—Section of the body-wall of a Triclad.](image)

b. m. basement membrane; *c. m.* circular muscles; *d. v. m.* dorso-ventral muscles; *ep.* epidermis; *i. l. m.* internal longitudinal muscles; *p.* parenchyma; *rh.* rhabdites; *rh. c.* rhabdite-forming cells. (After Dijlon.)
homogeneous, outer cuticle; a cellular, or at least, nucleated, epidermis, and a basement membrane; but the cellular epidermal layer is absent as such in the adult condition in the majority of the Trematodes, and there is only a homogeneous, non-nucleated outer layer, which may be the modified epidermis, or may be the cuticle, with or without a basement-membrane. Rhabdite-forming, and other unicellular glands derived from the epidermis, are frequently present beneath the integument.

In the Cestodes, as in the majority of the Trematodes, no definite epidermis is present. The external layer, sometimes divided into two, is of a homogeneous non-cellular character, and is usually termed cuticle, though it perhaps partly corresponds to the basement membrane of other groups. Beneath this is a thin layer which appears to consist of elastic fibres. Beneath this again is a layer of fusiform cells, narrow prolongations of which pass to the surface. It is possible these may be concerned in the absorption of nutrient matter, but some of them are undoubtedly of the nature of nerve-cells and have nerve-fibres connected with them.

The muscular layers of the body-wall vary somewhat in their arrangement in the different groups of Platyhelminthes. Most commonly there is an external layer of circularly arranged, and an internal layer of longitudinally arranged fibres; frequently layers of fibres running in a diagonal direction are present also.

Characteristic of the flat-worms is a peculiar form of connective tissue, the parenchyma (Fig. 199), mention of which has already been made in the descriptions of the examples, presenting many varieties, filling up the interstices between the organs—leaving

![Figure 199. Parenchyma.](image-url)
only, in some instances, very small spaces—sometimes regarded as representing the body-cavity, or **celome**, which we shall meet with in other groups of worms. Sometimes the parenchyma appears to consist of distinct large cells with greatly vacuolated protoplasm, with interspaces here and there in which groups of rounded cells are enclosed. Sometimes the constituent cells run together, and the parenchyma then appears as a nucleated, finely fibrillated, vacuolated mass in which the boundaries of the cells are not recognisable. Pigment occurs in the parenchyma in some Rhabdocoele Turbellarians and a few Monogenetic Trematodes. In some Turbellaria—species of *Convoluta* and *Vortex*—the parenchyma contains numerous cells enclosing chlorophyll corpuscles: these are symbiotic unicellular Algae, similar in their mode of occurrence to the yellow cells which have been referred to as found in the Radiolaria. Running through the body, for the most part in a dorso-ventral direction, are numerous slender muscular fibres, the fibres of the **parenchyma muscul**; many of these become inserted externally into the basement membrane.

Great differences exist between the various groups of Platyhelminthes as regards the development of the **alimentary system**, differences which are, broadly, to be correlated with differences in the mode of nutrition. Some of the Flat-worms—the Turbellaria and some of the Monogenetic Trematodes—procure their food, in the shape of small living animals or vegetable organisms, or floating organic débris, by their own active efforts. Others—the Digeneic Trematodes and the Cestodes—having reached a favourable situation in the interior of their host, remain relatively or completely passive. An alimentary canal is completely absent in the last-named group, nutrition being effected by the absorption of digested matter from the interior of the animal in which the Cestode lives. In all the rest of the Platyhelminthes there is an alimentary canal, which never opens on the exterior by an anal aperture. All the Turbellaria and Trematoda have an alimentary apparatus consisting of two well-defined parts—a muscular **pharynx** and an **intestine**. The pharynx is usually a rounded muscular bulb, but is sometimes (some Turbellaria) of a cylindrical shape: it is usually capable of eversion and retraction. *Actinodactylella* (Fig. 191) is exceptional in having an extensile proboscis with a pin-shaped style, which becomes retracted within the opening of the mouth. Unicellular ("salivary") glands open into the pharynx in most cases.

The **mouth** is always ventral, but varies greatly in its position on the ventral surface, being sometimes central, sometimes behind, sometimes in front of, the middle of the length of the body.

In the most lowly organised group of Turbellaria the **intestine** is represented merely by a vacuolated nucleated mass of protoplasm without lumen. In the others it is sometimes a simple
sac (Rhabdocoele Turbellaria (Fig. 200), a few Trematoda), with or without short lateral diverticula. In the majority of the Trematodes it consists of a pair of simple canals; but in some, as in the Liver-

Fig. 200.—General plan of the structure of a Rhabdocoele Turbellarian.

- b. c. bursa copulatrix; cn. brain; e. eye; g. germarium; i. intestine; la. longitudinal nerve; m. mouth; ph. pharynx; r. receptaculum seminis; s. unicellular glands; t. testis; u. uterus; v. vesicula seminalis; v. ejaculatory duct; v. common genital aperture. (After von Graff.)

Fig. 201.—General plan of the structure of a Polyclad.

- ca. brain; c. eye; i. intestine; l. longitudinal nerve cord; m. mouth; o. ovary; ph. pharynx; phl. sheath of pharynx; t. testes; u. uterus; v. vas deferens; v. vesicula seminalis; i. male aperture; j. female aperture. (After von Graff.)

fluke, there is a pair of canals which give off numerous branches. In the Polycladida (Fig. 201) there is a central cavity from which numerous branching canals are given off. In the Tricladiida (Fig. 202) one median canal passes forwards from the pharynx,
and a pair of canals backwards from it, all three giving off branches which again branch. In some Polycladida there are minute pores, by means of which certain of the canals are placed in communication with the exterior. A number of unicellular glands, which probably produce a digestive secretion, open in many Trematodes and Rhabdocoeles, at the junction of pharynx and stomach-intestine.

A bilateral nervous system is developed in all the Platyhelminthes. Its elements are nerve-fibres, or rather nerve-tubes, and nerve-cells. The former are tubes containing a very delicate, finely fibrillated, material. The nerve-cells, which are usually bipolar, more rarely uni- or multipolar, lie in the course of these tubes, with the contained delicate material of which the substance of the cells is in continuity. The degree of development of a central part of the nervous system, or brain, varies in the different groups; it is rudimentary in the Turbellaria Acoela and in the Cestodes, and best developed in some Polycladida and some Monogenetic Trematodes. It consists of numerous nerve-tubes which here converge from the various parts of the body and pass across from one side to the other, together with a central mass of matter similar to that contained in the nerve-tubes, and a number of nerve-cells. It is situated in the anterior portion of the body, almost invariably in front of the mouth. When the peripheral part of the nervous system is best developed, as it is in the Polycladida, the Tricladida, and some Trematodes, there are three pairs of longitudinal nerve-cords running backwards from the brain throughout the body, connected together by frequent transverse connecting nerves, or commissures. To these there are sometimes super-added fine networks or plexuses of nerves, situated superficially under the dorsal

Fig. 202.—General plan of the structure of a Triclad. en. brain; e. eye; g. germinarium; i. median limb of the intestine; i2. right limb; i3. left limb; ln. longitudinal nerve-cord; m. mouth; od. oviduct; ph. pharynx; t. testes; tc. tentacles; v. vas deferens; u. uterus; δ ejaculatory duct; Ψ vagina; Ψ common genital aperture. (After Von Graff.)
integument, or on both dorsal and ventral surfaces. Sometimes nerves run forwards from the brain as well as backwards. In the Rhabdocoela and some of the Trematodes the whole system is simpler, and the number of longitudinal cords fewer. In the Cestodes there are two longitudinal trunks which run throughout the length of the body, and are connected together in the head by a commissure which represents the brain of other Platyhelminthes.

In addition to the tactile cones of some Trematodes and the sensory cilia of the Turbellaria, already referred to, the sensory organs of the Platyhelminthes are the eyes and the otoecysts. Eyes occur in the Turbellaria and some Monogenetic Trematodes, but are wanting in the Digenetic Trematodes and in the Cestodes. In some of the Polyclada they are extremely numerous, collected into groups over the brain, and frequently arranged also round the margin of the body. In the Rhabdocoela and Monogenetic Trematodes, they are much less numerous—usually two or four. In some cases each eye simply consists of a pigment spot; to this may be added a refractive body. When most highly developed the eye is still of very simple structure, consisting of a cup of pigment enclosing refractive bodies, and having nerve-cells in close relation to it. The otoecysts are sacs containing otoliths of carbonate of lime. The function of these bodies, which occur only in a small number of the Turbellaria, is unknown; there is no sufficient evidence that, as their name is meant to imply, they are organs of hearing.

The only vascular system present in the Platyhelminthes is the system of water-vessels which are commonly regarded as performing an excretory function. The arrangement of these, the mode of ending internally of the finest branches, and the way in which the system communicates with the exterior vary somewhat in the different groups. A series of main longitudinal trunks give off branches which subdivide to form a system of minute interlacing branches or capillaries. In little spaces at the ends of the capillaries are a number of highly characteristic structures—the ciliary flames. Each ciliary flame consists of a bundle of vibratile cilia; typically each is situated in the interior of a cell—the flame-cell (Fig. 203)—terminating one of the capillary branches. The finer branches, and in some cases the larger trunks also, are intra-cellular, and are to be looked upon as perforations in linear rows of elongated cells. In the Cestoda, at least the larger trunks are inter-cellular, being lined by an epithelium of
small cells. This system of water-vessels opens on the exterior in a variety of different ways: sometimes it opens by a number of minute pores; sometimes, as in the Liver-fluke, there is a single posterior aperture: frequently there are two. In the Tricladida there are two longitudinal canals which open on the exterior through special branches by a series of pores. In the Rhabdocoelida there are either two longitudinal main vessels or a single median one: the communication with the exterior in the former case may be by a pair of ventral apertures, or indirectly through the pharynx: or there may be a common short passage in which the two trunks unite, opening by a posterior median aperture. When a single main trunk is present it opens at the posterior end of the body. In the Trematodes there are two principal longitudinal trunks, which either unite behind to open at the posterior end of the body, or (Monogenetica) remain separate and open independently on the dorsal surface, each having, where it opens, a contractile excretory sac.

In the Cestodes there are usually four longitudinal trunks, which open through a contractile excretory sac at the posterior end of the body. In many cases it has been shown that the main trunks communicate with the exterior at intervals by means of fine canals. The excretory sac is thrown off when the last proglottis becomes separated off and does not in most cases become renewed, though in at least one species of Tape-worm (Tania cucumerina), a new vesicle is developed again and again at the end of the body as a fresh segment is thrown off. The main trunks are connected together by a ring vessel in the head and by a transverse branch in each proglottis, and where the latter originate from the main trunks are valves formed by folds of the wall of the vessel.

The sexes are united in all the Platyhelminthes, with only one or two exceptions, and the reproductive organs are sometimes somewhat complicated—presenting a remarkable advance on those of the Coelenterata. The male part of the apparatus consists of testes, with their ducts, the vasa deferentia, often with a contractile terminal enlargement or vesicula seminalis, a cirrus or penis, and often prostate or granule glands. The female part comprises ovary or ovaries, receptaculum seminis, oviduct, uterus or ootype, often a bursa copulatrix, shell glands, vitelline or yolk glands, and cement glands. In most, though not in all, there is an ovary or ovaries in which the ova are formed, and a set of vitelline glands or yolk glands producing material which surrounds each of the mature impregnated ova before it becomes enclosed in its shell. The shell glands secrete the chitinoid substance of the egg shells. The cement glands secrete a viscid material for causing the eggs to adhere together, enclosing them in a cocoon or fastening them to some foreign body. The oviduct is the passage by which the ova reach the exterior from the ovary, but an enlarged
part of this passage, into which (usually) the shell glands and the ducts of the vitelline glands open, is termed uterus or ootype, while a terminal portion leading from the uterus towards the exterior is known as the vagina. The uterus receives the ova with their investing yolk matter, and retains them frequently for some considerable time while the shell is being formed and the earlier stages of development are proceeding; often the uterus is found to contain large numbers of ova, each enclosed in its chitinoid shell, in other instances it may enclose only one egg at a time. The vagina is sometimes a copulatory apparatus for receiving the penis, and is often provided internally with horny spines or teeth; sometimes a special sac or bursa copulatrix, lined with spines, acts as the female copulatory organ. A sac opening into the distal part of the oviduct, or that most remote from the genital opening, is termed receptaculum seminis or receptaculum vitelli (Fig. 190, r.c.) according as it serves as a reservoir for the semen received in copulation or for the vitelline matter or yolk. Male and female ducts sometimes have separate and independent openings; but very commonly there is a common chamber or genital cloaca into which both lead, opening on the exterior by a single aperture.

In the Polyclad Turbellaria (Fig. 201) the testes are numerous, and there are a corresponding number of fine tubes which combine to form the two vasa deferentia leading to the male aperture with its penis. The ovaries consist of numerous small rounded masses of cells, and there are no separate yolk-glands. Numerous narrow oviducts lead from the ovaries, and unite to form larger ducts; these, in turn, open into elongated uteri, in which numerous eggs collect. The uteri open into a median vagina, into which the ducts of the shell glands open, and in which the eggs receive their chitinoid investment.

In the Tricladida (Fig. 202) there are also numerous testes, but the fine tubes connecting them with the two vasa deferentia are absent. There are only two ovaries, situated far forwards, but numerous yolk glands. Two oviducts, into which the yolk is discharged from the yolk glands by a series of lateral apertures, lead from the ovaries to unite in a median chamber or uterus receiving the ducts of the shell glands.

In the Rhabdocoelus (Figs. 200 and 204) there are usually only two testes and two vasa deferentia leading to the unpaired male aperture at the extremity of the cirrus. The prostate or granule glands—a set of unicellular glands, which secrete round bright granules destined to mix with the sperms—are specially well developed in the Rhabdocoelus, though present in some other Turbellaria, and in certain Trematodes. Ovaries alone are present in some, ovaries and yolk glands in others; there are either two ovaries or one only.
The Trematodes nearly all have two testes, sometimes compact sometimes branched; in a few instances there are four. The vasa deferentia unite into a median duct, which is dilated at the base of the penis to form a vesicula seminalis. There is a single oval or branched ovary, and two sets of vitelline glands. A canal termed Laurer's canal leads from the exterior to the oviduct or vitelline duct.

In the ordinary Cestodes each segment or proglottis contains a set of reproductive organs similar to those of a Trematode. There may be a single genital aperture leading into a genital cloaca into which both male and female ducts open; or the male and female apertures may be distinct though close together. The testis is divided into a number of minute lobes, from which proceed a number of fine canals, joining together to form the vas deferens, at the extremity of which is the chitinous cirrus. There are two ovaries, and either a single vitelline gland, or two. One or two vitelline ducts and the two oviducts open into the ootype, from which the vagina leads to the external aperture. There is in the Cestodes a uterus distinct from the ootype in the form of a diverticulum of the latter into which the eggs are received; this becomes greatly enlarged, lobed, and branched in the "ripe" posterior proglottides, so that it soon becomes by far the most conspicuous part of the reproductive apparatus—the rest eventually becoming absorbed. In Bothriocephalus and its allies the uterus has an independent duct of its own, opening at some distance from the common genital aperture; in Caryophyllaeus this uterine duct joins the vagina.

The development of some of the Platyhelminthes (Rhabdocoela, Monogenetic Trematodes) is direct—i.e., not complicated by the occurrence of a metamorphosis; in the Digeneric Trematodes, the Cestodes, and some of the Planarians a metamorphosis occurs.

The ovum of a Polyclad (Fig. 205) on impregnation divides first into two equal parts, then into four. From each of these
four cells is then separated off a small cell. The embryo at this stage consists of eight cells, four large—the *megameres*, and four small—the *micromeres*. The four micromeres increase rapidly by division, and extend over the embryo, forming a layer, the *ectoderm*, completely covering it in all parts except for a median fissure, the *blastopore*, which runs along what is destined to become the middle ventral line; this soon closes up. The ectoderm cells soon develop a coating of cilia. The four megameres then give off four more small cells or micromeres, which increase in number by division, and eventually form the middle layer or *mesoderm* of the embryo. The megameres give off a number of additional micromeres, which form the *endoderm* layer, giving rise to the epithelium of the intestine; finally they become disintegrated, and their substance goes to nourish the cells of the developing embryo. The process by which the germinal layers have become formed is, as in the Ctenophora (p. 205), a process of *epibolic gastrulation*, and is to
be contrasted with the embolic gastrulation of Sycon (p. 114). In many cases the embryo develops into a characteristic larval form known as Müller’s larva (Fig. 206). It assumes an oval shape, with a series of eight elongated processes, covered with long cilia, and connected together by a ciliated band. There are eye-spots at the anterior end, and a mouth in the middle of the ventral surface. The form of the body alters after a time, becoming gradually longer and flatter, and the arms become gradually reduced in length, till, eventually, they become completely absorbed.

Little is known of the development of the Rhabdocoeles or of the Monogenetic Trematodes: in both groups development is direct, and in many the young animal, when it escapes from the interior of the egg, has already assumed the form of the parent. Gyrodactylus (Fig. 189, A) is peculiar in being viviparous: before the embryo is born a second has become developed in its interior and a third in the interior of that again. Even more remarkable is the case of Diplozoon, in which two young animals become fused together to form a double mature individual.

An account has already been given (p. 230, Fig. 179) of the development and metamorphosis of the Liver-Fluke (Distomum hepaticum), which may be looked upon as typical of the Digenetic Trematodes in general.

As in the majority of the Platyhelminthes, the egg-shell of the Digenetic Trematodes, formed from the secretion of the shell-glands, encloses not only the ovum derived from the ovary, but also a number of small yolk-cells contributed by the yolk-glands: these soon lose their cell character. The ovum has been fertilised by a sperm before the shell is formed, and undergoes division into a number of cells which gradually displace and absorb the yolk, the latter taking no direct part in the development of the embryo, but serving only for its nourishment in the earliest stages. The embryo escapes from the egg as a ciliated larva, which develops in the interior of the second or intermediate host into a sporocyst. This may multiply by budding or fission. The central cells of the larva, which are regarded as ova that develop parthenogenetically

Fig. 206.—Müller’s larva. A, longitudinal section; B, lateral view. ee., ectoderm; en., endoderm; br., brain; int., enteron; m., mouth; ph., pharynx; pt., pharyngeal pouch; sa., sucker. (From Lang).
give rise to the development of rediae in the interior of the sporocyst, and these give rise, either directly or through the intermediate of a second generation of rediae, to tailed cercariae. The cercariae escape from the body of the intermediate host, and, in many cases, instead of merely becoming attached to herbage, as in the Liver-Fluke, make their way into the body of a second intermediate host (usually an invertebrate), and there become encysted. The encysted larva is eventually taken into the interior of the final host (generally a vertebrate) by the second intermediate host being swallowed by the latter: the cyst-wall becomes dissolved, and the young Trematode becomes free, and develops into the sexually mature condition, either in the interior of the alimentary canal itself, or in some related part. There is thus to be recognised in the Digenean Trematodes an alternation of generations comparable to that which has been described as so general in the Coelenterata. In the Trematoda, however, it is to be observed, it is an alternation of a sexual, not with an asexual, but with a parthenogenetic generation (the sporocyst), the ova of which develop into a second parthenogenetic generation (the rediae); and these finally produce larvae (the cercariae) capable of developing into the sexually mature form. The term heterogony is applied to a life-history of this kind, in which several distinct generations succeed one another in a regular series.

The egg of a Cestode is similar in essential respects to that of a Trematode: there is a tough, chitinoid membrane or egg-shell, which encloses not only the ovum but a number of yolk-cells, the latter becoming absorbed as the process of segmentation of the ovum goes on. The result of segmentation is the formation of a superficial layer of cells (ectoderm) and a central mass, all enclosed in a membrane composed of a single layer of cells thrown off when the embryo escapes from the egg. The ectodermal cells become ciliated, so far as is known, only in Bothriocephalus; in the others they become thrown off or ultimately absorbed without developing cilia. The central mass of cells alone forms the embryo. The embryo, while still consisting of a small number of cells, develops a series of six chitinous hooks. These early changes all take place in the majority while the egg is still in the uterus of one of the most posterior of the proglottides of the parent worm. When the proglottis in question becomes separated off, and has passed out from the body of the final host, the eggs become discharged. In order that development may proceed further the embryo must reach the interior of a second or intermediate host. This is a passive migration, since the embryo of the Cestode is still confined within the egg-shell, and the transference has to take place in the water or food. The digestive fluids of this intermediate host dissolve the egg-shell and set free the contained six-hooked hexachord embryo, which bores its way by means of its hooks to
some part of the body in which it is destined to pass through the next phase in its life-history, and there becomes encysted. The phase which follows presents two main varieties. In cases in which the intermediate host is an invertebrate animal the hooked embryo develops into a form to which the name of *Cysticercoid* is given: when, on the other hand, the intermediate host is a vertebrate, the form assumed is nearly always that termed *Cysticercus*, or bladder-worm. The cysticercoid (Figs. 207 and 208) form is to be regarded as the more primitive and less modified. Cysticercoids of various tape-worms occur in a great variety of different invertebrates, e.g. Insects of all kinds, Water-fleas, Centipedes, Earthworms. The hooked embryo loses its hooks and develops into the cysticercoid in some part of the invertebrate intermediate host. The cysticercoid consists of three parts—a tape-worm head or *scolex*, with the hooks and suckers of the mature worm, a so-called body, and a caudal vesicle. Sometimes there is a tail recalling to some extent the tail of a cercaria. Sometimes the caudal vesicle is absent: when present, it, either from the first, or as a result of later changes, encloses the head as well as the body after the manner of a cyst. While undergoing these changes the cysticercoid is usually enclosed in an adventitious cyst formed for it by the tissues of its host, but it often lies free in the body cavity. The transference to the final host is effected by the intermediate host, or the part of it containing the cysticercoid, being taken into the alimentary canal of the final host. Sometimes, if the intermediate host is a relatively small animal, such as a water-flea, this may take place "accidentally"; in other cases the invertebrate intermediate host actually forms the food of the final host. Thus a cysticercoid having as an intermediate host an Earthworm is taken with the latter into the alimentary canal of a Sea-Gull—its final host. In this way the cysticercoid is set free in the alimentary canal of the final host; the head becomes pushed out from the enclosing caudal vesicle and body (probably owing to the stimulus of the higher temperature) so that the
suckers and hooks come into play and attach the young tape-worm to the wall of the alimentary canal.

The *cysticercus* or bladder-worm differs from the cysticercoid mainly in its much greater size and in the development of a relatively large caudal vesicle or caudal bladder. When the hooked embryo has reached that part of the vertebrate host in which it is destined to develop into the cysticercus it undergoes a remarkable change; it becomes greatly enlarged, and a cavity, filled with fluid or with a very loose form of connective-tissue, appears in its interior, so that it assumes the appearance of a relatively large bladder. On one side of this bladder appears a small invagination with a cavity opening freely on the exterior. On the bottom of this is formed an elevation projecting into its interior; this is the rudiment of the rostellum on which the hooks are borne; at its base, on the inner surface of the side walls of the invagination, appear the suckers. When everted this invagination corresponds closely with the head and body of the cysticercoid; the bladder corresponds to the caudal vesicle. The chief difference between a cysticercus and a cysticercoid is that in the former the caudal vesicle is relatively very large, and that the order of development of the parts is somewhat modified.

A very small number both of cysticercoids and cysticerci multiply by proliferation—by the formation of more than one tape-worm head from one embryo. In the few instances in which this occurs among the cysticercoids the hooked embryo gives rise, not directly to a cysticercoid, but to a mass of cells, from which are given off a number of buds, each developing into a cysticercoid with the three parts already described. One such form occurs in certain Earth-worms; another in a Myriapod (*Glomeris limbatus*).

Taenia evansi of the Dog has a bladder-worm stage, in the Sheep and Rabbit, which gives rise to several tape-worm heads. But the best known instance of multiple production of scolices in a cysticercus is *Taenia echinococcus*—well known as cause of the disease termed *hydatids*, common in Man and in various domestic...
animals. In this case the hooked embryo develops into a large mother-cyst, from the interior of which daughter-cysts are budded off (Fig. 209). Eventually from the walls of these daughter-cysts there are formed numerous tape-worm heads, or scolices (Figs. 210 and 211) which, when fully formed, assume the appearance of cysticercoids without the caudal vesicle. These are readily detached, and, should the organ in which the cyst has been developed be devoured by a Dog—which is the final host of the parasite—some of these scolices become attached to the wall of the intestine and develop into the—as compared with the size of the cyst, and as compared with other tape-worms—very small adult _Taenia echinococcus_. The eggs which the latter produces, passing out with the faces of the Dog, may be taken into the digestive canal of Man or of one of the domestic animals, and the minute embryos escaping reach some organ, such as the liver or lung, in which they are capable of developing into a comparatively enormous cyst.
Asexual reproduction also occurs in some Platyhelminthes. In some Rhabdocoele Turbellaria (Microstomum) a process of budding (Fig. 212) results in the formation of strings of sexual individuals which may eventually separate; the new bud is always formed from the posterior end of the last individual of the string.

The sporocyst stage in the Trematodes may, as already mentioned, multiply by budding or fission. The formation of new proglottides in the Tape-worm may be looked upon either simply as growth accompanied by segmentation, or as asexual multiplication, according as we regard the proglottides as segments of a simple animal or zooids of a colony. There is this essential difference between this formation of proglottides and the asexual multiplication by budding in Microstomum, that in the former the proglottides, when they have been formed by segmentation of the undivided part behind the head, do not in turn give rise by budding to new proglottides. Spontaneous transverse fission has been observed in certain Tricladiida, and has often been observed to be followed by the regeneration of the lost portion.

Of all the great groups of the animal kingdom above the Protozoa the Platyhelminthes are the widest in their distribution. Members of the phylum occur on land, in fresh-water down to the bottom of some of the deepest lakes, on the seashore, in deep sea, and on the surface of the ocean; and parasitic Flat-worms live, in one phase or another, in animals of nearly every class of the Metazoa.

As regards their mode of life, they present almost every possible gradation between free-living forms which procure their food, consisting of minute animals and plants, by their own exertions, and forms that are only capable of living in a special part of the interior of a certain other animal, and are quite incapable of procuring food for themselves, living by the passive absorption of the juices of their host or of its digested food. The Turbellaria are for the most part free living, and their food consists of small
Crustacea or the larvae of larger forms, Insect larvae, Water-mites, Rotifers, small Worms, and the like; sometimes of Diatoms and minute Algae of various kinds. Some, however, live a life of true parasitism. Such are certain Rhabdocoëles which are parasitic in the alimentary canal of various Holothurians and Gephyreans (vide infra, Sect. IX.). In these there is, correlated with the inactive mode of life, a tendency to degradation of structure, a degradation which is characteristic of parasites in general; the pharynx is reduced in size as compared with that of non-parasitic allied forms, not being required for the capture and swallowing of living prey; and the eyes, useless to an animal living in complete darkness, are absent. Some of the Turbellaria, though not parasitic in the strict sense, live in a state of commensalism with another, larger animal, that is to say, are more or less constantly associated with it, living on its surface or in one of its cavities that open freely on the exterior, and often sharing its food. An example of this mode of life is the Triclad Bollboura, which lives on the surface of the King-Crab (Liunetus).

While a free existence is the rule in the Turbellaria, true parasitism is the rule in the Trematodes, and is universal in the Cestodes. The majority of the Monogenetic Trematodes are external parasites, living on some part of the outer surface of some larger animal, and feeding on mucus and other secretions of the integument. Many are parasites on the gills of Fishes. A few, however, inhabit the interior of various organs, and are true internal parasites; one, for example (Polystomum), lives in the urinary bladder of the Frog; another, (Aspidogaster) lives in the pericardial cavity of a Fresh-water Mussel. At least one family of the Monogenetica (the Temnocephalae) are not parasites at all in the strict sense of the term, living on the surface of the "host" animal, depositing their eggs there, and being carried about by it, but subsisting on minute living animals captured in the water. The Digenetic Trematodes are all internal parasites, and in the adult condition inhabit, in nearly all cases, the alimentary canal, or the liver, or the lungs of some vertebrate animal, swallowing the digested food or various secretions of their host. But, as mentioned before in the account given of their development, they are internal parasites, not only in the adult condition, but throughout the greater part of their life. After a short period of freedom as ciliated larvae, they again enter into a state of parasitism as sporo- cysts or rediae in a second host, and, after a second free interval as cercariae, may enter the body of a third to become encysted. The second host is, very generally, a Molluse, and the cercaria may become encysted in the same animal.

The Cestodes are, of all the Platyhelminthes, those that are most modified in accordance with the condition of internal parasitism in which they remain throughout life. The adult Cestode is
almost always an inhabitant of the alimentary canal of a vertebrate. The intermediate host is frequently also a vertebrate—commonly of a kind which is liable to become the prey of the final host. In the case of *Taenia crassicolis* of the intestine of the domestic Cat, for example, the Cysticercus stage occurs in the livers of Rats and Mice; the Cysticercus of *Taenia serrata* of the Dog is found in Hares and Rabbits; and so with other tape-worms. But in many cases the intermediate host is an invertebrate. In either case the passage from one host to another is a passive translation, not an active migration as in the Trematodes.

A few human parasites belong to the Trematoda; but none that are of very common occurrence among Europeans. *Distomum hepaticum* has occasionally been found in the human liver. *D. ruthenius* is a common intestinal parasite in China. *D. sincase* occurs in the liver of Man in China and Japan. *Distomum benuclatum* and various other species of the genus occasionally occur in the human subject. *Bilharzia hamadobium*, which differs from most other Trematodes in being unisexual, is found in the portal system of veins among the natives of Abyssinia.

The commonest human Cestode parasites among Europeans are *Taenia solium* and *T. saginata* (otherwise called *T. mediocanellata*). The Cysticercus stage of *T. solium*—Cysticercus cellulose—occurs, as already stated, chiefly in the muscles of the Pig; that of *T. saginata* in the muscles of the Ox; and the relative prevalence in different countries of these two Tape-Worms varies with the habits of the people with regard to flesh-eating; where more swine's flesh is eaten in an imperfectly cooked state *Taenia solium* is the more prevalent; where more beef, *T. saginata*. *Bothriocephalus latum*, a very large tape-worm without hooks, and with a pair of longitudinal sucking-grooves on the head, instead of ordinary suckers, is a common human parasite in eastern countries. Its Cysticercus, which is elongated and solid, occurs in the Pike and certain other fresh-water Fishes.

Of all the Cestode parasites of man, however, the most formid-able is one which occurs in the human body, not in the sexually mature or strobila condition, but in that of the Cysticercus. This is *Taenia echinococcus*, the presence of which produces what is termed hydatid disease. The adult *Taenia echinococcus* is a very small tape-worm with only three or four proglottidies, occurring in the intestine of the domestic Dog. The eggs passing out with a liberated proglottis in the feces, may reach the alimentary canal of Man uninjured in drinking-water, on the surface of salad vegetables, and the like; and, the egg-shells becoming dissolved, the contained hooked embryos bore their way to the liver or the lungs or some other organ. Arrived at its final destination, the embryo develops into a cyst, which may become of enormous size. In the interior of the primary or mother-cyst are developed a number of secondary
or daughter-cysts, and from the walls of these, both internally and externally, are formed very numerous scolices in the way that has already been described (p. 262). Hydatid cysts are very common in some domestic animals—Oxen, Sheep—as well as in Man. Various other Cestodes occur in the bladder-worm stage occasionally in Man—e.g. the Cysticercus cellulosa of Taenia solium.

The most primitive of the Platyhelminthes are, without doubt, some of the simplest Turbellaria, and it is among these that we are to look for the nearest existing relatives to the Ccelenterata. In none, however, is the relationship very close. Cabioplana and Ctenoplana (p. 212) are, probably, rather to be looked upon as Ctenophores specially modified in accordance with a creeping mode of progression than as intermediate forms between Ctenophores and Turbellaria. The relationship with the Ccelenterata is shown, perhaps, most strikingly when we take into account the development of the Turbellaria, in the earlier stages of which there is to be recognised a marked tendency towards a radial symmetry. In their development the Turbellaria, that is to say the Planarians, show some special points of resemblance to the Ctenophora; the ectoderm cells are formed and spread over the rest in a similar way, and the bands of cilia have a disposition and mode of movement that strongly bring to mind the ciliary swimming plates of the Ctenophora. But though there is much to be said in favour of the view that the Turbellaria and the Ctenophora were derived from a common, not very distant stock, the latter are too specially modified to be looked upon as the direct ancestors of the former.

The connection between the Turbellaria and the Monogenetic Trematodes is very close—so much so that it is difficult to give any characters of universal occurrence distinguishing all the members of the two classes. The Trematodes are, in fact, to be looked upon as Turbellaria some of whose external characteristics and, in the case of the Digenetica, whose life-history, have been specially modified in accordance with a parasitic mode of life. It is not unlikely that the Trematodes may be a polyphyletic group—i.e., that different families may have become developed from different families of Turbellaria altogether independently, some of them appearing to be nearer the Rhabdocoels, others nearer the Polyclads, others, again, nearer the Triclads, in the majority of their characters.

The remarkable life-history of the Digenetic Trematodes is, as already pointed out, to be looked upon as a special form of alternation of generations—the alternation of a sexual with a paedo-genetic and parthenogenetic one (heterogeny). The sporocyst and redia are to be looked upon as intercalated stages—as cercariae which exhibit paedogenesis. The cercaria is the characteristic larval stage of the Trematodes, and corresponds to the cysticercus
or cysticercoid of the Cestode. The most important difference between these is in the presence in the former of an enteric cavity, and its absence in the latter. There seems to be something to be said in favour of the view that the enteric cavity of the cercaria is represented by the frontal sucker of some scolices, and by the rostellum of the majority.

Between the adult Cestodes and the Trematodes an intimate relationship is traceable. Caryophyllaeus (Fig. 195) is a Cestode which, but for the absence of an enteric cavity and the want

![Diagram](image)

Fig. 213.—Diagram of the relationships of the Platyhelminthes (together with the Nemertinea).

of organs of adhesion at the posterior end, is not far distant from the Trematodes; and the same might be said of Amphilophylyches (Fig. 196), Amphilina, and Archigetes (Fig. 197). The most important differences between a Cestode and a Trematode, in addition to the absence of an enteric cavity in the former and its presence in the latter, is the occurrence in the Cestodes of strobilation. Ligula in a certain sense forms a connecting link in this respect between the Trematode and the ordinary Cestode, the body being elongated, and the reproductive organs repeated as in the normal Tape-Worm, but without the corresponding division of the body into a string of definitely separated proglottides.
APPENDIX TO PLATYHELMINTHERES.

CLASS NEMERTINEA.

General Features. — The Nemerteans are non-parasitic, unsegmented worms, most of which are marine, only a few forms living on land or in fresh-water. They are commonly looked upon as nearly related to the Turbellaria, and were formerly included in that class; but they are in some respects higher in organisation than the Turbellaria, and they exhibit certain special features distinguishing them from the rest of the lower Worms.

The body (Fig. 214) is narrow and elongated, cylindrical or depressed, unsegmented, and devoid of appendages. In length it varies from a few millimetres to as much as ten metres. The entire surface is covered with vibratile cilia. Frequently the integument is vividly coloured. The cells of the epidermis secrete a mucous matter, which may serve as a sheath or tube for the animal. The mouth (m.) is at or near the anterior extremity on the ventral aspect. Close to it above there is an opening, through which can be protruded a very long muscular organ, the proboscis (pr.), the possession of which is one of the most characteristic features of this class of Worms. The proboscis is hollow; when it is extended to its utmost, a part still remains which is not capable of being everted, and at the junction between the eversible and non-eversible parts, i.e. at the extremity of the organ when it is fully protruded, there is in many of the Nemerteans a pointed or serrated stylet (Figs. 215, 217, and 218), which probably permits of the proboscis being used as a weapon: when a stylet is absent, the surface of the extremity is sometimes
abundantly provided with *stinging-capsules*; sometimes it is beset with glandular *adhesive papillae*. Posteriorly, this non-eversible part of the proboscis passes into a *retractor muscle*, by means of which the whole organ is capable of being retracted within the interior of an investing sheath, the *proboscis sheath* (Figs. 216 and 219, p. s.). It is by the contraction of the muscular walls of this sheath that the proboscis is everted; sometimes the contraction takes place with such force that the proboscis is broken off entirely from the body. The abundant nerve-supply of the proboscis points to its use being mainly as a tactile organ.

The **alimentary canal** is a simple tube distinguishable into *oesophagus* (Fig. 214) with longitudinally folded walls, and *intestine* with lateral *ceca* (*dix*). It ends in an *anal opening* (*a*) situated near the posterior extremity of the body.

The outermost layer of the **integument** is an *epidermis* of ciliated cells, with enclosed *unicellular glands* containing bodies similar to the *rhadlites* of the Turbellaria. Beneath this is sometimes a thin homogeneous *basement membrane*; then a layer of longitudinally arranged muscular fibres, among which are unicellular glands with long ducts that perforate the epidermis, together with pigment. From this layer there is a gradual

Fig. 215. *Tetrastemma.* General view of the internal organs. *ap. anus; ac. st. accessory stylet; cer. g. brain; cil. gr. ciliated groove; dors. ves. dorsal vessel; lat. ne. lateral nerve; lat. ves. lateral vessel; op. neph. nephridium; op. neph. nephridial aperture; prob. eversible part of proboscis; prob₁. non-eversible part of proboscis; prob ap. aperture for the protrusion of the pro. bascis; reir. mus. retractor muscle of the pro. bascis; st. stylet. (From Hatschek's *Handbuch.*)
transition to a layer consisting altogether of *longitudinal muscular fibres*. A layer of *circularly* arranged muscular fibres always is present; but the arrangement of the layers of muscle varies in different forms. The muscular layers are embedded in compact connective-tissue, and a mass of the same tissue fills all the space between the body-wall and the enteric cavity, there being no body-cavity. Vertical muscular *dissepiments* extend across between the intestinal coeca and produce an appearance of internal segmentation.

The Nemerteans possess a system of *blood-vessels* (Fig. 220) with well-defined walls formed of an epithelium and a layer of muscle. There are three principal longitudinal trunks—*a median dorsal* (*med. bl. v.*) and two *lateral* (*lat. bl. v.*). The blood follows no regular course through the vessels, but is moved about by the muscular contractions of the body. The blood is colourless, and contains rounded or elliptical corpuscles.

The *excretory vessels* of the Platyhelminthes are represented by a pair of greatly coiled and branched tubes (Fig. 220, *neph.*), opening on the exterior; the fine terminal branches of the system are provided with *ciliiary flames*, and cilia occur also in the course of the vessels themselves.

The *nervous system* is in some respects more highly developed than in the Turbellaria. The *brain* (Fig. 216, *br.*) is composed of two large ganglia with lobed surfaces, connected together by two-
commissures, dorsal and ventral, between which pass the proboscis and its sheath. From the brain pass backwards a pair of thick nerves which run throughout the length of the body; usually these are lateral in position, sometimes approximated dorsally, sometimes ventrally. In the Nemerteans devoid of stylet there is a nerve-plexus between the muscular layers. In the stylet-bearing forms such a plexus is absent, but metamerically arranged branches are given off by the nerve-cords; these divide into smaller nerves for the supply of the various organs. Sometimes the lateral cords unite behind above the anus.

A remarkable apparatus connected with the nervous system is the system of lateral organs. These consist of a pair of ciliated tubes (Fig. 215, *cil. gr.*) opening externally at the sides of the head.
usually in a groove or slit, and ending internally in the interior of a pair of posterior brain lobes, which are sometimes distinct from, sometimes united with, the rest of the brain. The posterior brain lobes are developed in the larva as outgrowths from the oesophagus; the ciliated tubes appear quite independently of them as ingrowths from the epidermis of the head, the two structures only subsequently coming into relation with one another, and the outgrowths from the oesophagus usually altering their cellular structure so as to become converted into nerve-tissue. This apparatus is probably a special arrangement for oxygenating the brain substance; but perhaps it has also a sensory function.

Eyes are present in the majority of Nemerteans, and, in the most highly organised species occur in considerable numbers.
Sometimes they are of extremely simple structure, consisting merely of spots of pigment; in other cases they are more highly developed, having a spherical refractive body with a cellular "vitreous body," and a "retina" consisting of a layer of rods enclosed in a sheath of dark pigment, each rod having a separate nerve-branch connected with it. **Otocysts** containing otoliths have been found in only a few of the Nemerteans.

Reproductive System.—Most species are dioecious. The **ovaries** (Fig. 214, oc.) and **testes** are situated in the intervals between the intestinal ceca. The ovary or testis is a sac the cells lining which give rise to ova or spermatozoa; when these are mature each sac opens by means of a narrow duct leading to the dorsal surface, where it opens by a pore.

Development.—Some of the Nemerteans go through a metamorphosis; in the others the development is direct. The characteristic larval form is the **Pilidium** (Fig. 221.) This is a helmet-shaped body with side lobes representing ear-lappets, and a bunch of cilia representing a spike. In the metamorphosis two pairs of ectodermal invaginations, growing inwards around the intestine, fuse together and form the integument and body-wall of the future worm, which subsequently frees itself from its investment and develops into the adult form. In others there is a ciliated creeping larva called the "larva of Desor," in the interior of which the larval worm is developed much as in the case of the Pilidium.

Though none of the Nemerteans exhibit metameric segmentation, yet in some of them there is, as in *Gundia segmentata* (p. 241) among the Turbellaria, a serial repetition of the internal parts (pseudo-metamerism). Transverse fission is of frequent occurrence.

Distinctive Characters and Classification.

The Nemertinea are ciliated, unsegmented, worms with elongated body, without distinct coelome. There is an eversible proboscis enclosed in a sheath and capable of being protruded to a great length through an aperture situated in front of and above the mouth. The intestine usually has distinct lateral diverticula, and there is a posteriorly situated anus. There is a blood-vascular system and also a system of excretory vessels.

Sub-Class I — Palaeonemertinea.

Nemertinea in which the head is devoid of deep lateral longitudinal grooves, and in which the proboscis is not armed with a stylet.
Sub-Class II.—Schizonemertea.

Nemertinea in which there is a deep lateral longitudinal groove on each side of the head and in which the proboscis is devoid of stylets.

Sub-Class III.—Hoplonemertea.

Nemertinea in which there are no deep lateral grooves on the head and in which (except in Malacobdella) the proboscis is armed with a stylet.

The Nemerteans are almost exclusively marine, only a small number of species living in fresh water or in damp localities on land. None appear to be true parasites; but a few are commensals, living for the most part in the pharynx or atrial cavity of Ascidians or Sea-Squirts. All are carnivorous, and either capture living prey in the shape of small-bodied invertebrates of various kinds, or feed on dead fragments.
SECTION VI

PHYLUM NEMATHELMINTHES

The members of the preceding phylum are characterised, as a whole by a marked dorso-ventral flattening. In the Worms included in the present group the body is elongated and cylindrical, whence their general name of Round- or Thread-worms. The phylum includes the following classes:

Class 1. Nematoda.—The Round-worms in the strict sense of the term. The best known forms are internal parasites, but many genera and species are extremely abundant in fresh- and salt-water.

Class 2. Acanthocephala.—The “Hook-headed Worms,” a group of formidable internal parasites.

Class 3. Chaetognatha.—The “Arrow-worms,” a small group of pelagic organisms.

The affinities of the Acanthocephala and Chaetognatha with the Nematoda are somewhat doubtful, and the association of the three classes is largely a matter of convenience.

CLASS I.—NEMATODA.

Ascaris lumbricoides is a common parasite in the human intestine: a closely allied if not identical form (A. suilla) occurs in the Pig, and another (A. megaloecephala) in the Horse. The following description will apply to any of these. The female worm is about 12–28 mm. (5–11 inches) long, and about 6–8 mm. (¼ inch) in diameter; the male is considerably smaller.

External Characters.—When fresh the animal is of a light yellowish-brown colour: it is marked with four longitudinal streaks, two of which, very narrow and pure white in the
living Worm, are respectively dorsal and ventral in position, and
are called the dorsal (Fig. 222, d.l.) and ventral (v. l.) lines; the other
two are lateral in position, thicker than the former, and brown in
colour, and are distinguished as the lateral lines. The mouth is
anterior and terminal in position, and is bounded by three lobes,
or lips, one median and dorsal (d. lp.), the other two ventro-lateral
(v. lp.). A very minute aperture on the ventral side, and about 2
mm. from the anterior end, is the excretory pore (ex. p.). At about
the same distance from the pointed and down-turned posterior end
is a transverse aperture with thickened lips, the anus (an.), which
in the male serves also as a reproductive aperture and gives exit
to a pair of needle-like chitinoid bodies, the penial setae (pn. s).
In the female the reproductive aperture or gonopore is separate
from the anus, and is situated on the ventral surface about one-

![Diagram](image_url)

Fig. 222.—Ascaris lumbricoides. A, anterior end from above; B, the same from below; C, posterior end of female, D, of male, side view. an, anus; d. lp, dorsal lip; d. l, dorsal line; ex. p, excretory pore; p. papilla; pn. s, penial setae; v. l, ventral line; v. lp, ventral lip. (After Leuckart.)

third of the length of the body from the anterior end (Fig. 225,
gnp.). The sexes are also distinguished externally by the form of
the short tail, or post-anal portion of the body, which in the male
is sharply curved downwards (Fig. 222, D), while in the female (C)
it its ventral contour is nearly straight.

Body-wall.—The outer surface of the body is furnished by a
delicate, transparent, elastic membrane, of a chitinoid nature, the
cuticle (Fig. 223, cu.). It is divisible into several layers, and is
wrinkled transversely, so as to give the animal a segmented ap-
pearance. Beneath the cuticle is a protoplasmic layer (der. epithel.)
containing scattered nuclei and longitudinal fibres, and represent-
ing a syncytial ectoderm—i.e. an ectoderm in which the cell-bodies
are not differentiated, and its cellular nature is recognisable only
by the nuclei. The cuticle is, as usual, a secretion of the ectoderm.

Beneath the ectoderm is a single layer of muscular fibres (m.),
arranged longitudinally, and bounding the body-cavity. The structure of the muscles is very peculiar: each (Fig. 224, A) has the form of a spindle, striated longitudinally, and produced on its inner face (i.e. towards the coelome) into a large and almost bladder-like mass of protoplasm (p) containing a nucleus (nu.). Apparently the whole of this structure is derived from a single cell, part of which has become differentiated into contractile substance (c), the rest remaining protoplasmic. In transverse section the contractile portion (B, c) has the form of a plate bent upon itself so as to be, as it were, wrapped round the protoplasmic portion (p). The protoplasmic processes project to a greater or less extent

![Diagram](image-url)

Fig. 223. *Ascaris lumbricoides*, transverse section, *cu*, cuticle; *d.l.*, dorsal line; *der. epithm.*, deric epithelium or epidermis; *ex.*, excretory vessel; *int.*, intestine; *lat. l.*, lateral line; *mus.*, muscular layer; *ory.*, ovary; *ut.*, uterus; *v. v.*, ventral line. (After Vogt and Yung.)

into the body-cavity, sometimes practically obliterating it, and are produced into delicate filaments (f.) which take a transverse direction and are mostly inserted into the dorsal and ventral lines.

The muscular layer is not continuous, but is divided into four longitudinal bands or quadrants, two dorso-lateral and two ventro-lateral, owing to the fact that at the dorsal, ventral, and lateral lines the ectoderm undergoes a great thickening and projects inwards, between the muscles, in the form of four longitudinal ridges (Fig. 223, *d.l.*, *v. v.*, *lat. l.*). It is this arrangement that gives rise to the lines seen externally. The ridges forming the lateral lines are much more prominent than the other two.
ZOOLOGY

Digestive Organs. — The mouth leads into the anterior division of the enteric canal, the \textit{pharynx} or \textit{stomodeum} (Fig. 225 \textit{ph.}): its walls are very muscular, its cavity is three-rayed in cross-section, and it is lined by a cuticle secreted from its epithelial layer and continuous, at the mouth, with that of the body-wall. Posteriorly the pharynx opens into the \textit{intestine} (\textit{int.}), a thin-walled tube, flattened from above downwards, and formed of a layer of epithelial cells bounded both internally and externally by a delicate cuticle: it has no muscular layer (Fig. 223, \textit{int.}). Posteriorly the intestine narrows considerably to form the short \textit{rectum}, which has a few muscular fibres in its walls and opens externally by the anus (\textit{an.}). The food, consisting of the semi-

![Fig. 224. Ascaris lumbricoides. A, a single muscle fibre; B, several fibres in transverse section with portion of ectoderm (below); c. contractile substance; f. fibrous processes; nu. nucleus; p. protoplasmic portion. (After Leuckart.)](image)

fluid contents of the intestine of the host, is sucked in by movements of the pharynx, and is then absorbed into the system through the walls of the intestine. The food being already digested by the host, there is no need of digestive gland-cells, such as occur in animals which prepare their own food for absorption.

It will be noticed that in the above description the pharynx is also called \textit{stomodeum}. This must not be taken to indicate that the two terms are synonymous, but that, in the present instance, the epithelial lining of the pharynx is derived from the ectoderm, being formed as an in-turned portion of the outer layer of the body-wall. The epithelium of the intestine, on the other hand, is
endodermal, this portion of the canal being derived from the archenteron of the embryo.

Between the enteric canal and the body-wall is a distinct space, the **caulome** or body-cavity, containing a clear fluid and more or less encroached upon by the protoplasmic processes of the muscle-cells. The cavity is bounded externally by these processes, internally by the outer cuticle of the intestine; there is no trace of epithelial lining such as occurs in most of the higher animals.

The **excretory system** presents a certain resemblance to that of Platodes. It consists of two longitudinal canals (ex. e.), one in each lateral line. Anteriorly they pass to the ventral surface, unite with one another, and open by the minute excretory pore (ex. p.) already noticed.

The **nervous system** consists of a ring (ne. n.) surrounding the pharynx and giving off six nerves forwards and six backwards (Fig. 226). Of the latter two are of considerable size and run in the dorsal and ventral lines respectively (dln. xln.). They are connected with one another by transverse commissures (c.), and the ventral nerve swells into a ganglion just in front of the anus. The pharyngeal nerve-ring contains nerve-cells, and its ventral portion (vn.) is thickened and ganglion-like. The only sense-organs are little elevations, the sensory papillae (Fig. 222, p.), on the lips.

The **reproductive organs** are formed on a peculiar and very characteristic pattern. The **testis** (Fig. 227, ts.) is a long coiled thread, about the thickness of fine sewing-cotton, and occupying a consider-
able portion of the body-cavity. At its posterior end it is continuous with the *vas deferens*, the two passing insensibly into one another so that the junction is not visible externally. The vas deferens, in its turn, becomes continuous with a wide canal, the *vesicula seminalis* (*vs. sem.*), which opens by a short, narrow muscular tube, the *ductus ejaculatorius*, into the rectum. Behind the rectum, and opening into its dorsal wall, are paired muscular sacs (*s*), containing the *penial seta* (*pm. s.*), already noticed. The anterior end of the testis consists of a solid mass of sex-cells; passing backwards there is found a cord or *rachis* occupying the axis of the tube and having the sperm-cells attached to it; still further back the sperms become gradually differentiated, and are finally set free in the vas deferens. The sperms are peculiar rounded cells (Fig. 20, p. 28, *c. d. c.*): when transferred into the body of the female they exhibit amœboid movements, but as long as they remain in the male ducts they are non-motile: they have no trace at any stage of the characteristic tail of the typical sperm. In this connection it may be mentioned that the tissues of Ascaris are remarkable for the total absence of cilia.

The organs of the female (Fig. 225) resemble those of the male, but are double instead of single. There are two coiled, thread-like ovaries (*ovy.*), each passing insensibly into a uterus (*ut.*). In the ovary, as in the testis, the eggs are developed in connection with an axial cord or rachis. The two uteri unite in a short muscular vagina (*vag.*), which opens, as already seen, on the ventral surface of the body (*gap.*) at about one-third of the entire length from the head.

Development.—The eggs are produced in immense numbers—at the rate, it has been reckoned, of about 15,000 a day. They are fertilised in the upper part of the uterus, each becoming enclosed in a chitinoid egg-shell, and are passed out of the body of the host with its faeces. Segmentation is complete, but the details of development are not known in this species, neither is
the precise manner in which the worm gains access to the human intestine. It is possible that the eggs containing developing embryos, or the embryos themselves, after liberation from the egg-shell, may be taken in by drinking, without previous filtering, water into which faecal matter has been discharged. On the other hand it is quite possible that there may be an intermediate host

such as we have met with in the Flukes and Tape-worms, and shall also find to occur in several members of the class now under discussion.

2. Distinctive Characters and Classification.

The Nematoda are Nematelminthes having a cylindrical body of great length in proportion to its diameter, and pointed at both ends. The body-wall consists of a tough external cuticle, an ectoderm in the form of a syncytium or protoplasmic layer containing nuclei and rarely exhibiting cell-structure, and a single layer of longitudinal muscular fibres which are interrupted along one or more (dorsal, ventral, and lateral) lines. The body-wall encloses a body-cavity containing a clear fluid and more or less encroached upon by processes of the muscle-cells or other mesodermal tissues. The enteric canal is straight, and consists of pharynx, intestine, and rectum; the pharynx is a stomodeaum. The mouth is anterior and terminal, the anus ventral and situated a short distance from the posterior end. Excretory canals, running in the lateral lines, are usually present. The nervous system consists of a pharyngeal ring containing nerve-cells and giving off nerves forwards and backwards; of the latter a single ventral nerve-cord, or two cords, respectively dorsal and ventral, are of considerable size and extend to the posterior end of the body. The Nematoda are in nearly all cases dioecious; eggs are pro-
duced in immense numbers, and are impregnated within the body of the female. The sperms are non-motile, or perform amoeboid movements only after entering the female organs. Cilia are wholly absent.

A large proportion of Nematoda are free-living, spending their whole life in fresh- or salt-water, damp earth, decaying matter, &c.; the remainder are parasitic during the whole or a part of life.

The class is divided into two orders.

Order 1.—Nematoidea.

Nematoda in which the cælome is not lined by epithelium, but is bounded directly by the body-muscles. There are two chief nerve-cords given off backwards from the pharyngeal ring and lying in the dorsal and ventral lines. There are two excretory canals lying in the lateral lines and opening anteriorly and ventrally. The gonads are continuous with their ducts and consist of long, more or less convoluted cords. This order includes the whole of the free-living Nematodes as well as the large majority of parasitic forms.

Order 2.—Gordioidea.

Nematoda in which the cælome is lined by a distinct epithelium. The pharyngeal nerve-ring sends off a single large ventral nerve-cord well supplied with nerve-cells. The gonads, or at least the ovaries, are arranged metamerically, and the reproductive products are discharged into the body-cavity and pass thence into the gonoducts. This order includes a small number of greatly elongated thread-like worms which are parasitic in the asexual, free-living in the sexual stage.

Systematic Position of the Example.

Ascaris lumbricoides is one of many species of the genus Ascaris, and belongs to the family Ascaridæ of the order Nematoidea.

The absence of an epithelial lining to the body-cavity, and the presence of elongated gonads continuous with their ducts, indicate its position as one of the Nematoidea. Among the numerous families constituting this order the Ascaridæ are distinguished by the possession of three lips furnished with papillæ, and by the body of the male being curved ventrally. Ascaris is distinguished from the other genera of the family by the absence of a bulb-like enlargement at the posterior end of the pharynx, by the posterior extremity of the body having the form of a short blunt cone, and by the presence of two penial setæ in the male.

External Characters.—The Nematoda vary much in size: the little *Anguillula*, one of the commonest of aquatic animals, does not exceed 1 mm. in length, while the dreaded parasite known as the Guinea-worm (*Dracunculus*) is sometimes as much as 2 metres (6 feet) long. The length is always great in proportion to the diameter, and the body is always bluntly pointed at the anterior end and either pointed or forked posteriorly. One of the most striking cases of disproportion between length and breadth is exhibited by the free, sexual form of *Gordius*, one of the Gordiacea; it is found in earth or water and resembles a tangle of brown string, the length being frequently as much as 15 or 16 cm., while the diameter does not exceed 0.5 mm.

Body-wall.—The body is always covered by a cuticle secreted by the dermic epithelium or external ectoderm; the latter usually takes the form of a protoplasmic layer with scattered nuclei, but in the Gordiacea it consists in part of a true epithelium—a single layer of distinct cells. Beneath the ectoderm is a muscular layer, which in many genera has the same structure as in Ascaris, *i.e.* consists of a single layer of longitudinal fibres, interrupted at the dorsal, ventral, and lateral lines, each fibre being spindle-shaped and produced into a protoplasmic process which projects into the body-cavity. But in many forms (*e.g.* *Strongylus*) the muscle-cells are flat rhomboidal plates (Fig. 228), and each quadrant contains only two rows, the total number in a transverse section being therefore eight. In the Gordiacea the muscles are interrupted along the ventral line only, the dorsal and lateral lines being absent. (Fig. 230.) Moreover the muscular layer in this order is lined by a layer of epithelial cells which bounds the body-cavity.

Enteric Canal.—The mouth is frequently armed with spines (Fig. 229, C), by means of which the worms draw blood from the intestinal blood-vessels of their host. Many free-living forms have a sharp stylet for piercing the tissues of the plants on which they feed, and a suctorial apparatus for absorbing their juices. The posterior end of the pharynx is often dilated to form a globular chamber with muscular walls, the *gizzard* (Fig. 231, gz.). The only
specially interesting variation in the structure of the intestine is that occurring in *Trichina*, one of the Nematodes parasitic in Man, in which this part of the enteric canal consists of a single row of perforated cells: the lumen is therefore not *inter-* but *intra-*cellular, like the gullet of an Infusor. In the sexual stage of *Gordius* the enteric canal undergoes more or less complete degeneration. There are never any digestive glands, but in *Dochmius* a pair of pear-shaped bodies of unknown function, the *cervical glands* (Fig. 229, *B, cc. gl.*), lie one on either side of the pharynx and probably open externally near the mouth.

In *Nematoidea* the *coelome* or *body-cavity* is always a single continuous chamber crossed in various directions by delicate fibres,

but in *Gordius* sheets of *coelomic epithelium* or *mesenteries* (Fig. 230, *mes.*) extend longitudinally through it, dividing it into several compartments. The most important of these are a median ventral
compartment containing the intestine and the nerve-cord, a pair of large lateral compartments containing the ovaries, and a pair of small dorso-median canals which act as oviducts. It is stated that the median ventral compartment acts as an **excretory canal** and opens posteriorly along with the oviducts: in the Gordiacea there are no lateral excretory canals like those of Ascaris and the other typical Nematodes.

In the Nematoida the **nervous system** has the structure already described in Ascaris: it is, however, apparently absent in some free-living forms. But in Gordius it is much more highly developed: the pharyngeal ring is of great thickness and is continued into a single ventral cord (Fig. 230, bm.), containing nerve-cells, which compares very well in size with the corresponding organ in the higher Worms. **Eye-spots** have also been described in the sexual form of Gordius.

The **reproductive organs** in all the Nematoida resemble those of Ascaris, the only important variation depending upon the fact that in the smaller forms the entire genital tube (gonad plus gonoduct) is short and not coiled (Fig. 231, ls. and v. df.). A few forms are hermaphrodite, but, instead of having a double set of reproductive organs, as in Platodes, organs of the ordinary female nematode type are present, and the gonads produce first sperms and afterwards ova. Such animals are said to be **protandrous** (male products ripe first), and self-impregnation is as effectually prevented as if the organs of the two sexes were distinct. A totally different arrangement is met with in the Gordiacea: the female having numerous pairs of ovaries (Fig. 232, A, ecy,) arranged segmentally and attached to one of the partitions (mes.) of the body-cavity. The ripe eggs are discharged into large egg-sacs, formed by the lateral compartments of the body-cavity, and finally make their way into the medio-dorsal compartments which act as uteri (C, int.) and are continued posteriorly by short vagines (vag.) into a median chamber. The latter opens externally, and also receives
the duct of a large spermatheca (sph.) or chamber for storing the sperms received in copulation. In the male Gordius the testes are not known: they seem to disappear very early, after discharging their contents into large reservoirs or vesicula seminales (B, vs.sem.): from these vasa deferentia are continued into a cloaca (cl.) or dilated extremity of the intestine, part of which can be everted as a bursa copulatrix (b.c.).

The development of Nematoda has been best worked out in Ascaris nigrovenosa. Segmentation is complete, but somewhat unequal (Fig. 233, A, B), and the ectoderm cells grow over the endoderm (C), forming an epibolic gastrula with a long slit-like blastopore (D–F). The mesoderm is developed from a single pair of endoderm cells (D., mes.), which enlarge, multiply, and form a distinct cell-layer between ecko- and endoderm (E–H). The epithelium of the pharynx is formed by an invagination of ectoderm, so that this division of the enteric canal is a true stomodaeum (I, stdm.). The nervous system is developed from certain cells (G–I, n.) which bud off from the ectoderm at the anterior end of the body. The reproductive organs originate from a single mesoderm cell on each side (H, I, g.).

Many of the Nematoda have a curious and complex life-history: a few examples will be selected for description.

Ascaris nigrovenosa lives, in the sexual condition, in the lungs of Frogs and Toads: it is remarkable among members of the class
in being hermaphrodite. The eggs are laid and the embryos pass from the lungs into the enteric canal of the host, are expelled with its faces, and develop in water into a sexual Nematode, called the *Rhabditis*-form, in which the sexes are separate: in this the fertilised eggs develop in the body of the female, and, when fully formed, make their way through the wall of the uterus and proceed to devour the whole of the maternal tissues, leaving nothing but the cuticle.

Being set free, they live in mud until they succeed in gaining access to a frog’s mouth, when they pass into the lung, develop hermaphrodite reproductive organs, and so re-commence the cycle. It will be seen that we have here a peculiar form of alternation of generations, distinguished not by the alternation of a sexual with an asexual form (metagenesis) as in Hydrozoa, but by the alternation of a hermaphrodite with a dioecious form. This type of alternation of generations is distinguished as heterogony.
One of the most terrible parasites of man is *Trichina spiralis* (Fig. 234), a minute worm, the male (C) a little over 1 mm. (\(\frac{1}{15}\) in.) in length, the female (B) about 3 mm. (\(\frac{1}{8}\) in.). In the adult or sexual condition it lives in the intestine of Man, the Pig, and other mammals. Internal impregnation takes place, the eggs develop in the uterus of the female, and the minute young (B, e.), to the
number of at least a thousand, are born alive. Soon after birth
the young worms migrate through the walls of the intestine, and,
following the course of the connective-tissues, reach the voluntary
muscles of the host, such as those of the limbs, back, tongue, etc.
Each Worm then penetrates the sarcolemma of a muscle-fibre and
coops itself up in the muscle-substance (A): a spindle-shaped cyst
(cy.) is formed round it, and the muscle undergoes more or less
degeneration. This process gives rise to various morbid symptoms
in the host, but, after some months the cysts become calcified and
the danger to the infected individual is over. The flesh of a "trichi-
nised" human subject has been estimated to contain 100,000,000
encysted worms, and that of an infected pig 85,000 to the ounce.
In order that further development of the encysted and sexless
Trichinae should take place, it is necessary for the infected flesh of
the host to be eaten by another animal in which the Worm is
capable of living, e.g. that of Man by a Pig or Rat, or that of a Pig
by Man. When this is done the cysts are dissolved by the
digestive juices, the worms escape, develop reproductive organs,
and copulate, the young migrating into the muscles and producing
the disease as before. The result of eating an ounce of "trichi-
nised" or "measly" pork, improperly cooked, might be the
liberation in the human intestine of perhaps 80,000 worms, and,
if half of these were females, each producing 1,000 embryos, some
40,000,000 worms would shortly begin to migrate into the muscles,
and produce the various symptoms of "trichiniasis."

It will be noted that in this case the parasite is able to exist in
various hosts, and that both sexual and asexual stages are passed
through in the same host, dispersal of the species taking place by
the flesh of an infected animal being eaten by another, either of
the same or a different species.

The female Guinea-worm (Dracunculus medinensis) attains a
length of 30–200 cm. (1–6 ft.), and lives in the subcutaneous
connective-tissue of Man. The eggs develop in the uterus, and
the new-born young pass out of the body of the host through
abscesses caused by the presence of the parasite. If, as must
often be the case, they escape into water, they make their way
into the body of a Water-flea (Cyclops), and in this condition
probably reach their human host once more in his unfiltered
drinking-water.

CLASS II.—ACANTHOCEPHAII.

This class contains a few genera of parasitic worms, of which Echinorhynchus
is the chief. The present section will be devoted to this genus, a not uncommon
parasite in the intestine of Mammals, Birds, Reptiles, Amphibians, and Fishes.
The largest species, E. giyra, is found in the Pig (Fig. 235, A), and has once
been recorded in the human subject: it may attain, in the female, a length of 50
cm., or more than half a yard. Most species are small, not exceeding 1 cm. in
length.

VOL. I
External Characters.—The body is cylindrical, and ends in front in a protrusible portion, the *proboscis* (A, p.; B, pr.), which is also cylindrical and is covered with many rows of recurved chitinoid hooks. The worm lies with the proboscis sunk in the wall of the intestine of its host, which is sometimes riddled with holes formed in this way. In some species there is a distinct neck (B. n.) between the proboscis and the trunk, and there may be a globular dilatation at the anterior end of the neck. At the hinder end of the body is a single aperture, the gonopore or reproductive aperture (*gonp.*): connected with this, in the male, is a protrusible, bell-like structure, the *bursa* (b.), which acts as a copulatory organ, like the somewhat similar organ in certain Nematoda. There is no trace of mouth, anus, or excretory pore.

The **body-wall** is covered with a stout cuticle, beneath which is a striated protoplasmic layer, probably representing the ectoderm. Then comes a layer of transverse, and then one of longitudinal muscles. The body-wall thus constituted encloses a spacious **body-cavity** containing a clear fluid.

In correspondence with the absence of mouth and anus there is no trace of enteric canal, the Acanthocephala resembling, in this respect, the Cestoda, the only other class of Metazoa which is entirely enterogenous. Food is thus, as in tapeworms, taken entirely by absorption by the general surface of the body.

The proximal end of the *proboscis* is contained in a muscular sheath sunk in the anterior end of the trunk, and is provided with four retractor muscles.
The muscles of the sheath are circular and act as protractors. At the sides of the base of the proboscis two club-shaped organs, the *lemnisci* (*lm*), hang down into the body-cavity. Their function is quite unknown, but they have been compared with the cervical glands of *Nematodes* (p. 284).

In the body-wall run two longitudinal vessels (*v*.) containing a granular fluid, and connected with a network of fine canals in the proboscis, bursa, &c. The function of these vessels is not known with certainty; they may have to do with the absorption and circulation of nourishment.

The *central nervous system* (Fig. 236, *nr.*) is represented by a single large ganglion placed at the base of the proboscis, and sending off nerves in various directions. In the male there are also two ganglia supplying the reproductive organs. Organs of sense are wholly absent.
A pair of remarkable **excretory organs** or **nephridia** have been found to occur in Echinorhynchus gigas. These consist of a pair of ramified protoplasmic masses situated in the body-cavity at the posterior end near the genital aperture. In the interior is a system of branching canals, the terminal branches of which, each contained in one of the terminal lobes of the tree-like nephridium, are provided with ciliary flames; at the end of each lobe are a number of fine perforations placing the contained canal in communication with the body-cavity. The stalk of each nephridium contains a single main canal; these unite to form a wide median dorsal channel which opens behind in the female into the unpaired portion of the oviduct and in the male into the ejaculatory duct.

The greater part of the body-cavity is occupied by the **reproductive organs**. The sexes are separate, and the female is larger than the male. In both sexes the gonads and their ducts are connected with a great **suspensory ligament** (s. lg.), which extends backwards from the end of the proboscis-sheath.

In the male there are two ovoidal **testes** (Fig. 236, ts.) connected with the suspensory ligament. From each a **vas deferens** (v. d.f.), furnished with several **vesicula seminalia** or sacs for the storage of the spermatic fluid, passes backwards and unites with its fellow to form an **ejaculatory duct**, with which are connected about half a dozen **cement glands** (c. gl.). The ejaculatory duct opens into the bursa or bell-like copulatory organ (b), and has at its opening a small papilla acting as a penis.

In the female the ovary is connected with the suspensory ligament (Figs. 237 and 238, s. y.). When ripe groups of **ova**—known as the "swimming ovaries" (s. o.r.)—become detached and swim freely in the body-cavity, where they are impregnated. The ducts are very peculiar. On each side of the body is a muscular **uterine bell** (b), widely open anteriorly (Fig. 238, x) into the ccelome, and having towards its posterior end a small aperture, also communicating with the ccelome (y). Each bell is connected with an oviduct, and the two oviducts open into a uterus (u.), which itself opens by the genital aperture at the posterior end of the body. The uterine bells perform rhythmical swallowing movements, and as the eggs—containing partly developed embryos—float in the ccelome they are swallowed by the bells. The immature eggs, which are globular, are passed back into the ccelome through the posterior aperture (y) of the bell; but the mature eggs, which are spindle-shaped and covered with a chitinous investment, make their way from the bell to the uterus, and so to the vagina.

The early stages of **development** take place in the ccelome. Segmentation is regular, and, according to recent researches, a peculiar form of gastrula is produced, having neither archenteron nor blastoocele—in other words the ectoderm and endoderm are in close contact with one another, and no central cavity is enclosed by the latter. The ectoderm cells secrete a cuticular membrane investing the embryo, then a second membrane is formed within the first, and a third within the second; the embryo thus comes to be enclosed in a triple case, which differs from an egg-shell in being formed by the developing ectoderm. At what will become the anterior end chitinoid hooks appear.

At about this period the embryo is born, and reaching the intestine of the host, is extruded with its faces. Its further development depends upon its
being swallowed by an intermediate host, which, in the case of E. gigas of the
Pig is a maggot, the larva of a Beetle, Cetonia aurata. The Echinorhynchi of
fresh-water Fish have for their intermediate host
certain small fresh-water Crustacea belonging to the
_genera Gammarus and Asellus.

Having reached the intestine of the inter-
mediate host, the chitinoid embryonic membranes
are dissolved by its digestive juices, and the
embryo either fixes itself to the wall of the
intestine or makes its way into the celome; in
either case it soon begins to undergo further de-
development. The endoderm, hitherto a solid
mass of cells, undergoes a process of splitting,
becoming divided into an outer layer in contact
with the ectoderm and a solid central axis. The
latter gives rise to the reproductive organs and
the suspensory ligament, the outer layer to a
celomic epithelium, from which the body-
muscles arise; the cavity formed by the splitting
of the endoderm is the celome. Part of the
proboscis and its sheath are also of endodermal
origin. The ectoderm gives rise to the protoplasmic
layer of the body-wall, to the whole
system of vessels, and to the hemisec. The
larval cuticle is thrown off and a new one
formed. The larva reaches adult proportions
and attains sexual maturity only if the inter-
mediate is eaten by the permanent host.

CLASS III.—CHÆTOGNATHA.

The present group, like that just discussed,
is a very small one, containing only two genera
(Sagitta and Spadellica) of curious arrow-shaped
worms, all but one species of which are pelagic.

External Characters.—The body (Fig. 239)
is elongated and nearly cylindrical, and is divided
into head, trunk, and tail, the head being marked
off by its somewhat rounded form, while
the junction of trunk and tail is indicated by the
ventrally placed anus (a). The tail bears a hori-
zontal expansion, or caudal fin (s, fl.), and there
are also horizontal lateral fins (fl.)—a single pair
in Spadella, two pairs in Sagitta.

Body-wall.—There is no cuticle, but the
outer layer of the body-wall is formed by an
epidermis or deric epithelium (Fig. 240, d, epdm.),
which, instead of being syncytial as in the two
preceding classes, is formed of several layers of
epithelial cells. Next comes a delicate basement
membrane, and then a layer of muscles (m.), the
fibres of which are striated and disposed longi-
tudinally in four bands—two dorso-lateral and
two ventro-lateral—an arrangement which recalls
that of the corresponding layer in Nematoda.

Beneath the muscle comes a delicate layer of celomic epithelium (cel, epdm).

Enteric Canal.—The mouth (Fig. 239, m.) is a longitudinal slit-like aperture
on the ventral surface of the head; on either side of it are several sickle-shaped
chitinoid hooks (Fig. 241, gh.) which are moved by muscles in a horizontal plane and serve as jaws. The anterior region of the head also bears spines, and is strengthened by chitinoid plates and partly covered by a hood-like fold of the integument.

The mouth leads by a muscular pharynx or stomodeum into a straight intestine (d), which extends through the trunk and opens by the anus (a) at the junction of trunk and tail. The wall of the intestine is made of two layers of cells—an inner of columnar cells, the enteric epithelium; and an outer of very delicate flattened cells, the celomic epithelium.

Coelome.—At the junction of the head with the trunk, and of the trunk with the tail, are transverse partitions or septa, dividing the celome into compartments. The trunk-region of that cavity is further sub-divided by two longitudinal partitions, the dorsal and ventral mesenteries, which connect the dorsal and ventral surfaces respectively of the intestine with the body-wall. The formation of the mesenteries is best seen in a transverse section (Fig. 240, A), which shows that at the middle dorsal line the layer of celomic epithelium lining the body-wall (parietal layer) becomes deflected downwards, forming a two-layered membrane, the dorsal mesentery; the two layers of this, on reaching the intestine, diverge and pass one on either side of it, forming the visceral layer of celomic epithelium; uniting again below the intestine, they are continued downwards as the ventral mesentery, and on reaching the body-wall diverge once more to join the parietal layer. The tail-region of the celome (B) is similarly divided into right and left chambers by a longitudinal vertical partition.

There is no trace of **vascular system** or of **excretory canals.** The **nervous system,** on the other hand, is much better developed than in either of the preceding classes, in accordance with a free life and active movements. On
the dorsal side of the pharynx is a comparatively large brain (Fig. 241, g), which sends off on each side a long nerve-cord, the oesophageal connective (sc). The two connectives sweep round the enteric canal and unite on the ventral surface, not far from the middle of the trunk, in an elongated ventral ganglion (Fig. 239, bg.), from which numerous nerves are given off. The brain sends nerves to the eyes (Fig. 241, an.) and to the olfactory organs (ro.), and is also connected with two pairs of ganglia in the head, which lie deeply sunk in the mesoderm; all the rest of the nervous system retains its primitive connection with the ectoderm.

Sensory Organs.—On the surface of the body are numerous little papillae carrying stiff bristle-like processes, and probably serving as organs of touch. There are two eyes (Fig. 242), situated one on each side of the dorsal surface of the head; each is globular and contains three biconvex lenses (l.), separated by pigment (p.) and surrounded by rod-like sensory cells (r.). The dorsal surface of the head also bears an annular ridge of peculiarly modified and in part ciliated cells (Fig. 241, ro.); to this an olfactory function has been assigned.

Reproduction.—The Chaetognatha are monoecious. The ovaries (Fig. 239, ov., Fig. 240, ocy.) are elongated organs situated one on each side of the trunk-region of the coelome, and opening by a narrow oviduct just in front of the posterior septum. The testes (Fig. 239, to., Fig. 240, ts.) are similarly situated in the tail-region of the coelome, and have the form of narrow ridges from which immature seminal cells are given off and develop into sperms in the coelome. The spermi-ducts or vasa deferentia are delicate tubes (sl.) opening at one end into the coelome by a ciliated funnel-like extremity, and at the other end dilating into a reservoir or vesicula seminalis (sh.), which opens externally in the posterior region of the tail.

Development.—Internal impregnation takes place, and the oosperm, segmenting completely and regularly, forms a typical gastrula by invagination (Fig. 243, A). Two endoderm cells (g.) at the anterior end of the archenteron, i.e. the end opposite to the blastopore, soon increase greatly in size, and are the rudiments of the gonads. This precocious differentiation of the sex-cells is a point of considerable importance, as will be seen hereafter. Before long these cells migrate into the archenteron and divide, forming a group of four cells (B, g.), two of which subsequently become the ovaries and two the testes. At the same time two folds

Fig. 242. Section of eye of *Sagitta hexaptera*. e.p. epiderm.; l. lens; p. pigment; v. visual cells; s.r. rods. (From Lang's *Comparative Anatomy*, after Hertwig.)

Fig. 243. Three stages in the development of *Sagitta*. ml. blastopore; ca. coelomic sacs; d. mesenteron; g. sexual cells; pm. parietal layer of mesoderm; st. stomodeum; cm. visceral layer of mesoderm. (From Lang's *Comparative Anatomy*.)

243, A). Two endoderm cells (g.) at the anterior end of the archenteron, i.e. the end opposite to the blastopore, soon increase greatly in size, and are the rudiments of the gonads. This precocious differentiation of the sex-cells is a point of considerable importance, as will be seen hereafter. Before long these cells migrate into the archenteron and divide, forming a group of four cells (B, g.), two of which subsequently become the ovaries and two the testes. At the same time two folds
of endoderm grow into the archenteron from its anterior end, partly dividing the cavity into three parts—a middle division or mesenteron (d), the rudiment of the intestine; and two lateral divisions, the metenteron, or celomic sacs (es). There is some doubt as to the fate of these lateral divisions. According to the account which is usually accepted they become the right and left compartments of the celome of the trunk. According to another account, however, their cavities completely disappear and the trunk portion of the celome arises from a fissure which appears subsequently between the ectoderm and the endoderm; the tail-region of the body-cavity is formed from the posterior, undivided portion of the archenteron. The blastopore (bl.) now closes and an invagination of ectoderm—the stomodaeum (st.)—takes place at the anterior end, and finally communicates with the mesenteron.

From this it will be seen that the ectoderm of the gastrula gives rise to the deric epithelium of the adult and to the epithelium of the pharynx, which is therefore a stomodeum; from the same layer the nervous system arises at a later stage. The epithelium of the intestine arises from the mesial (inwardly-turned) layers of the two endodermal ridges; their lateral (outwardly-turned) layers form the visceral layer of celomic epithelium. The muscular layer of the body wall and the parietal layer of celomic epithelium arise from the rest of the endoderm, i.e. that portion of it which remains in immediate contact with the ectoderm. Thus, in Sagitta the mesoderm is entirely derived from the endoderm of the gastrula.

APPENDIX TO NEMATHELMINTHES.

1. Family *Chetosomidae.*

This family includes three genera of small worms, *Chetosoma,* *Tristichocheata* and *Rhabdogaster,* which are sometimes included among the Nematoda.

The body is elongated, its anterior region sometimes dilated to form a head. Either the whole body, or the dorsal surface only, is beset with fine setae, and there may be a double row of movable chitinoid hooks round the head, reminding us of the "jaws" of Sagitta. The ventral surface bears curious *locomotor rods,* either hooked or with knobbed ends: by these the animals crawl. The mouth is anterior and terminal, the anus posterior and ventral; there is a muscular pharynx. The sexes are separate. The male has a single testis: the vas deferens opens along with the anus: there are two penial setae. The female has paired ovaries and a single vagina opening near the middle of the body on the ventral side.

2. Family *Echinoderidae.*

Echinoderes is a minute marine worm of cylindrical form with a flattened ventral surface. The body is segmented or divided into rings, eleven or twelve in number, all strongly cuticularised, and most of them bearing spines. The mouth is placed at the anterior, the anus at the posterior end of the body: the former opens into a sac, which can be everted so as to form a proboscis or introvert, and is armed with spines. The enteric canal consists of a muscular pharynx and a straight intestine. A pair of sacs opening by ciliated ducts on the tenth segment appear to be excretory organs. The sexes are separate: the gonads are paired sacs opening at the posterior end of the body.

3. Family *Desmoscoleidae.*

Desmoscolex is also a minute marine worm, having a globular head and a variable number of segments. The head bears four movable chitinoid rods or setae, and a pair of similar structures occurs on many of the other segments. The terminal mouth leads by a muscular pharynx into a straight intestine: the anus is dorsal in position. The animal is dioecious: the gonads have the form of simple sacs, the testis opening along with the anus, the ovary on the ventral surface anterior to the anus. The male has a pair of penial setae.
AFFINITIES AND MUTUAL RELATIONSHIPS OF THE NEMATHELMINTHES.

The affinities of all the classes of Nematelminthes are very obscure, and the propriety of grouping them into a single phylum is extremely doubtful. They all agree in being elongated, cylindrical worms with a cœlome; there is a certain resemblance between Nematoda and Chaetognatha in the muscular system; and the lemnisci of Acanthocephala have been compared with the cervical glands of Nematoda. Beyond these points there is little to unite the three classes, and, on the other hand, the proboscis of Acanthocephala recalls the rostellum of Cestoda.

The three families placed as an Appendix to the phylum present some undoubted resemblance to the Nematoda: this is especially the case in the reproductive organs of the Chaetosomidae, and still more in those of Desmoscolex. But the segmentation of the body in both Desmoscolecidæ and Echinoderidæ and the presence of setæ show a certain resemblance to higher worms or Annullata, which will be more fully appreciated when that phylum has been studied.
SECTION VII

PHYLUM TROCHELMINTHES

The typical larval form of a number of the groups which have yet to be studied is a form which is known as the Trochosphere or Trochophore. It is necessary that a clear idea should be formed at this stage of this important larva, reference to which will very frequently be made in the sections that follow. The general shape of a typical trochosphere is oval or pear-like (Fig. 244) with a broader and a narrower end and distinct bilateral symmetry. Encircling the body about the middle, or rather nearer the broad than the narrow end, is a double circle of strong cilia, the pre-oral cirelet (pr.or.cir.) or prototroch, situated on a corresponding ring-like thickening of the ectoderm; behind the mouth is often a second circle of cilia, the post-oral cirelet, and a ciliated groove or ciliated streak usually runs backwards from it along the middle of the ventral surface. The mouth, situated just behind the preoral circle, leads into an alimentary canal, which at first runs nearly transversely, and then bends round so as to run back towards the narrow end, near which it opens on the exterior in an anal aperture. About the middle of the broader (anterior) end of the trochosphere is a thickening, the apical plate (Br), projecting from which are usually a number of sensory cilia; and in many trochospheres eye-spots and a pair of short tentacles occur in close relation with the apical plate, which is the nerve-centre of the larva. A pair of ciliated tubes which may be present are the excretory organs or nephridia.
In the higher groups in which this form of larva occurs, the adult condition is attained by modifications and new developments of so radical a nature that the transition from larva to adult is of the nature of a metamorphosis. Sometimes the narrow part of the larva elongates and becomes divided into a series of sections fore-shadowing the metameres of the adult animal; in other cases, in which no metamerism occurs, radical changes of other kinds lead to the adult form. But in all these higher groups, whatever the nature of the changes involved, there is a metamorphosis, and the adult animal is totally unlike the larva. In a small number of forms now to be dealt with, however, there is no such radical change, and the adult may be looked upon as a somewhat modified trochosphere. The groups thus associated together may not be genetically related: they may have become independently developed from trochosphere-like ancestors, but the possession of the general characters which have been referred to above renders it convenient to group them together and regard them as constituting a small but well-marked phylum. The groups referred to are the Rotifera or Wheel-animalcules, together with the Dinophila and the Gastrotricha.

CLASS I.—ROTIFERA.

The Rotifers or "Wheel-animalcules" are microscopic creatures, very abundant in pools, gutters, &c., and formerly classed with the Infusoria, to which several of them bear a superficial resemblance. But in spite of their minute size they are multicellular animals, having an enteric canal, a coelome, nephridial tubes, gonads, a nervous system, and sense-organs, and have therefore no real relationship with the Protozoa.

1. Example of the Class—Brachionus rubens.

External Characters.—Brachionus (Fig. 245) is one of the commonest members of the class, being frequently found in abundance in ponds, ditches, &c. It is about \(\frac{3}{4} \) mm. (\(\frac{1}{6} \) in.) in length, and is divisible into two distinct parts—a broad anterior region, the trunk, and a slender movable tail (t.). The trunk is enclosed in a glassy cuirass or loric (lr.), formed by a thickening of the cuticle and produced into several spines; the tail is wrinkled superficially and ends in two slender processes, together forming a kind of forceps. One surface of the trunk is flattened, and owing to the position of the mouth is considered as ventral, the opposite or dorsal surface is convex both from before backwards, and from side to side.

The anterior portion of the body projects from the loric in the form of a transverse disc (tr.d.), with a prominent edge fringed with
cilia: this is the *trochal disc* and is one of the most characteristic organs of the class. By the action of the cilia the animal is propelled through the water, and, as in *Vorticella*, their successive flexion gives an appearance of rotation to the disc or "wheel-organ" whence the name of the class is derived. Within the circle of cilia arise three prominences (*c.l.*) covered with cilia of large size. The trochal disc is not perfectly symmetrical, but has at one part of its circumference a depression in which the mouth lies: this marks the ventral surface. The anus (*a.*) is dorsal in position, and is placed at the junction of the tail with the body-trunk.

The **body-wall** consists of an epidermal layer covered by a chitinoid cuticle: it is by a thickening of the latter in the region of the trunk that the lorica is produced. There is no continuous muscular layer, but several bands of unstriped muscle (*m.*) pass from the lorica to the trochal disc in front and to the tail behind, and act as retractors of those organs.
Digestive Organs.—The mouth (Fig. 248, mt.) lies, as already mentioned, in the ventral region of the trochal disc, anterior to the ciliary circle, but posterior to the three ciliated lobes; it leads by a short buccal cavity into a pharynx (ph.) of peculiar structure, known as the mastax, and constituting one of the most characteristic organs of the class. The mastax is a muscular chamber (Fig. 246) of rounded form, and contains, as a thickening of its cuticular lining, an elaborate apparatus for triturating the food. In the middle line is a forked structure, the incus, consisting of a small base or fulcrum (f.) and of two branches or rami (r.). On either side of the incus is a hammer-like structure, the malleus, consisting of a handle or manubrium (m.) and of a toothed head or uncus (u.). By means of the muscular walls of the chamber the heads of the mallei are worked backwards and forwards upon the forked incus, and thus reduce the organisms taken as food to a fine state of division.

The pharynx leads by a short gullet into a spacious stomach (st.), having a wall composed of very large epithelial cells, ciliated internally; with it are connected paired digestive glands. The stomach opens into a rounded intestine (int.), also ciliated internally, which communicates, by means of a short cloaca (cl.), with the exterior. The stomach and intestine are formed from the archenteron of the embryo and are therefore lined by endoderm; the rest of the enteric epithelium is ectodermal, the pharynx being derived from the stomodaæum, the cloaca from the proctodaæum. Between the body-wall and the enteric canal is a spacious cælome containing a fluid which serves the purpose of blood and contains minute granules.

The excretory system consists of paired nephridial tubes (Figs. 245 and 248, nph.) resembling those of the Platyhelminthes. Their general direction is longitudinal, but they are a good deal coiled and give off little tag-like processes ending in flame-cells. The lumen of the tubes is intra-cellular; it is uncertain whether or not the cavities of the flame-cells communicate with the cælome by apertures in their walls. Posteriorly the nephridial tubes open into a bladder or contractile vesicle (c. v.), the contents of which are discharged, by periodical contractions, into the cloaca.

Nervous System and Sense Organs.—There is a single ganglion or brain (br.), of proportionally large size, situated at the
anterior end of the body, above (dorsal to) the mouth and pharynx. On the dorsal surface of the brain, where it comes into contact with the body-wall, is a small red eye-spot (c.). The only other organs which can be considered as sensory are three structures known as tactile rods or feelers; one of these (d. f.) is a small cylindrical process tipped with stiff hair-like bodies, which projects from the dorsal surface just behind the trochal disc: the other two (l. f.) are paired, situated on the dorsal surface of the lorica and not prominent.

The tail contains a pair of cement glands (c. gl.) by the secretion of which the animal is able temporarily to attach itself.

Reproduction and Development.—The sexes are lodged in distinct individuals, which present a striking degree of sexual dimorphism. The preceding description applies to the female, which is the form most commonly met with. In addition to the organs already mentioned it has an ovary (ov), connected with a large vitellarium (vt) and opening by an oviduct into the cloaca.

The male (Fig. 247, A) is a very minute creature, not more than one-fourth the size of the female, and is strangely degenerate in structure. The enteric canal is absent, the trochal disc simple in structure, the nervous system and nephridial tubes greatly reduced, and the greater part of the body occupied by a large testis (ts.) which opens by a duct at the extremity of a protrusible, dorsally placed penis (p.).

After extrusion the eggs are attached to the base of the tail of the female (B, ov'), where they undergo development: they are of two sizes, the larger giving rise to females, the smaller to
males. Probably both kinds develop parthenogenetically, but in the autumn thick-shelled \textit{winter eggs} are produced which appear to require fertilisation. These remain quiescent during the winter, and in the spring develop into females.

Fig. 248.—Diagram of a \textit{Rotifer}. \(a\), anus; \(br\), brain; \(cl\), pre-oral; \(cl\), post-oral circle of cilia; \(c.g.l\), cement gland; \(ct\), cloaca; \(c.e\), cuticle; \(d.e\), deric epithelium; \(d.j\), dorsal feeler; \(e\), eye; \(f\), flame-cells; \(i.t\), intestine; \(m\), muscles; \(m.th\), mouth; \(n.p.h\), nephridial tube; \(o.c\), ovum; \(o.d\), oviduct; \(o.v\), ovary; \(p.h\), pharynx; \(s.t\), stomach; \(s.t\), vitellarium.

2.—Distinctive Characters and Classification.

The Rotifera are Trochelminthes of microscopic size. The anterior end is modified into a retractile trochal disc, with variously arranged cilia; the posterior end usually forms a mobile and often telescopically jointed tail. The mouth is anterior and more or less ventral in position, the pharynx contains a chitinous masticatory apparatus, and the anus is placed dorsally at the junction of the trunk with the tail. There is a spacious coelome. The excretory organs are a pair of nephridial tubes provided with flame-cells. The nervous system consists of a single dorsal ganglion. The sexes are separate, and the males are, in nearly all cases, smaller than the females and degenerate in structure.

The class is divided into five orders as follows:—

\textbf{Order 1.—Rhizota}

Rotifera which are fixed in the adult state by the truncated end of the non-retractile tail.
Including \textit{Floscularia, Stephanoecros, Melicerta}, etc.

\textbf{Order 2.—Bdelloïda.}

Rotifera which both swim freely by means of the cilia of the disc and creep after the manner of a Leech. The tail is telescopic and forked distally.
Including \textit{Rotifer, Philodina}, etc.
Order 3.—Ploïma.

Rotifera in which locomotion is performed by the ciliated disc only. The tail is usually forked and more or less retractile.

Sub-order a.—Illoricata

Ploïma in which the trunk is not covered by a lorica.
Including *Hydatina, Polyarthra, Asplanchna*, etc.

Sub-order b.—Loricata

Ploïma in which a lorica is present.
Including *Brachionus, Euchlanis*, etc.

Order 4.—Scirtopoda.

Rotifera provided with setose appendages moved by striped muscles: skipping movements are performed by the aid of these as well as swimming movements by the trochal disc. The tail is either absent or is represented by a pair of ciliated processes.
Including *Podalidion* and *Hexarthra*.

Order 5.—Trochosphaerida

Globular Rotifera having the trochal disc represented by an equatorial circle of cilia; tail absent.
Including *Trochosphaera* only.

Systematic Position of the Example.

Brachionus rubens is one of several species of the genus *Brachionus*; it belongs to the family *Brachionidae*, and to the sub-order *Loricata* of the order Ploïna.

It is placed in the order Ploïna in virtue of its active swimming habits and the absence of looping or skipping movements. The presence of a distinct lorica places it in the sub-order Loricata. The family Brachionidae is distinguished by having a box-like lorica open at both ends, and a long, flexible, retractile tail with wrinkled surface and forceps-like termination. In the genus Brachionus the lorica is not marked with ridges, and the tail is very long and perfectly retractile. In *B. rubens* the anterior edge of the lorica is produced dorsally into six spines and is sinuous ventrally.

External Characters.—The majority of the Rotifera are free-swimming, being propelled rapidly through the water by the action of the trochal disc. But in the *Bdelloïda* (Fig 249, 5), in addition to this mode of progression, the animal performs looping movements like those of a leech: the tail in this order is freely jointed,
Fig. 240.—Typical forms of *Rotifera*. 9 and 10 show the loria only. *a*, anus; *c1, c2*, ciliary circllets; *int.*, intestine; *m.*, muscle; *ph.*, pharynx. (After Hudson and Giese.)

Vol. 1
the various segments fitting into one another like the tubes of a telescope, and the body is fixed alternately by it and by the anterior end, the trochal disc being kept retracted while the animal moves in this way. Many of the Ploîma also have a telescopic tail, but in some, *e.g.* Asplanchna (Fig. 249, 6), this organ is absent. In *Pedalion* (Fig. 250, 1) curious skipping movements are performed by the aid of six hollow limbs or appendages, one dorsal, one ventral, and two on each side. These curious organs are terminated by feathered setae, and closely resemble the limbs of some of the lower Crustacea: each is moved by two opposing muscles which extend into its cavity (*I, B, m*). Three pairs of similar appendages are present in the other genus of Scintopoda, *Hexarthra* (Fig. 250, 2), the resemblance of which to the *Nauplius* larva of Crustacea is very striking (see Fig. 395), and four genera of unarmoured Ploîma, *e.g.* Polyarthra (Fig. 249, 8) possess simple or fringed setae moved by muscles attached to their bases.

In the Rhizota the adult is permanently fixed (Fig. 249, 1–4). The end of the tail is devoid of the characteristic fork, and is attached to plants or other supports. Moreover the animal is surrounded by a tube, into which it can retract itself completely, protruding the anterior end with the trochal disc when undisturbed. In most instances, as for example in *Floscularia* (1) and *Stephanoceros* (2), the tube is formed of a delicate, transparent, gelatinous secretion of the epidermis, but in *Melicerta* (3) it is built up of rounded pellets, which the animal moulds in a cup-like depression on the dorsal surface and places in position one by one. The pellets are usually formed of foreign particles, but in some species are made of the animal's own faeces.

The ciliation of the trochal disc is subject to considerable variation. In its simplest form the disc is surrounded by a single cirrlet of cilia, within which lies the mouth. A modification of this type may be produced by the prolongation of the ciliary crown into long arm-like processes fringed with cilia, as in *Stephanoceros* (2), or, as in *Floscularia* (1), into blunt elevations bearing long stiff cilia like those of the Heliozoa. The single cirrlet may be folded upon itself, or a second type may be produced by the addition of a second cirrlet within and parallel to the first. The mouth in this case is always placed between the two cirrlets on the ventral side (Fig. 248), so that the inner or anterior cirrlet is pre-oral and corresponds with the chief ciliary band of a Trochosphere larva, while the outer or posterior cirrlet corresponds with the post-oral band found in many worm larvae. In the curious globular *Trochosphaera* (Fig. 250, 3) there is a single equatorial cirrlet, which is pre-oral, and a few post-oral cilia; here the correspondence with the typical worm larva is singularly close. Lastly both the pre- and post-oral cirrlets may be produced into more or less complex lobes, as in *Melicerta* (Fig. 249, 4),
or may be interrupted as in Brachionus, in which the pre-oral cirlet is represented by three distinct lobes, or as in Pedalion, in which both cirlets are divided into right and left moieties. In one genus the trochal disc is absent.

Digestive Organs.—The typical form of mastax or pharyngeal mill is that described in Brachionus (Fig. 246). There is an unpaired *incus* consisting of a short stem or *fulcrum* (*f*), and of two broad branches or *rami* (*r*), and a pair of *mallei* each consisting...
of a stout handle or manubrium (m) and a broad, toothed head or uncus (u). In some forms all the parts of the apparatus become very slender, the incus assuming the form of forceps (Fig. 251, A). Or the mallei may be absent and the two rami movable upon one another so as to convert the incus into a pair of forceps (B)

![Diagram](image)

Fig. 251.—Typical forms of mastax. A, forcipate type; B, inculurate type; C, ramate type. f, fulcrum; m, manubrium; r, rami; u, uncus. (After Hudson and Gosse.)

used to seize prey, the mastax being in this case protrusible. Lastly, the fulcrum and manubrium may be absent, and the unci and rami very strong and massive (C).

The *stomach* is always large, and usually has a pair of digestive glands opening into it; it may pass insensibly into the intestine, or the latter may be a distinct chamber of more or less globular form. In the Rhizota the intestine turns forwards so as to allow of the anus being brought over the edge of the tube in defecation (Fig. 249, 4, a). In *Asplanchna* (b) the stomach ends blindly, the intestine, cloaca, and anus being absent.

The **excretory system** is very uniform in structure. It consists of a pair of more or less coiled nephridial tubes, placed longitudinally and giving off lateral branchlets which end in flame-cells. Frequently, but not always, the two tubes open posteriorly into a contractile vesicle or bladder which discharges into the cloaca.

Nervous System and Sense Organs.—The nervous system always consists of a single ganglion (Fig. 248, br) towards the dorsal aspect of the anterior part of the body, and representing the brain or supra-oesophageal ganglion of the higher Worms: it sends nerves to the muscles, trochal disc, and tactile organs. One or more **eye-spots** (e) are usually present, and are always mere spots of pigment in close relation with the brain. The only other organs of sense are the **tactile rods** (d, l, f), of which there is usually one on the dorsal surface near the anterior end of the body, and frequently two others, one on each side of the trunk. They are
more or less rod-like structures, tipped with delicate sensory hairs and receiving nerves from the brain.

Reproduction and Development.—In most cases the female reproductive organs have the same general character as in Brachi-omus, *i.e.* the gonad is unpaired (ov.), consists of germarium and vitellarium, and is provided with an oviduct. But in some of the Bdellóïda, such as Philodina, there are two ovaries, not divisible into germ-gland and yolk-gland, and the oviduct is absent. The males are smaller than the females and degenerate in structure, the enteric canal being atrophied (Fig. 247, A). There is a large testis (t) with a duct opening at the end of a protrusible penis (p). Apparently *hypodermic impregnation* sometimes takes place, *i.e.* the body-wall of the female may be perforated at any place for the entrance of the sperms.

Three kinds of eggs are produced: large and small *summer eggs*, which always develop parthenogenetically, the larger giving rise to females, the smaller to males; and thick-shelled *winter eggs*, which probably require impregnation and remain in an inert condition all through the winter, finally developing in the spring. Most Rotifers are oviparous, but some (Philodina, &c.) bring forth living young, which are born by breaking through the body-wall or through the cloaca, thus causing the death of the parent.

Segmentation is total and irregular, the oospem dividing into megameres and micromeres. An epibolic gastrula is formed, the blastopore closes, and invaginations of ectoderm give rise to the stomodaëum and proctodaëum. The tail is formed as a prolongation of the postero-ventral region of the embryo, and contains at first an extension of the endoderm. No metamorphosis is known to take place in any member of the class.

Ethology.—A few Rotifers live in the sea, but the majority are fresh-water forms, occurring in lakes, streams, ponds, and even in puddles the water of which is rendered foul and opaque by mud and sewage. Frequently the water in which they live is dried up, and the thick-shelled winter eggs may then be widely dispersed by wind. It is even stated that the adult animals may survive prolonged desiccation and resume active life when again placed in water. Many forms cling to the bodies of higher animals in order to obtain a share of their food, thus leading a kind of commensal existence. Others go a step further and become true external parasites, like Drilophaga on a fresh-water Oligochaete (*ride infra*), or Seison on the little crustacean Nebalia (Fig. 422). Others, again, are internal parasites, such as Albertia in the coelome of Earth-worms, and the intestines of fresh-water Oligochaetes (*Naia*) or Notommata wernersii in the cells of the fresh-water Alga Vaucheria.

Affinities.—The affinities of the Rotifera are very obscure. Their general resemblance to the free-swimming larvae of Annelids is extremely close, and, in particular, the curious Trochosphaera is,
to all intents and purposes, a sexually mature trochosphere with a mastax. The excretory organs recall those of the Platyhelminthes, and also resemble the provisional nephridia or head-kidneys of Annulate larvae. Lastly, the hollow muscular appendages of Pedalia and Hexahtra give those genera a certain resemblance, which is probably, however, merely adaptive, to the Nauplius or free-swimming larva of Crustacea.

Class II.—Dinophilea.

The various species of the genus Dinophilus are to be looked upon, like the Rotiferæ, as modified Trochospheres. Dinophilus (Fig. 252) is a minute worm-like animal with a head or prostomium, a body composed of five to eight segments separated from one another by constrictions, and a short ventral tail. The prostomium bears two eye-spots (a) and some sensory hairs; it is either covered uniformly with cilia or bears two or three annular ciliated bands, apparently representing the prototroch of the Trochosphere. The body is in some of the species uniformly ciliated; in others the cilia are disposed in rings (\(r/k \)) corresponding to the segments, except on the ventral surface, where the ciliation is always uniform. The mouth (\(m \)), which is situated on the ventral aspect of the prostomium, leads into an alimentary canal consisting of pharynx, cesophagus, stomach, and intestine, all of which are ciliated; the anus (\(a/n \)) is placed dorsally over the tail. A protrusible muscular proboscis lies when retracted in a recess opening close to the mouth. There is a celome which is crossed by strands of connective tissue. A nervous system is present, and consists of a large ganglion in the prostomium, giving off two anterior and two posterior nerves, or two lateral cords (sometimes segmented into a series of ganglia) all situated in the epidermis.

In one species (\(D. gigas \)) there is an excretory system which is comparable with that of the flat-worms, and contains flame-cells, the internal openings of which are provided with triangular ciliated appendages; in others there are five pairs of tubular nephridia (\(n \)). The sexes are separate. In the male there is a conical penis; the last pair of nephridia act as vesiculate seminales. In the ovary two sets of ova are developed, larger ones destined to give rise to females, and smaller destined to form males. They pass into the celome and reach the exterior by an aperture on the ventral surface in front of the anus. A process of unequal segmentation is followed by the formation of an epibolic gastrula.
The various species of Dinophilus are marine, with the exception of one which is an inhabitant of brackish water. In certain of its characters—the tendency to a segmentation of the body, and the disposition of nephridia in pairs corresponding to the imperfectly separated segments—Dinophilus approximates towards a phylum that has yet to be dealt with—the Annulata—and is sometimes looked upon as a member of the class Archi-Annelida of that phylum.

Fig. 253.—*Chaetonotus maximus*. Highly magnified. (After Zelinka.)

Fig. 254.—*Chaetonotus maximus*, organisation. *brn*, brain; *glb*, adhesive gland; *mes*, mesenteron; *mo*, mouth; *nes*, esophagus; *ov*, ovum; *ovar*, ovary; *ret*, retractor muscles; *vent. mus*, ventral muscle. (After Zelinka.)

Class III.—Gastrotricha.

The Gastrotricha (Figs. 253 and 254) are a small group of minute fresh-water animals, which are apparently allied, though certainly not very closely, to the Rotifera, and are on that account placed in the present phylum. The body is
spindle-shaped with flattened ventral surface. The ventral surface bears two longitudinal bands of cilia; the dorsal is non-ciliated, but bears a number of longitudinal rows of slender pointed cuticular processes. The aboral end is narrow and bifurcated. The mouth, situated at the anterior end, is provided with a circle of hooked setae; it leads into a muscular pharynx; the intestine is straight, and terminates in an anal aperture situated near the aboral end. The nephridia are a pair of unbranched coiled tubes. There is a cerebral ganglion at the anterior end, giving off a pair of ventral longitudinal nerves; a number of sensory cilia occur at the anterior extremity.
SECTION VIII

PHYLUM MOLLUSCOIDA

The Phylum Molluscoidea comprises the three classes of the Polyzoa (including, provisionally, the Endoprocta), the Brachiopoda, and the Phoronida. The members of these three classes are tolerably widely divergent, so that it is somewhat difficult to frame a general account of the entire phylum; but the following are the most important common features:

There is, except in the Endoprocta, a true body-cavity, lined in most cases with a coelomic epithelium, within which the alimentary canal is suspended by means of mesenteries or by means of funicular strands taking their place. The dorsal region of the body is abbreviated, being represented only by a short space between the mouth and anus, which are closely approximated. There is a lophophore or tentacle-bearing ridge, usually of a horse-shoe shape, containing a special compartment of the coelome, and overhanging the mouth on its anal side there is in most cases a sensitive process—the epistome—also containing a special compartment of the body-cavity. The central part of the nervous system consists of a single ganglion (supra-oesophageal), or of two ganglia (supra-oesophageal and infra-oesophageal), or of a nerve-ring. The nephridia when present are in nearly all cases a single pair of ciliated tubes, which act also as gonoducts.

CLASS I.—POLYZOA.

The Polyzoa form colonies known as "Sea-mats," or "Corallines," which in many cases bear a close general resemblance to Hydroid Zoophytes, and are only on a more minute inspection found to differ totally from the latter, and to exhibit a very much higher type of structure.
1. Example of the Class.—Bugula avicularia.

Bugula avicularia, the common Bird's-Head Coralline (Fig. 255), occurs in brown or purple bushy tufts, two or three inches long, on rocks, piles of jetties, and similar situations on the sea-shore in all parts of the world. On a naked-eye examination it presents a considerable resemblance to a Hydroid Zoophyte, and might readily be taken for a member of that group. It consists of dichotomously branching narrow stems, which are rooted by a number of slender root-filaments. Each stem is found, when examined with a lens, to be made up of a number of elements, the *zooecia* of the colony, which are closely united together and arranged in four longitudinal rows. The *zooecia* are approximately cylindrical in shape, but broader distally than proximally, four or five times as long as broad, with, near the distal end, a wide crescentic aperture—the "mouth" of the *zooecium*—on either side of which is a short blunt spine. A rounded structure—the *avicularium*—in many parts of the colony lies in front of each *zooecium*. (Fig. 255, *avc*) On each *zooecium*, except a few at the extremities of the branches, is a remarkable appendage, the *avicularium* (*avc*), having very much the appearance of a bird's head supported on a very short stalk; if the *Bugula* is examined under the microscope in the living condition, the avicularia will be found to be in almost constant movement, turning from side to side, and a movable part, representing the lower jaw of the bird's head, will often be seen to be moved in such a way that the mouth of the avicularium becomes opened very widely and then becomes closed up with a quick "snap." All the parts hitherto mentioned can be shown by using appropriate tests, to be composed of some material akin to chitin in composition. The chitinous wall of the *zooecia* is the hardened and thickened cuticle of the zooids, having beneath it the soft body wall. The anterior region of the body of the zooid forms an *introvert*, *i.e.* is capable of being involuted like the finger of a glove within the more posterior part: the cuticle covering this, continuous behind with the thick ectocyst, is quite thin and flexible. When the introvert is everted it is seen to bear at its anterior end a circle of usually fourteen long, slender filiform tentacles (*tent*) on a circular ridge or *lophophore* surrounding the mouth of the zooid. The tentacles are densely ciliated except along their outer surfaces: the cilia vibrate actively in such a way as to drive currents of water, and with them food-particles, towards the mouth (*mo*). They are also capable of being bent in various directions. In the interior of each is a narrow prolongation of the *coelome*. In all probability, besides bringing minute particles of food to the mouth of the zooid

1 The terms *ectocyst* and *endocyst* are commonly applied respectively to the hardened cuticle of the zooid and its soft body wall.
by the action of their cilia, the tentacles are prehensile as well as tactile, and also act as organs of respiration. When retracted they become enclosed by the walls of the introvert as by a sheath—

the tentacle-sheath. A pair of bands of muscular fibres—the parieto-vaginal muscles (ret.)—passing to the introvert from the body-wall, serve to retract the introvert and tentacles.
The **body-wall** consists, in addition to the cuticle, of an epidermis composed of a single layer of large flattened cells, two muscular layers, the outer circular and the inner longitudinal, and a layer of an irregular cellular tissue, or parenchyma.

The **coelome** is extensive; it is lined externally by the parietal layer of parenchyma forming the innermost layer of the body-wall, and internally by a visceral layer of the same tissue ensheathing the alimentary canal. Across the cavity between the parietal and visceral layers of the parenchyma pass numerous strands of spindle-shaped cells. A large double strand (**funicul**us) passes from the proximal or aboral end of the alimentary canal to the aboral wall of the zoecium; this is the **funiculus**. The coelomic fluid contains a number of colourless corpuscles or leucocytes.

Alimentary Canal.—The mouth (**mo**l) leads into a wide chamber—the **pharynx** (**ph**)—just behind the bases of the tentacles; from this a somewhat narrower short tube, separated by a constriction from the pharynx, leads to the **stomach** (**stom**), from which it is also separated by a constriction. The stomach gives off a long conical prolongation or **oesophagus** passing towards the aboral end of the zoecium, to which it is attached by the funiculus. The **intestine** (**int**) comes off from the oral aspect of the stomach, not far from the **oesophagus**, with which it lies nearly parallel; it terminates in a rounded anal aperture (**an**) capable of being distended to a considerable size, situated not far from the mouth, but outside the lophophore. The entire alimentary canal is lined by an epithelium, which is ciliated throughout except in a portion of the stomach: the cells of the epithelium, which are arranged in a single layer, vary in length in different regions, being longest in the pharynx, which is comparatively thick-walled. A pair of slender muscles (**gast**) passing from the body-wall to the stomach act as *retractors* of the alimentary canal when the introvert is drawn back.

There are no blood-vessels.

A **nervous system** has not been traced in *Bugula avicularia*; but in many other Polyzoa a small rounded ganglion is distinguishable between the mouth and the anus, giving off nerves to the various parts: organs of special sense are absent. Definite **excretory organs** do not occur in *Bugula*, the function of excretion (i.e. the collection of the nitrogenous waste-matters) being apparently carried on by the leucocytes and the cells of the funicular tissue.

Reproductive Organs.—Ovary and testis are found to occur together in the same zooid. They are both formed from specially modified cells of the parenchyma, either of the funiculus or of the body-wall. The testis, developed from the cells of the funicular tissue, gives origin to spherical masses of cells—the **spermatidia** (**sp**)—which develop into sperms with very long motile tails. These
become free from one another and move about in the body-cavity or in its prolongations into the tentacles. There is no spermiduct, and it is doubtful if the sperms pass to the exterior. The ovary (ov) is a small rounded body formed from the parietal layer of the parenchyma about the middle of the zooecium; it consists of only a small number of cells of which only one at a time becomes a mature ovum, certain smaller cells forming an enclosing follicle. The mature ovum is perhaps fertilised in the coelome; it passes into the interior of a rounded outgrowth of the zooecium—the ooeicum (ooe)—lined with parenchyma, and forming a sort of brood-pouch in which it undergoes its development.

Development.—Segmentation (Fig. 256) is complete and nearly regular. A blastula is formed having the shape of a bi-convex lens. In the interior of the blastocele or cavity of the blastula, four cells—the primitive endoderm cells—become distinguishable; these increase in number by division and form a mass of free cells which almost completely fill the blastocele; this mass apparently represents both endoderm and mesoderm. Small cavities which appear in it subsequently unite together to form the primitive
A very broad ring-shaped thickening—the corona (G, cor.)—is formed round the equator of the embryo and becomes provided with cilia. A sac-like, afterwards beaker-shaped, invagination of the ectoderm on what is destined to become the oral side of the ciliated ridge, forms a larval structure, termed the sucker, (Fig. 257 suck) which afterwards serves to fix the larva. A second invagination of the ectoderm in the region of the corona forms the ectodermal groove. At the aboral pole is developed, also from the ectoderm, a second larval structure—the calotte or retractile disc (disc) on which motionless sensory cilia appear. A glandular organ is developed by ingrowth of the cells lining the ectodermal groove.

An alimentary canal is wanting in the embryo when it escapes from the ooeicium, but develops at a later stage. The sucker becomes everted by a strong contraction of the body, and fixes the larva to some foreign body. The aboral side of the larva becomes greatly extended, so that almost the entire integument of the primary zooid is developed from this part. The retractile disc, ectodermal groove, and glandular organ are now withdrawn into the interior. The corona and glandular organ disappear; the retractile disc takes part in the development of the organs of the primary zooid. A sac, the wall of which is composed of two layers, now becomes formed, and gives rise to the organs of the adult zooid: the inner layer of this sac is formed by invagination from the retractile disc, while the outer layer appears to be formed from the central mass of tissue, the remainder of which partly goes to form the parenchyma of the adult, but partly contributes to the formation of a rounded granular mass—the brown body—in

Fig. 257.—A Larva of *Bugula plumosa*; B. Sagittal section of larva of *Bugula* (diagrammatic). cent, parenchyma; cor, corona; disc, retractile disc; pull, ectodermal groove; suck, sucker. (From Korschelt and Heider.)
which the organs of the larva become merged. The outer layer of
the sac is in continuity with the mesoderm layer of the body-wall
and gives rise to the mesodermal parts of the zooid. The inner
layer, derived from the ectoderm, forms the deric epithelium, the
nervous system, and the entire enteric epithelium. A diverticulum
of the sac constitutes the first rudiment of the stomach and
intestine: a second diverticulum forms the rudiment of the
oesophagus; these become applied to one another and fuse to
form the continuous alimentary canal. The ganglion arises as an
invagination of the ectoderm in the space between the mouth and
the anus. The upper part of the cavity of the primitive sac, after
the rudiment of the alimentary canal has become separated off,
forms a space termed the atrium: the walls of this become con-
verted into the tentacle sheath, while on its base appear the rud-
iments of the tentacles and lophophore. During the development
of the organs of the adult zooid the brown body becomes closely
applied to the stomach and gradually absorbed.

The primary zooid thus formed gives rise asexually by a process
of repeated budding to the branching structure which has been
described. In many of the zoecia of a fully-developed colony no
zooi is found to be present, but instead there is a dark brown
body similar to that which occurs in the primary zoecium. These
are zooids that have undergone degeneration—the lophophore,
tentacles, and alimentary canal having become absorbed. Such
degenerated zooids are capable of regeneration, the organs becoming
re-developed and the brown body re-absorbed.

2. DISTINCTIVE CHARACTERS AND CLASSIFICATION.

The Polyzoa are Molluscoida which, with one exception, form
colonies of zooids connected together by a common organic sub-
stance. There is a lophophore bearing a series of slender, ciliated,
post-oral tentacles. The anterior part of the body forms, in the
majority, a short introvert, within which the lophophore and the
tentacles are capable of being withdrawn. In some the pro-
 stomium is represented by a small lobe—the epistome. The
alimentary canal is U-shaped, and the anus is anterior, within, or
just outside of, the tentacular circle. In most the nervous system
is represented only by a small ganglion between the mouth and
the anus. A cuticle, sometimes gelatinous, sometimes horny,
sometimes calcified, forms a firm exoskeletal layer for the support
of the colony. Nephridia (corresponding to the head-nephridia of
the Trochosphere) occur only in the Endoprocta. There is no
vascular system. The sexes are usually united. The majority of
Polyzoa occur in the sea; a limited number are inhabitants of
fresh water.
Sub-Class I.—Ectoprocta.

Colonial Polyzoa with the anus outside the lophophore, with a well-developed introvert and a spacious coelome.

Order I.—Gymnolemata.

Almost exclusively marine Ectoprocta, with a circular lophophore, and without an epistome.

Sub-order a.—Cyclostomata.

Gymnolemata with tubular calcareous zooecia having circular apertures devoid of closing apparatus.
Including Crisia, Idmonca, &c.

Sub-order b.—Cheilostomata.

Gymnolemata with calcareous or chitinous zooecia usually provided with opercula.
Including Bugula, Flustra ("Sea-mat") Membranipora, Cellepora, Selcunaria.

Sub-order c.—Ctenostomata.

Gymnolemata with chitinous or gelatinous zooecia provided with a series of tooth-like processes closing the aperture when the tentacles are retracted.
Including Aleyonidium, Serialaria, Paludicella.

Order 2.—Phylactolemata.

Fresh-water Ectoprocta with horse-shoe-shaped lophophore and with an epistome.
Including Cristatella, Plumatella, Fredericella.

Sub-Class II.—Endoprocta.

Colonial or solitary Polyzoa multiplying by the formation of buds which in Loxosoma soon become separated off, while in Palicellina they remain connected together by a creeping stolon. The anus, as well as the mouth, is internal to the lophophore. The introvert is slightly or not at all developed. A pair of ciliated nephridial tubes are present.

Systematic position of the Example.

Bugula avicularia is an example of the sub-order Cheilostomata of the Gymnolemata. It is a member of the family Bicellariidae which is characterised by the erect plant-like colony, with narrow compressed branches, and attached by root-like fibres; by the
Phylum Molluscoidea

Avicularia, when present, being stalked and birds-head shaped; and by the wide oblique apertures of the zooecia all facing in the same direction. Bugula differs from the other genera of the family in the arrangement of the zooecia in double or multiple rows, in their close union, and in the avicularia, when present, being on the side on which the mouth is situated. The various species differ in the exact shape of the zooecia and of the avicularia.

Sub-Class I.—Ectoprocta.

The Ectoprocta and the Endoprocta differ so considerably from one another that it is advantageous to deal with them separately. The Ectoprocta are all colonial—the colonies being capable, in most cases, like the colonies of hydroid zoophytes, of increasing in size to an apparently indefinite extent by continuous budding. The thickened cuticle which forms the support of the colony is sometimes gelatinous, sometimes chitinous, sometimes chitinous with sand-grains affixed, sometimes calcareous. The form of the colony varies in different families and genera in accordance with differences in the shape of the constituent zooecia, and differences in their mode of budding and consequent arrangement. The zooecia are sometimes tubular, sometimes ovoid, sometimes polyhedral. In some cases the buds are so developed that the colony assumes the form of a thin flat expansion, which may be encrusting, and consist of a single layer of zooecia in close contact with one another or connected together by tubular processes; or may be erect, and with the zooecia either in one or two layers: sometimes the lamellar colony thus formed may be fenestrated or divided into lobes; sometimes it is twisted into a spiral. In other cases the colony, instead of being lamellar, has the form of an erect, shrub-like structure, consisting of numerous cylindrical, many-sided, or strap-shaped branches arising from a common root. Sometimes there is a creeping cylindrical stolon, simple or branched, having the zooids arranged along it in a single or double row. The colony is free only in Cristatella (Fig. 258, bis) in which it performs creeping movements, and in one family of the Cheilostomata—the Selencriidae—in which it moves along with the aid of certain peculiar appendages—the vibracula—to be described subsequently.

The zooecia open on the exterior by means of circular, or semicircular, or crescentic, apertures, which in the Phylactolakomata and the Cyclostomata among the Gymnokemata are devoid of any special closing apparatus, while in the Cheilostomata there is a movable lid or operculum closed by a pair of ocellisor muscles when the introvert is retracted, and in the Ctenostomata there is a series of lobes or teeth which close in together over the opening. The
cavities of the neighbouring zoecia are in some forms completely cut off from one another by a continuation of the chitinous or calcareous exoskeleton; in others there is free communication, in others again there is communication through a number of minute perforations.

The oral (anterior) part of the body of each zooid is, as already described in the case of Bugula, covered only with a thin and flexible cuticle, and forms an introvert capable of being retracted into the interior of the zoecium. At the free end of the introvert is the mouth surrounded by a lophophore bearing tentacles. The tentacles are always simple, filiform, and hollow, each containing a narrow diverticulum of the coelome. They are beset with vibratile cilia by means of which currents are created subserving alimentation and respiration. They are also highly sensitive; and are capable of being bent about in various directions by the contraction of muscular fibres in their walls, so that they are capable of being used for prehension. In the Phylactolæmata (Fig. 258) the lophophore is horse-shoe-shaped, in the Gymnolæmata (Fig. 255) circular: in the former, but not in the latter, there is a ciliated lobe—the epistome (Fig. 259 cp)—which may have a sensory function—overhanging the mouth on the anal side. The retraction of the introvert is effected by a pair of bands of muscular fibres, the parieto-vaginal muscles, passing to it from the body-wall, and by a pair of retractor muscles passing from the latter to the alimentary canal.
Structure of body-wall.—Beneath the cuticle is an epidermis, consisting of a single layer of flattened polygonal cells, firmly united together by their edges, so as to form a syncytium comparable to that of the ectoderm of the Porifera. Beneath this there is usually, but not always, a layer of muscle, which, when present, is arranged in two strata—an external composed of circular, and an internal of longitudinal fibres. There is an extensive coelome lined in some forms by a definite coelomic epithelium, in part ciliated, while in others there is no such definite epithelium, but its place is taken by thin parietal and visceral layers of an irregular cellular tissue—the parenchyma. The body-cavities of contiguous zooids are in some cases in free communication. Crossing the coelome are strands, in some instances very numerous, of spindle-shaped cells. In some cases two mesenteric bands suspend the alimentary canal—an anterior attached near the mouth and a posterior passing from the cecum to the aboral end of the zoecium; in most cases the latter, to which the special name of funiculus is given, is alone present.

The alimentary canal has in all species the parts that have
been already described in the case of Bugula. In some Ctenostomata there is in addition a thick-walled chamber—the gizzard—with chitinous teeth, between the oesophagus and stomach.

The nervous system consists of a single, sometimes bilobed, ganglion (Fig. 258, gong, and Fig. 259, ga) placed between the mouth and the anal aperture, and nerves passing from it to the various parts. There are never any organs of special sense, unless the epistome of the Phylactolaemata be of that nature.

Nephridia are not known with certainty to exist in any of the Ectoprocta. In some there is a pore through which water enters the body-cavity: or a ciliated intertentacular tube opening at the base of the tentacles. In Cristatella there is a pair of ciliated canals with funnel-like internal apertures and opening on the exterior by a common bladder-like excretory duct, and similar ciliated tubes occur in other Phylactolaemata.

Excretion appears to be performed by certain cells of the funicular tissue and of the parenchyma or coelomic epithelium. These become loaded with the products of excretion, and become free as leucocytes in the coelome, whence they probably pass out through the intertentacular tubes or ciliated canals.

In many Ectoprocta the colony bears a series of remarkable appendages—the avicularia—which are of the nature of modified zooids. In typical cases the avicularium has the bird's-head-like form that has been already described in the case of Bugula; sometimes it is completely sessile. A second set of movable appendages found in some forms are the vibracula: these are long tapering whip-like appendages which execute to-and-fro movements. The avicularia are frequently found to have seized in their jaws minute Worms or Crustaceans, and it is probable that their function, as well as that of the vibracula, is defensive: in the case of the Selenariidae, which form unattached colonies, the movements of the vibracula subserve locomotion.

The impregnated ova in many cases undergo the early stages of
their development in certain dilatations of the colony (Fig. 255, ooe.), and in many of the Gymnolæmata (Cheilostomata) these oovells or oœcia, as they are termed, take on a very definite shape.

Reproduction and Development.—As a general rule the Ectoprocta are hermaphrodite. Both ovary and testis are derived from the layer lining the coelome (parenchyma or celomic epithelium as the case may be), or from the funicular tissue. The testis may be single or double. In some cases there is a spermiduct continuous with each; in most this is absent, and the spermatidia, as in Bugula, or the mature sperms, become free in the coelome. The ovary is very generally situated towards the oral end or about the middle, the testis towards the base. The mature ova escape into the coelome, and in some forms become impregnated there apparently by the spermatozoa of the same individual. The development of the larva may take place in the coelome or a special diverticulum of it; in the Cheilostomata the fertilised ova pass into the oovicells; in some cases, both among the Phylactolæmata and the Gymnolæmata, they are received into a sheath formed by the tentacles of an imperfectly-developed zoolid formed in a zoecium in which the original zoolid had undergone degeneration.

In those cases in which the early stages of the development are passed through in the body-cavity of the parent, the ciliated embryos may either escape through the zoecial aperture after the zoolid has undergone degeneration, or through a special opening at the base of the tentacles. In some the fertilised ova pass out through the intertentacular tube. In Crisia and other Cyclostomata each of the ripe oœcia is found to contain a large number of embryos, developed from one ovum. The ovum in this genus segments to form a mass of cells from which finger-like processes are given off; the end of each of these becoming constricted off to form an embryo.

Segmentation is total and approximately equal. The form of the free-swimming larva varies considerably, but in most there is a circular band with very long cilia, the corona, which may represent the tentacular crown of the adult; this divides the surface into two regions—oral and aboral—the mouth as a rule opening on the former, and the anus on the latter. The aboral portion of the body presents a ciliated retractile disc or calotte; on the oral side is the sucker by which the larva afterwards becomes fixed. In the Cyclostomata the larva is barrel-shaped, with the mouth at one end, and at the other a prominence corresponding to the retractile disc. In the Phylactolæmata the larva is in the form of a ciliated hollow cyst from which the colony is formed by gemmation. A special form of asexual multiplication by means of bodies termed statoblasts (Fig. 258, statu) is observable in the Phylactolæmata.
The statoblasts are internal buds formed from the funiculus and enclosed in a chitinous shell; they are set free eventually by the death and decay of the parent colony, and in spring each gives rise to a small zoid which fixes itself and develops into a colony.

Ethology and Distribution.—None of the Ectoprocta are parasites in the strict sense of the term, but very many of them live in intimate association with other organisms, often growing over and through them so as to form with them one complex structure. Certain genera are able by some means to excavate minute burrows in the shells of bivalves.

The majority of Ectoprocta are marine; but all the Phylactophorika, together with Paludicella of the Ctenostomata, are inhabitants of fresh water. The fresh-water forms inhabit both running and stagnant waters: they occur at all elevations and are represented in all the great regions of the earth's surface. The marine forms are most abundant at moderate depths; but representatives of the group have been dredged from as great a depth as over 3,000 fathoms. In certain localities the larger kinds grow in great luxuriance, so as to form miniature forests.

Geologically the Ectoprocta are a very ancient group, being represented in the Cambrian and later Paleozoic formations by forms which appear to have belonged mainly, if not exclusively, to the Cyclostomata. In the later formations of the Mesozoic period the Cheilostomata are also abundantly represented, and in the Tertiary the latter sub-order greatly outnumbers the Cyclostomata. The Tertiary Polyzoa flourished in certain localities in such luxuriance that their remains form calcareous deposits of very great extent.

Sub-Class II.—Endoprocta.

While the sub-class of the Ectoprocta comprises a large number of genera, that of the Endoprocta includes only *Pedicellina* (Fig. 260), *Loxosoma*, and *Urnatella*, with one or two other less completely known forms. They are all marine except *Urnatella*—an American fresh-water genus. The feature indicated by the name of the sub-class—viz. the position of the anus within the circlet of the tentacles, is an important point of difference from the rest of the Class; but there are others of as great or greater importance.

In none of the Endoprocta is there a distinct introvert. The body is cup-shaped, with a rim which is capable of being inverted over a cavity—the vestibule—within which the tentacles can be withdrawn, and which contains both mouth and anus. An *epistome*
overhangs the mouth. The coelome is almost or quite obliterated, the space between the alimentary canal and the wall of the body being filled, more or less completely, with a gelatinous hyaline matrix. A pair of nephridia are present. In Loxosoma they lie one on each side of the oesophagus and open separately on the exterior; they are ciliated intra-cellular tubes, each of which probably begins in a flame cell. In Urnatella the two nephridial tubes unite to open into the cloaca—a diverticulum of the vestibule. The ganglion (gang), situated between mouth and anus as in the Ectoprocta, is bilobed in Loxosoma. Testes and ovaries occur in the same individual in some, but appear to mature at different times: they are provided with special ducts; in others the sexes are separate.

Pedicellina and Urnatella are colonial, Loxosoma solitary. In Pedicellina (Fig. 260) there is a creeping stolon with which a number of zooids are connected; a diaphragm separates the body of each zooid from the stalk. Urnatella has a disc of attachment with one to six, jointed, branching stems. In Loxosoma, which is found attached to various Annulata, two parts are distinguishable—the calyx or body and the stalk. In the base of the latter is the so-called foot-gland, consisting of a small number of granular cells arranged around a central space opening on the exterior. Buds are formed, but become detached before reaching maturity. Segmentation of the ovum is complete, and a gastrula is formed by invagination.

Fig. 260.—Pedicellina. Showing successive stages (numbered 1 to 6) in the development of zooids by budding. ma. anus; mo. mouth; tent. tentacles (retracted). (After Hatschek.)
The Endoprocta are only doubtfully to be included in the same class with the Ectoprocta. The position of the anus, the absence of the introvert, and the presence of typical nephridia would not in themselves be sufficient to justify their removal from the Polyzoa, and perhaps not even the obliteration of the coelome. But should certain statements, which have been published with regard to their development and metamorphosis, be confirmed, we should be driven to the conclusion that the Endoprocta are not directly related to the Ectoprocta at all. The gist of these statements is that the line joining mouth and anus in the Endoprocta is ventral and not dorsal, the ganglion infra-oesophageal, and the tentacular cirelet pra-oral; and if this should be established the structures named cannot be homologous in the two groups.

CLASS II.—PHORONIDA.

The position of Phoronis—a worm-like marine animal—is a matter of uncertainty; but it exhibits some unmistakable points of resemblance to the Polyzoa, more particularly to the Phylactoltemata, and it may very fairly be dealt with as a third class of the Molluscoidea.

Phoronis (Fig. 261) lives in associations consisting of a number of individuals, all of which are developed from ova, there being no process of asexual formation of buds. Each worm is enclosed in a membranaceous or leathery tube, within which it is capable of being completely retracted. The body is cylindrical, elongated, and unsegmented. At one end there is a crown of numerous slender ciliated tentacles borne on a horse-shoe-shaped lophophore, the lateral cornua of which are spirally coiled in the larger species; these are supported by a mesodermal skeleton and are non-retractile. Both mouth and anus (Fig. 262, mo, an) are situated at this tentacular extremity of the body, separated from one another by only a short space. A small lobe—the epistome (ep)—overhangs the mouth and lies between it and the anus. Near the anus open two ciliated nephridial tubes (neph) of mesodermal origin, which open internally into the posterior chamber of the body-cavity. The coelome is lined with a peritoneum from which there proceed three mesenteries (Fig. 263) —a ventral longitudinal and two transverse, the latter dividing
the cavity of the body into three chambers. The alimentary canal (Fig. 263) is divisible into oesophageal, gastric, and intestinal regions. There is a closed system of blood-vessels with contractile walls containing red blood-corpuscles. The nervous system is not completely separated from the epidermis. Its central part consists of a horseshoe-shaped postoral nerve-ring at the base of the tentacles, in front of which lie two ciliated grooves, apparently organs of sense. Collections of nerve-fibres and ganglion cells lie in the integument and are connected with nervous processes of the epidermal cells.

Phoronis is hermaphrodite. Ova and sperms are developed in the anterior left chamber of the coelome from cells on the wall of one of the large blood vessels. When mature these pass out through the nephridia to the spaces enclosed by the tentacles, where the ova are impregnated (or, according to another account, fertilisation takes place in the coelome) and go through the early stages of their development fixed to the tentacles. The segmentation is complete and slightly irregular: when four blastomeres are formed two larger, darker, endoderm, and two smaller, clearer, ectoderm cells are to be distinguished. A blastula is formed with clearer ectoderm cells on one side; invagination takes place; and, as the embryo elongates, the blastopore is drawn out into a slit which eventually becomes closed up behind, the anterior portion alone persisting and giving rise to the mouth. The cells bordering upon the posterior part of the blastopore take

Fig. 263.—Phoronis australis, free end, magnified.

- **an.** anus; **ep.** epistome; **mo.** mouth; **neph.,** nephridial aperture; **neph.,** nephridium. (After Benham.)
a share in the formation of the mesoderm. Two lateral pouch-like diverticula of the endoderm sac give rise to the mesoderm; in these a cavity appears—the rudiment of the coelome. A second pair of sacs of the same character becomes developed further back. A large pre-oral lobe is formed, and the anus makes its appearance at a little distance behind the mouth as an invagination of the ectoderm: it becomes surrounded by a circelet of cilia (Fig. 264, A). The part of the body on which the anus is situated becomes elevated into a conspicuous process. Behind the mouth there is a circelet of cilia and from this region grow out a circelet of processes—the rudiments of the larval tentacles (B). The larva has now reached the stage to which the term Actinotrocha is applied. It has a large hoodlike lobe overhanging the

Fig. 264.—Phoronis, Development. A, young larva; B, larva after the formation of the post-oral circelet of tentacles; C, larva with commencing pit-like involution; D, larva with invagination partly everted; E, invagination completely everted. m. mouth; an. anus; iv. involution to form the body. (From Balfour's Embryology.)
mouth, and a circle of ciliated larval tentacles; the anus is situated on a prominent process.

The ectoderm of the process on which the anus is situated subsequently becomes involuted to form a deep pit (C, iv). The metamorphosis from this point is completed with great rapidity. The pit at the side of the anal elevation becomes everted (D), and the alimentary canal of the larva is drawn into it (E), the projection thus formed, which grows out at right angles with the long axis of the larva, becoming the body of the future animal; the tentacles are drawn into the stomodæum and there become broken up to form the lophophore of the adult: the hood-like pra-oral lobe is taken into the stomodæum and there digested.

CLASS III.—BRACHIOPODA.

The Brachiopoda are the fabricators of the well-known "Lamp-shells," found in most parts of the world. They occur in the sea at various depths, and were formerly classed under Mollusca, their characteristic bivalved shell being compared with that of oysters, mussels, &c.

1. Example of the Class—*Magellania (Waldheimia) lenticularis* or *M. flavescens*.

Magellania lenticularis is found in great numbers, at moderate depths, off the coast of New Zealand. An allied species, *M. flavescens*, is equally common in the Australian seas, and several other species are known in various parts of the world.

The body is entirely covered by a shell (Fig. 265) of oval form, and pink colour, composed of two pieces or valves, one of which, distinguished as the *ventral valve* (v. v), projects beyond the other or *dorsal valve* (d. v), in the form of a short conical beak (b) perforated at the end by an aperture, the *foramen* (b), through which passes a dark brown stalk or *peduncle* (Fig. 266, B, pd) of horny consistency. In the natural state the peduncle is attached to a rock or other support, and the animal lies with the ventral valve uppermost and with the valves gaping slightly. The pointed or peduncular end of the shell is considered to be posterior in position, the opposite end or gape anterior.

It will be convenient to consider the shell first. Both valves are deeply concavo-convex, of a pinkish colour outside, white within. The ventral valve (Fig. 265), as already stated, is produced posteriorly into a beak (b), terminating in a foramen (f) for the peduncle. The distal margin of the foramen is left incomplete by the shell proper, but is closed by a small double plate, the *deltidium* (d). Immediately anterior to the beak is the curved *hinge-line* along which the valve articulates with its fellow, and just anterior to
the hinge-line the inner surface of the shell is produced into a pair of massive, irregular hinge-teeth (t). On the inner surface of the valve, towards its posterior end, are certain shallow depressions marking the attachment of muscles (ad, m, d, m).

The dorsal valve (D) has no beak, but its posterior edge forms a hinge-line which is produced in the middle into a strong cardinal process (c, p) with a curiously folded surface: when the two valves are in position this process fits between the hinge-teeth of the ventral valve, the hinge-teeth in their turn being received into depressions (s) placed on each side of the cardinal process. The inner surface of the dorsal valve is produced into a median ridge or septum (sp), continuous posteriorly with the cardinal process, and attached on either side of the base of the latter are the two ends of a delicate calcareous ribbon, the shelly loop (s, t), which projects
freely into the cavity enclosed between the two valves, and has the form of a simple loop bent upon itself. The inside of the dorsal valve also has muscular impressions.

Externally both valves present a series of concentric markings parallel with the edge or gape: these are lines of growth, the shell being built up by new layers being deposited within those previously formed, and projecting beyond them so as to form a series of outergaps.

Microscopically the shell consists of prismatic rods or spicules of carbonate of lime, placed obliquely to the surface, and separated from one another by a thin layer of membrane. It is also traversed, perpendicularly to the surface, by delicate tubules which begin on the inner surface in microscopic apertures, and extend to within a short distance of the outer surface.

The actual body of the animal (Fig. 266, B) lies at the posterior end of the shell, occupying not more than a third of the space enclosed between the two valves: it is consequently more or less wedge-shaped in form, and presents dorsal and ventral surfaces in contact with the two valves, and an anterior surface looking towards the gape. The dorsal is of greater extent than the ventral surface, so that the anterior surface is placed obliquely.

The dorsal and ventral regions are continued each into a flat reduplication of the body-wall, closely applied to the corresponding valve and containing a prolongation of the coelome. The two flaps thus formed are the dorsal (d, m) and ventral (v, m) mantle-lobes. They are fringed with minute setae (s) lodged in muscular sacs, like those of Chaetopods (vide infra), and give off from their outer surfaces hollow processes which extend into the tubules of the shell mentioned above.

The large wedge-shaped space or mantle-cavity, bounded by the mantle-lobes above and below, and behind by the anterior surface of the body, is occupied by a huge and complex lophophore (Figs. 246 and 247, lph), which springs from the anterior surface of the body, and, like that of the fresh-water Polyzoa and of Phoronis, has the general form of a horse-shoe. It is, however, peculiarly modified: the two limbs of the horse-shoe curve towards one another so as to adapt themselves to the mantle-cavity, and the middle of the concave edge, which is dorsal in position, is produced into a spirally coiled offshoot (lph') which lies between the two arms, and is coiled towards the dorsal side. The lophophore is hollow, containing a spacious cavity or sinus: its two main arms also receive prolongations of the coelome into which the digestive glands project: it is fringed throughout its whole extent with long ciliated tentacles which form the outer boundary of a ciliated food-groove, bounded on the inner side by a wavy ridge or lip (lpr, lpr'). By the action of the cilia microscopic particles are swept along the food-groove to the mouth.
Digestive Organs.—The mouth (mth) is a narrow crescentic aperture situated in the middle of the lophophore, towards its convex or ventral edge, and is bounded dorsally by the lip. It leads into a V-shaped enteric canal which consists of a gullet,
passing upwards from the mouth, an expanded stomach, \((st) \) and a straight intestine \((int.) \) which extends from the stomach downwards and backwards towards the ventral surface and ends blindly, there being no anus. On each side of the stomach and opening into it by a duct, is a large, branched digestive gland \((d.\ gl.) \). The whole canal is lined with ciliated epithelium.

The body-wall consists externally of an epidermis formed of a single layer of cells, then of a layer of connective tissue, of a cartilaginous consistency in many parts, and finally of a ciliated coelomic epithelium lining the body-cavity. On the outer surfaces of the mantle-lobes, where they are in contact with the shell, the epidermis is replaced by a thin membrane showing no cell structure.

The muscular system (Fig. 268) is well developed. Two large adductor muscles \((ad.\ m.) \) arise on each side from the dorsal valve and, passing downwards, unite with one another so as to have a single insertion on the ventral valve: their action is to approximate the valves and so to close the shell. A large and a small
pair of *divaricators* (*d. m, d. m') arise from the ventral valves, and are inserted into the cardinal process, which they depress: as this process is situated posteriorly to the hinge-line, its depression raises the rest of the dorsal valve, and so opens the shell. Two pairs of muscles arising, one from the ventral, the other from the dorsal valve, and inserted into the peduncle, are called *adjustors* (*aj. m*): the peduncle being fixed, they serve to alter or adjust the position of the animal as a whole by turning it in various directions.

The *cælome* is a spacious cavity more or less encroached upon by the muscles and other organs, and traversed by sheets and bands of membrane which connect the enteric canal with the body-wall, and thus act as mesenteries. The cælome is continued into each of the mantle-lobes in the form of four canals or *pallial sinuses* (Fig. 266, *pl. s*), the two outer of which are extensively branched.

Blood System.—Attached to the posterior region of the stomach is a small, almost globular sac (*h*), which has been proved to be contractile, and is to be considered as a *heart*. Vessels have been traced from it to various parts of the body, but the relations of the whole circulatory system and the course of the circulation are very imperfectly known.
The excretory organs consist of a pair of very large nephridia (nph) lying one on each side of the intestine. Each is funnel-shaped, having a wide inner opening or nephrostome, with plaited walls, opening into the coelome, and a narrow curved outer portion which opens into the mantle-cavity not far from the mouth. As in many cases which have already come under our notice the nephridia act also as gonoducts.

The nervous system is a ring (Fig. 269) round the gullet presenting supra- (g) and infra- (usg) oesophageal swellings or ganglia of which the infra-oesophageal is the larger. Nerves are given off to the mantle, lophophore, etc. No special sense-organs are known.

Reproductive Organs.—The sexes are separate. There are two pairs of gonads (Fig. 266, gen), one dorsal, one ventral, in the form of irregular organs sending off branches into the pallial sinuses.

2. Distinctive Characters and Classification.

The Brachiopoda are Molluscoidea in which the body is enclosed in a shell formed of two parts or valves which are respectively dorsal and ventral in position. The body occupies only a small portion of the space enclosed by the shell, and is usually attached to foreign objects by a posteriorly placed stalk or peduncle: it gives off dorsal and ventral reduplications, the mantle-lobes, which line the valves of the shell and enclose a large mantle-cavity. From the anterior surface of the body is given off a lophophore which surrounds the mouth, and is beset with ciliated tentacles. There is a ridge-like præ-oral lip which is continued on to the lophophore. The enteric canal is usually V-shaped, and is divisible into gullet, stomach, and intestine: there is a pair of digestive glands. The coelome is spacious, and is continued into the mantle-lobes. A heart is usually present, attached to the stomach. The excretory organs are one or two pairs of nephridia which act also as gonoducts. The nervous system is a ganglionated circum-oesophageal ring: sense-organs are usually absent in the adult. The sexes are separate or united. Development is accompanied by a metamorphosis.

The class is divided into two orders:—

Order 1.—Inarticulata.

Brachiopoda in which the shell is not composed of oblique prisms: the valves are not united by a hinge, and there is no shelly loop for the support of the lophophore. An anus is present.

Including Lingula, Crania, Discina, etc.
Order 2.—Articulata.

Brachiopoda in which the shell is formed of oblique prisms of calcium carbonate; the two valves unite by a definite hinge, and there is usually a shelly loop, for the support of the lophophore, developed in connection with the dorsal valve. The intestine ends blindly.

Including *Magellania*, *Terebratula*, *Rhynchonella*, *Cistella* (*Argiope*), etc.

Systematic position of the Example.

The genus *Magellania*, of which there are several species, belongs to the family *Terebratulidae*, and to the order *Articulata*.

The dissimilar valves of the shell articulated by teeth and sockets, and the absence of an anus, place it among the *Articulata*. The *Terebratulidae* are distinguished by an oval or rounded shell, the structure of which is punctate, the dots corresponding with blind tubes receiving processes of the mantle; the beak of the ventral valve is prominent, and has a foramen partly bounded by a deltidium of one or two pieces: there is a shelly loop springing from the hinge-line of the dorsal valve. The genus *Magellania* is characterised by having the shelly loop fully half as long as the shell itself, and by the presence of a median septum on the inner face of the dorsal valve.

The specific differences between *M. lenticularis* and *M. flavescens* are largely matters of detail, depending upon the precise form of the shell and loop. More obvious differences are the pink, evenly-rounded, short-beaked shell of *M. lenticularis*, that of *M. flavescens* being horn-coloured, almost pentagonal, and with a prominent beak.

The shell presents two distinct types; in the *Articulata*, the order to which *Magellania* belongs, the dorsal and ventral valves are dissimilar, the dorsal valve having a cardinal process and usually a shelly loop, the ventral a spout-like beak for the peduncle; while in the Inarticulata, of which *Lingula* is a good example (*Fig. 270, A*), the two valves are nearly alike, and there is no shelly loop, and no beak. These differences are accompanied by differences in microscopic structure; in the *Articulata* the shell is a dense stony structure formed of obliquely placed calcareous prisms, while in the Inarticulata it has no prismatic structure, but usually consists of a chitinoid material more or less strengthened by calcareous spicules. Among the Articulata the loop may be absent; when present, it varies greatly in form and size, being sometimes very small and simple (*Fig. 270, C, D*). sometimes bent upon itself, as
in Magellania, sometimes attached to the septum or to the interior of the dorsal valve (E), sometimes, as in the extinct Spirifera, represented by a complex double spiral (F), sometimes reduced to short paired rods springing from the septum (G).

The majority of both orders are attached by a longer or shorter peduncle which passes between the proximal ends of the valves in Lingula (Fig. 270, A), through a perforation in the ventral valve in Discina (C), and through a foramen in the spout-like posterior end of the ventral valve in the Articulata. Crania (B) has the ventral valve fixed directly to foreign objects, the peduncle being absent.

The lophophore is found in its simplest form in Cistella (Fig. 271, A) in which it is a horse-shoe-shaped disc, with very short arms, attached to the dorsal mantle-lobe, and surrounded with flexible tentacles which project between the valves. From this the lophophore of Magellania, which may be considered as typical for the Articulata, is easily derived by an increase in size, and by the prolongation of the middle region of the concave edge into a coiled offshoot. In the Inarticulata (C), and in Rhynchonella (B) among the Articulata each arm of the horse-shoe is coiled into a conical spiral, which in some cases can be protruded between the valves.

The most noteworthy point about the muscular system is the fact that the shell is both opened and closed by muscular action.
The dorsal valve may be taken to represent a lever of which the hinge-line is the fulcrum, the cardinal process the short arm, and the main portion of the valve the long arm. The muscles all arise from the ventral valve, the adductors being inserted into the inner face of the dorsal valve, which they depress; the divaricators into the cardinal process, their action depressing it and thus elevating the valve itself. In Lingula there is a very complex muscular system by means of which the valves can be rubbed upon one another, or moved laterally as well as opened and shut.

In the Articulata the enteric canal is V-shaped, as in Magellania, the intestine being straight or nearly so, and ending blindly.

In the Inarticulata, on the other hand, the intestine is usually coiled, and always ends in an anus (Fig. 271, C, a), which generally opens into the mantle-cavity, but in one genus (Crania) into a pouch or sinus at the posterior end of the body between the valves.

A heart is usually present, but the function of blood is performed mainly by the coelomic fluid, which is propelled by the cilia lining that cavity and circulates both in the celome itself and in the pallial sinuses, each sinus presenting—in Lingula at least—both an outgoing and an ingoing current.

A single pair of nephridia, resembling those of Magellania,
occurs in all known genera except Rhynchonella, in which there are two pairs, one dorsal and one ventral. Besides discharging an excretory function they act as gonoducts.

The **nervous system** always takes the form of a circum-oesophageal ring with ganglionic enlargements, the largest of which is ventral or sub-oesophageal in position. Otoeysts have been described in Lingula, rudimentary eyes in Megerlia, and patches of sensory epithelium in Cistella: with these exceptions sensory organs are unknown.

There are usually four **gonads**, two dorsal and two ventral, sending prolongations into the pallial sinuses. Some genera are dioecious, others hermaphrodite, the epithelium of the gonads producing, in the latter case, both ova and sperms.

The **development** of the Brachiopoda is best known in Cistella, in which the first stages of development are passed through in a pair of cavities, the *brood-pouches*, situated at the base of the lophophore. Segmentation is regular and complete, and results in the formation of a blastula which is converted into a gastrula by invagination (Fig. 272, A). Paired sacs, the *celomic pouches* (*pv*), grow out from the archenteron, and the blastopore closes. The celomic sacs separate from the mesenteron (*B, mc*) or middle portion of the archenteron, and extend between it and the ectoderm, forming the right and left divisions of the celome: their outer walls thus become the somatic, their inner walls the splanchnic layer of mesoderm. The mesenteron remains closed and surrounded by the celomic sacs during the whole of larval life.

The embryo now elongates and becomes divided by an annular groove into two divisions, an anterior and a posterior: a second groove soon appears in the anterior division, the embryo then consisting of three regions (*B*), which, from a superficial point of view, might be looked upon as metameres. But as the segmentation affects only the body-wall and not the internal parts, the process is not one of metamerism, and the three apparent segments are called respectively the **head region** (Fig. 273, *hs*), the **body-region** (*ms*) and the **peduncular region** (*ps)*.

Next the head-region grows out into an umbrella-like disc surrounded with cilia and bearing four eye-spots (*A*), and on the body-region a backwardly-directed annular fold (*m*) appears, bear-
ing four groups of provisional setae. Soon this mantle-fold divides into dorsal and ventral lobes, which, being directed backwards, cover the peduncular region.

In this condition the larva swims freely like a trochosphere. After a time it comes to rest and fixes itself by its peduncular segment (B). The two lobes of the mantle-fold (m) become reflexed so as to point forwards instead of backwards, thus leaving the peduncular region exposed and covering the head-region: by this process the outer surface of the larval mantle becomes internal, and vice versa. A stomodaeum is formed on the head-region, and, communicating with the mesenteron, establishes the enteric canal. The umbrella-like head-region decreases in size, and perhaps forms the lip, which is at first confined to the region immediately dorsal to the mouth. The lophophore appears at first on the inner surface of the dorsal mantle-lobe, but gradually extends and surrounds the mouth. In its early stages it is circular, but afterwards assumes the horseshoe form by sending out paired extensions. In genera, like Magellania, with a complex lophophore, this organ has at first a simple horseshoe form (Fig. 274, lph.). A shell is secreted by the mantle-lobes, and the peduncular region becomes the peduncle of the adult.

Distribution.—The Brachiopoda are all marine. They are widely distributed geographically, and live at various depths—from between tidemarks to 2,900 fathoms. At the present day the class includes only about twenty genera and 100 species, but in past times the case was very different. Brachiopods appear first in the lower Cambrian rocks, where the existing genera, Lingula and Discina, are found. No more striking examples can be adduced of persistent types—organisms which have existed almost unchanged for the vast period during which the whole of the fossiliferous rocks have been in process of formation. Altogether 106 genera are known from the palæozoic rocks, thirty-four
from the mesozoic, and twenty-one in the cainozoic and recent periods. Obviously the group is tending, though slowly, towards extinction.

Recent researches on fossil and recent forms have shown the Brachiopoda to illustrate, in a remarkable manner, the Recapitulation theory already referred to: the theory, that is, that ontogeny or individual development is a more or less modified recapitulation of phylogeny or ancestral development. It has been shown that there is a striking and almost complete parallelism between the stages in the development of the shelly loop in such highly organised forms as Magellania, and the entire series of articulated Brachiopods, from those with the simplest to those with the most complex loop.

Mutual Relationships of the Classes of the Molluscoidea.

In adult structure Phoronis exhibits marked resemblances to the Ectoprocta, more especially to the Phylactolaemata—resemblances which will be rendered clear by a comparison of the diagrams A and B of Fig. 275. In both the ventral side of the body is greatly produced and elongated, and, by the approximation of the mouth and anus, the dorsal surface is reduced to a very short space between those two apertures. The form of the lophophore, the presence of an epistome having similar relationships in the two groups, and the fact that the coelome is similarly developed in the two groups, point in the same direction. Some points which are supposed to indicate relationships with the Annelida and with the Chordata are referred to at a later stage.

The resemblances between the Brachiopoda and the other two classes of the phylum are somewhat disguised by the development of the shell, but are very obvious, more particularly when we take into account certain of the features of the development. One of the most striking points of resemblance between the three classes is the presence of the lophophore with its tentacles; in the earlier stages of its development in the Brachiopod, as we have seen, this structure (Fig. 274) has the horseshoe shape which it preserves in the adult Phoronida and Phylactolaemata, and a lobe—the armfold or lip (/p)—comparable to the epistome, is present, overhanging
the mouth. The end of the body of the Brachiopod with which the peduncle is connected must correspond to the aboral extremity in the Polyzoa, since this represents the part by which the larval Polyzoan becomes fixed, the everted "sucker" of the latter being evidently homologous with the foot-segment of the larval Brachiopod. The end of the body of the Brachiopod from which the peduncle proceeds is thus the ventral portion. From the position

of the epistome and lophophore, it follows that the dorsal valve of the Brachiopod, being on the same side of the mouth as the epistome, lies on the side of the body corresponding with the anal side of the Polyzoan, though the intestine is bent round in the opposite direction and directed towards the ventral valve. The supra-oesophageal ganglion of the Brachiopod represents the single ganglion of the Polyzoa, though it is subordinate in importance to
the infra-oesophageal ganglion not represented in the latter group. Other important points of resemblance between the Brachiopoda and the Phoronida are in the character of the nephridia, and the presence in both of larval forms which may very well be looked upon as modified Trochospheres.

The setæ of Brachiopods, sunk in muscular sacs, are marks of annulate affinities, since such organs are found elsewhere only among Chaetopoda and Gephyrea (Sect. X.). The form of the larva tells in the same direction, the eye-bearing head region or prostomium and the provisional setæ being very striking characters. But the segmentation of the Brachiopod is quite different from that of the annulate larva, in which new segments are always added behind those previously formed, and in which metamerism always affects the mesoderm.
SECTION IX

PHYLUM ECHINODERMATA

The phylum *Echinodermata* comprises the Starfishes (*Asteroidea*), Sea-urchins (*Echinoidea*), Brittle-stars (*Ophiuroidea*), Feather-stars (*Crinoidea*), and Sea-cucumbers (*Holothuroidea*). All exhibit a radial arrangement of parts, which is recognisable as well in the globular Sea-urchins and elongated Sea-cucumbers, as in the star-shaped Starfishes, Brittle-stars and Feather-stars. Another universal feature is the presence of a calcareous exoskeleton, sometimes in the form of definitely shaped plates, which may fit together by their edges so as to form a continuous shell; sometimes merely in the form of scattered particles or spicules. In very many the surface is beset with tubercles or spines, from which feature the name of the phylum is derived. The various systems of organs attain a comparatively high degree of complexity. The Echinoderms are rarely capable of rapid locomotion, and are sometimes permanently fixed by means of a stalk: they never give rise to colonies by budding. Without a single exception, all the members of this phylum are inhabitants of the sea.

1. Example of the Asteroidea.

A Starfish (*Asterias rubens* or *Anthenea flavescens*).

General External Features of Asterias rubens.—The body of the Starfish is enclosed in a tough, hard integument, containing numerous plates, or *ossicles* as they are termed, of calcareous material. This exoskeleton is not completely rigid in the fresh condition, but presents a certain limited degree of flexibility. The body (Fig. 276) is star-shaped, consisting of a central part, the *central disc*, and five symmetrically arranged processes, the *arms* or *rays*, which, broad at the base, taper slightly towards their outer extremities. There are two surfaces—one, the *dorsal,*
or obactinal, directed upwards in the natural position of the living animal; the other, the ventral, or actinal, directed downwards. The dorsal surface is convex, the ventral flat; the colour of the former is much darker than that of the latter.

In the centre of the ventral surface (Fig. 276) is a five-rayed aperture, the actinostome, and running out from this in a radiating manner are five narrow grooves, the ambulacral grooves, each running along the middle of the ventral surface of one of the arms to its extremity. Bordering each of the ambulacral grooves there are either two or three rows of movable calcareous spines, the ambulacral spines. At the central ends of the grooves the ambulacral spines of contiguous sides of adjacent grooves form five groups, the mouth papilla, one at each angle of the mouth. External to the ambulacral spines are three rows of stout spines, which are not movable; and a third series runs along the border separating the ventral from the dorsal surface.

On the convex dorsal surface there are a number of short stout spines arranged in irregular rows parallel with the long axes of the rays. These are supported on irregularly-shaped ossicles buried in the integument. In the soft interspaces between the ossicles are a number of minute pores, the dermal pores, scarcely visible without the aid of a lens. Through each of these pores projects a very small, soft, filiform process, one of the dermal branchiae or papulae (Fig. 280, Resp. co), which is capable of being entirely retracted.

Very nearly, though not quite, in the centre of the dorsal surface is an aperture, the anus (Fig. 285), wide enough to admit of the passage of a moderately stout pin. On the same surface, midway between the bases of two of the rays, is a flat, nearly circular plate, the surface of which is marked by a number of radiating narrow, straight, or slightly wavy grooves: this is the madreporite. The presence of this structure interferes to some
extent with the radial symmetry of the Starfish, two of the antennæ (p. 40), viz. those between which the madreporite is placed, being different from the rest. There thus arises a bilateral symmetry, there being one vertical plane, and only one—that passing through the middle of the madreporite and through the middle of the opposite arm—along which it is possible to divide the starfish into two equal—right and left—portions. The two rays between which the madreporite lies are termed the bivium, the three remaining the trivium.

Attached to the spines of the ventral surface, in the intervals between them, and in the intervals between the spines of the dorsal surface, are a number of very small, almost microscopic bodies, which are termed the pedicellariae (Fig. 285 and Fig. 280, Ped). Each of these is supported on a longer or shorter flexible stalk, and consists of three calcareous pieces—a basilar piece at the extremity of the stalk, and two jaws, which are movably articulated with the basilar piece, and are capable of being moved by certain sets of muscular fibres, so as to open and close on one another like the jaws of a bird. In some of the pedicellariae the jaws, when closed, meet throughout their entire length, while in the case of others, mostly arranged in circles round the spines on the dorsal surface, one jaw crosses the other at the end like the mandibles of a Cross-bill.

In a well-preserved specimen there will be seen in each of the ambulacral grooves two double rows of soft tubular bodies ending in sucker-like extremities; these are the tube-feet (Fig. 276). In a living specimen they will be seen to act as the locomotive organs of the animal. They are capable of being greatly extended, and when the Starfish is moving along, it will be observed to do so by the tube-feet being extended outwards and forwards (i.e. in the direction in which the animal is moving), their extremities becoming fixed by the suckers, and then the whole tube-foot contracting so as to draw the body forwards; the hold of the sucker then becomes relaxed, the tube-foot is stretched forwards again, and so on. The action of all the tube-feet, extending and contracting in this way, results in the steady progress of the Starfish over the surface. With the aid of the tube-feet the Starfish is also able to right itself if it is turned over on its back.

At the extremity of each of the ambulacral grooves is to be distinguished a small bright red speck, the eye (Fig. 280, A, øe), with over it a median process, the tentacle (t), similar to the tube-feet, but smaller and without the terminal sucker. The tentacles have been ascertained by experiment to be olfactory organs, the Starfish being guided to its food much more by this means than by the sense of sight.

1 The slightly eccentric position of the anal aperture introduces a correspondingly slight inequality between the right and left portions.
Transverse Section of an Arm.—If one of the arms be cut across transversely (Fig. 277 and Fig. 280, B) and the cut surface examined, the dorsal part of the thick, hard wall of the arm will present the appearance of an arch (with its convexity upwards), and the ventral part the form of an inverted V, the ends of the limbs of which are connected with the ventral ends of the dorsal arch by a very short, flat, horizontal portion. Enclosed by these parts is a space, a part of the coelome or body-cavity, and below, between the two limbs of the V, is the ambulacral groove. The dorsal arch is supported by a number of irregular ossicles. It is perforated by the numerous small dermal pores, through which the dermal branchiae project. The V-shaped ventral part of the body-wall—i.e. the walls of the ambulacral groove—is supported by two rows of elongate ossicles, the ambulacral ossicles (Fig. 280, Amb. os), which meet together at the apex or summit of the groove like the rafters supporting the roof of a house, but with a movable articulation allowing of separation or approximation of the two rows so as to open or close the groove. At the end of the ray the ambulacral ossicles end in a median terminal ossicle. At the edges of the groove a row of ossicles supports the ambulacral spines and prominent tubercles. Between the ambulacral ossicles of each row are a series of oval openings, the ambulacral pores, one between each contiguous pair of ossicles, and so arranged that they form two rows on each side, one row higher than the other, the pores of the higher row alternating with those of the lower. In the ventral groove lie the contracted tube-feet (t. f.): each tube-foot is found to correspond to one of the ambulacral pores, so that the former, like the latter, are arranged in a double alternating row on each side of the groove. When the tube-foot is drawn upon, it is seen to be continuous with one of a series of little bladder-like bodies, which lie on the other side of the ambulacral ossicles, i.e. in the cavity of the arm. These—the ampullae
(amp. Figs. 277 and 280: ap, Fig. 278)—are arranged like the tube-feet, in a double row on each side, a higher row and a lower, there being one opposite each ambulacral pore. When one of them is squeezed the corresponding tube-foot is distended and protruded, the cavities of the tube-foot and ampulla being in communication by means of a narrow canal running through the ambulacral pore; and it is in this way that the foot is protruded in the living animal: the corresponding ampulla being contracted by the contraction of the muscular fibres in their walls, the contained fluid is injected into the tube-foot and causes its protrusion.

Vascular and Nervous System.—Running along the ambulacral groove, immediately below where the ambulacral ossicles of opposite sides articulate, is a fine tube, the radial ambulacral vessel (Fig. 277, rad. amb, Fig. 278, r), which appears in the transverse section as a small rounded aperture. From this short side-branches (r', Fig. 278) pass out on either side to open into the bases of the tube-feet. Below the radial ambulacral vessel is a median thickening of the integument covering the ambulacral groove; this marks the position of the radial nerve (Fig. 277, rad. ne.) of the epidermal nervous system, and is traceable as a narrow thickened band running throughout the length of the groove, and terminating in the eye at its extremity, while internally it becomes continuous with one of the angles of a pentagonal thickening of a similar character, the nerve-pentagon, which surrounds the mouth. In thin sections (Fig. 279) the ventral median thickening, or radial nerve (rad. nerve), as well as the nerve-pentagon, are seen to be thickenings of the epidermis, consisting of numerous vertically-placed, fibre-like cells, with their nuclei at their outer (lower) ends, intermixed with longitudinal nerve-fibres and with nerve-cells. Above this, on each side of the epidermal nerve-thickening constituting the radial nerve, is a band of cells (d. nerve) also of a nervous character. These more deeply placed nerve-bands are the radial parts of the deep nervous system: like the epidermal the
deep nervous system has a central part in the form of a pentagon, which in this case is double, surrounding the mouth. A third set of nerve elements (the celomic nervous system) extend along the roof of the arm superficial to the muscles.

The two radial nerve-bands of the deep nervous system are thickenings of the lining membrane of a space overlying the radial nerve and underlying the radial ambulacral system. This space (rad. bl. v.), extending, like the other parts that have been mentioned, throughout the length of the arm, forms part of a system of channels which are usually regarded as constituting a blood-vascular system. This radial blood-vessel, as it is termed, is divided longitudinally by a vertical septum (sept.) into two lateral halves. Internally it communicates with an oral ring-vessel surrounding the mouth and likewise divided into two by a septum. The inner division of this ring-vessel communicates with the celome; the outer is connected with the axial sinus referred to below.

Structure of the Disc.

—When the dorsal wall of the central disc is dissected away, the remainder of the organs come into view (see Fig. 283). The rows of ambulacral ossicles appear on this view as ridges, the ambulacral ridges, one running along the middle of the ventral surface of each arm to its extremity, and extending inwards to the corresponding angle of the mouth. At the sides of each of these ridges appear the rows of ampullae. Within the pentagonal actinostome is a space, the peristome, covered with a soft integument, and in the centre of this is a circular opening, the true mouth, the size of which is capable of being greatly increased or diminished.

Body-wall and Cælome.—The entire outer surface is covered with a layer of ciliated epithelium, the epidermis or derib epithelium (Fig. 280, Der. Epithelium), which is continued over the various appendages and processes—the tubercles and spines, the pedicellariae, the dermal branchiae, and the tube-feet. Beneath it is a network of nerve-fibrils with occasional nerve-cells. The mesoderm (Derm) of the wall of the body beneath this consists of two layers, between which are a number of spaces; the ossicles (os.) are all, except the ambulacral ossicles and the inter-radial par-
titions, developed in the outer of these two layers. Each ossicle consists of a close network of calcareous rods. Between contiguous ossicles extend bands of muscular fibres.

The interior of the celome (cel.) or body-cavity is lined by a ciliated epithelium, the celomic epithelium (Cel. Epithm.), which not only covers the inner surface of the body-wall as the parietal layer, but forms an investment also for the contained organs—the various parts of the alimentary canal and its appendages, the genital glands, the madreporic canal, ampullae, Polian vesicles, etc.

In addition to this visceral layer of the peritoneum, the wall of the alimentary canal and its ceca consists of a muscular layer and an internal lining, the enteric epithelium or endoderm (Ent. Epithm.). The celome is filled with a fluid, the celomic fluid, consisting mainly of sea-water, but containing a number of amœboid corpuscles (amoebocytes) containing a brown pigment. The dermal branchiae consist of a muscular layer, an external epidermal layer, and an internal peritoneal layer, the internal cavities of the hollow branchiae being in free communication with the celome.
Digestive System.—The mouth is found to open through a short passage, the esophagus, into a wide sac, the cardiac division of the stomach (Fig. 280, St, Figs. 282, 284, card. st). This is a five-lobed sac, each of the lobes of which is opposite one of the five arms. The walls of the sac are greatly folded, and the whole is capable of being everted through the opening of the mouth, wrapped over some object desired as food, and then retracted into the interior, the retraction being effected by means of special retractor muscles (Fig. 283, retr) which arise from the sides of the ambulacral ridges. This cardiac division of the stomach communicates dorsally with a much smaller chamber, the pyloric division of the stomach, and this in turn opens into a very short conical intestine, which leads directly upwards to open at the anal aperture. The pyloric division of the stomach is pentagonal, each angle being drawn out to form a pair of large appendages, the pyloric cæca (Figs. 280, 281, 283, and 284, pyl. cæ). Each pair of pyloric cæca commences as a cylindrical canal or duct, the lumen of which is continuous with the cavity of the arm, and giving off laterally two series of short branches, each having connected with it a number of small bladder-like pouches. The walls of the pyloric cæca are glandular: they secrete a digestive fluid, and are therefore to be looked upon as digestive glands. It is found by experimenting with this digestive fluid that it has an action on food-matters similar to that exerted by the secretion of the pancreas in the Vertebrata, converting starch into sugar, proteids into peptones, and bringing about the emulsification of fats. While the pouches of the cardiac division of the stomach are attached to the ventral wall of the body, the pyloric cæca are connected with the dorsal wall. From the short intestine are given off inter-radially two hollow appendages, the intestinal cæca.
(Fig. 281, \textit{int. cæv}), each with several short branches of irregular shape.

Ambulacral System.—Running downwards from the madreporite to near the border of the mouth is an S-shaped cylinder, the \textit{madreporic or stone-canal} (Figs. 278, \textit{m}, 284, \textit{mad. cæn}), enclosed in a membranous sac.\footnote{The so-called "pericardium."}

The walls of this canal are supported by a series of calcareous rings, projecting from which inwards is a ridge which bifurcates to form two spirally rolled lamellæ occupying a considerable part of the lumen of the canal. In some Starfishes, such as 	extit{Astropecten} (Fig. 282) the internal structure is more complicated owing to the branching of the lamellæ. The interior of the madreporic canal communicates above with the exterior through the grooves of the madreporite. At the bottom of each of the grooves is a row of pores leading into a sac, the ampulla, which in turn leads to the madreporic canal. Below, the latter opens into a wide, five-sided, ring-like canal, the \textit{ring-cæsæl of the ambulacral system}. From this are given off the five radial ambulacral vessels, passing to the extremities of the arms. From the pentagonal canal are given off also a series of five pairs of appendages, the \textit{Polian vesicles} (Fig. 278, \textit{ap}; Fig. 283, \textit{pol. cæs})—pear-shaped, thin-walled bladders with long narrow necks—which are placed inter-radially. On the sides of the neck of each Polian vesicle (except in the inter-radius containing the madreporic canal, where there is one on one side only) project inwards a pair of little rounded glandular bodies, the \textit{ræmose vesicles}, or \textit{Tiedemann's vesicles}, the interior of each of which is divided into a number of chambers.

The various parts of the ambulacral system of vessels have a muscular wall and an internal lining epithelium, in addition to the coverings which they may derive, according to their situation, either from the external epidermis or the internal celomic epithelium. The muscular layer is most strongly developed on the tube-feet, where it consists of two strata, and is also well developed on the ampullæ and Polian vesicles.

Accompanying the madreporic canal there is an organ—the \textit{ovoid gland}—the relationships and function of which have given rise to a considerable amount of difference of opinion. It is a fusiform body, the interior of which is divided up into a number of freely-communicating spaces. In the interior of these spaces
lie numerous large cells, some of which are pigmented, and the walls of the spaces are lined with an epithelium of flattened cells. At its dorsal extremity the organ terminates in a narrow prolongation with a single central canal, which ends in a ring-like canal surrounding the anus; this gives off five radial branches which pass to the reproductive organs. Surrounding the body of

Fig. 283. _Anthenea flavescens._ Dorsal view of a dissection of the internal organs. The dorsal wall of the body, with the exception of a small portion round the anus and the madreporite, has been completely removed. One of the five intestinal caeca has been removed with the exception of its proximal part. All the ovaries have been removed except one pair, and four of the pairs of pyloric caeca have been cut away close to their bases. 1—5, the five rays with their ambulacral ridges; amp, ampulla; an, anus; int. cec, intestinal caeca; t. p. cut ends of the inter-radial partitions; mad, madreporite with the madreporic canal; ov, ovaries; pyl. cec, pyloric caeca; pol. ves, pigment vesicles; pyl. cor, pyloric canal; retr. retractor muscles inserted into the cardiac division of the stomach.

the gland is a blood-sinus—the axial sinus—connected orally with the oral ring blood-vessel; and connected with this at its aboral end is a ring-like vessel enclosing the ring-like canal in continuity with the ovoid gland, and giving off prolongations to the reproductive organs. The cavity of the ovoid gland communicates by a minute aperture with the madreporic canal, and thus, indirectly, with the exterior.
Functionally the ovoid gland, with its dependencies, appears to be an organ for the production of the amoeboid corpuscles which abound in the coelome and the ambulacral system. This function it shares with the Polian vesicles and Tiedemann's vesicles. Morphologically it is a genital stolon; the narrow prolongations which pass to the genital organs being so many genital rachides, the expanded extremities of which form the ovaries or testes.

Reproductive System.—The Starfish is unisexual, each individual possessing either ovaries (Figs. 283 and 284, ov) or testes, which appear very similar until they are examined microscopically. They consist of masses of rounded follicles, like bunches of minute grapes—a pair in each inter-radial interval.

Ova and sperms are alike developed from cells of the same character as those which become the amoebocytes of the coelomic and other cavities of the body. The ducts, by means of which the ova or sperms reach the exterior, open on the dorsal surface through a number of perforations on a pair of sieve-like plates, situated inter-radially close to the bases of the arms.

Anthenea flavescens (Figs. 283–286), a common Australian starfish, which may be taken as an example instead of Asterias rubens, differs from the latter in the following main points.

The animal consists of a relatively large central disc and five relatively short arms, which taper rapidly towards their extremities. On the ventral surface the comparatively broad flat surfaces between the ambulacral grooves are roughish, owing to the plate-like
ossicles being beset with a number of minute rounded tubercles, which, in the immediate neighbourhood of the ambulacral grooves, assume the character of short blunt spines. Here and there among the tubercles, usually one in the middle of each ossicle, are pedicellariae, which differ widely from those of Asterias. Each pedicellaria in Anthenea is a small, narrow-oblong, calcareous body, consisting of two parallel narrow valves or jaws: these, instead of being supported on a flexible stalk, are articulated with the edges of a slit-like depression on the surface of the flat ossicle, and are thus on a level with the general surface. The term val-vulare is applied to pedicellariae of this description. In a living Anthenea many of the pedicellariae will be found to have their values widely open; when they are touched the valves close together, gradually opening again after a little time. The ambulacral spines bounding the ambulacral groove are flattened and blunt, and arranged in fan-like fasciculi. Round the border separating the dorsal and ventral surfaces the plates are arranged in two somewhat irregular rows.

The dorsal surface is strongly convex, but not uniformly so, there being a more or less distinct depression in the form of a shallow open groove, the inter-radial depression,

Fig. 285.—Anthenea, view of dorsal surface. (After Sladen.)

Fig. 286.—Anthenea, view of ventral surface. (After Sladen.)
opposite each of the intervals between the arms. The surface is dotted over with numerous small rounded tubercles, arranged in somewhat irregular radiating lines. These dorsal tubercles, though fewer than those on the ventral surface, are for the most part more prominent, so that they assume the character of short spines. The ossicles on which they are borne are star-shaped with six rays, a spine being borne in the centre of each ossicle, and one on each of the rays. Between the ossicles the surface is covered with a soft slimy skin, perforated by a large number of minute dermal pores, each of which is enclosed by a minute irregular ring of calcareous matter; each pore serves for the lodgment of one of the dermal branchiae. Numerous pedicellæ, similar to those on the ventral surface, but smaller, are borne on the ossicles, usually taking the place normally occupied by the central spine. The tube-foot are arranged in a single row on each side of each ambulacral groove; but the ampullæ are in two rows, an upper and a lower, and each tube-foot has two ampullæ, one of the upper row and one of the lower row, connected with it.

There are vertical calcareous inter-radial partitions not developed in Asterias. There are five pairs of intestinal ceca, which are narrow tubes slightly enlarged and lobed at the extremities.

Development of a Starfish (Asterina gibbosa or A. exigua).—In these Starfishes the reproductive apertures are placed on the ventral surface. When the ova have been discharged and impregnated, they adhere by means of a viscid matter to the surface (rock or stone) on which they are laid, and go through all the stages of their development in this position, never passing through a free pelagic stage. The eggs are about half a millimetre in diameter, and of a spherical shape. Each consists of a perfectly opaque central mass of yellow or orange yolk, and of a glassy layer enclosing this. After fertilisation the process of segmentation begins by the division of the ovum into two blastomeres almost equal in size, but one, which may be termed cell I., slightly smaller than the other, cell II. Both I. and II. soon afterwards divide, I. somewhat earlier than II. The resulting four cells again divide, the result being the formation of an eight-celled stage (Fig. 287, A), in which the four cells derived from I. form an incomplete ring not closed below, and the four derived from II. form an incomplete ring open above.

The eight cells then divide by meridional fissures into sixteen, and a further division results in the formation of thirty-two. The thirty-two cells become arranged in such a way as to enclose a central cavity which had been present in the four-celled stage: this stage (B) is the blastula; the cavity is the segmentation-cavity or blastocoele. The number of cells in the wall of this

The development of these has been described in preference to that of the examples, as it is better known and more readily studied.
cavity increases by further divisions, and the whole surface becomes covered with vibratile cilia. A process of invagination then follows; one side of the blastula becomes pushed inwards to form a doubled-walled cup or gastrula (C) opening on the exterior by an opening, the blastopore, which, at first very wide, gradually becomes narrowed. At the same time the shape of the larva alters, becoming somewhat elongated, the blastopore, lying at first midway between the two poles, afterwards gradually drawing nearer to what becomes the lower or ventral pole.

Of the two layers of the gastrula (D and E) the outer is the ectoderm, the inner the endoderm; between them is a space, at first filled with gelatinous matter, in which cells soon appear, giving rise subsequently to a third or middle layer, the mesoderm.

The cavity in the gastrula early becomes distinguishable into two parts (Fig. 288, B)—that part into which the blastopore leads (arch), and a wider terminal part (cut); the former becomes the posterior part of the alimentary canal of the larva, the blastopore becoming the anus; the latter is termed the enterocele. The wall of the enterocele becomes thinner, and it gives off two lateral swellings, the right and left enterocele pouches (C, cut), which become closely applied to the sides of the larval alimentary canal; the left pouch soon becomes larger than the right. The enterocele then becomes completely closed off from the enteric canal. Towards the anterior end of the larva there is now formed a new invagination from the surface, the stomodaeum, which meets the

![Diagram of gastrula stages](image-url)
rudimentary alimentary canal, and forms the mouth and oesophagus of the larva.

The enterocoelic pouches grow round the alimentary canal: in front they unite to form a common cavity, behind they remain separated by a thin partition or septum. The left enterocoelic pouch gives rise now to the rudiment of the ambulacral system in the form of an outgrowth, the hydrocoele. The lower border of this becomes five-lobed (Fig. 289, A), each of the lobes (r) developing later into one of the radial ambulacral vessels; the central part of the hydrocoele subsequently forms a ring—the ring-
vessel of the ambulacral system. A pore, the dorsal pore (dors. p.), makes its appearance as an invagination of the ectoderm nearly opposite the larval mouth; this opens internally into the left enterocele pouch. A groove is formed on the inner surface of the hydrocele, and becomes closed to form a canal, the rudiment of the madreporic canal; this subsequently enters into communication with the dorsal pore, the external opening of which corresponds to the future madreporite.

A change has meanwhile taken place in the general form of the body of the larva. At the upper end has been formed an anterior short lobe (anterior head-lobe) and a posterior longer lobe (posterior head-lobe).

These two lobes together form what is termed the larval organ (lare. org.), which later on becomes absorbed in the transition to the starfish form. As the hydrocele develops, its form influences the external shape of the larva; on the left-hand side there grows out a five-lobed elevation (Fig. 290, amb), each of the lobes corresponding to one of the five lobes of the hydrocele. Each of the latter then becomes divided, first into three rounded processes (Fig. 289, B, amb), and then into five, and these project freely on the surface: the middle one is the rudiment of the tentacle, the lateral processes are the first two pairs of tube-feet. At the same time five elevations of the opposite wall, which have become evident, give rise to the beginnings of the dorsal regions of the arms.

The transition from the larval Bipinnaria stage, as it is termed,
to the condition of the five-rayed starfish (Fig. 291) is effected by the abortion of the larval organ, the further development of the arms and tube-feet, and certain changes which take place in the internal organs. Of these, one of the most important is the formation of a new mouth and oesophagus (Fig. 289, B, ës), the larval mouth and oesophagus becoming abolished during the metamorphosis. Round this new mouth grows the ring-vessel of the ambulacral system. From the stomach, diverticula grow out radially into the developing arms to give rise to the ceca; and later the permanent anal opening is formed on the dorsal surface.

When the first ossicles are definitely formed they present the following arrangement (Fig. 292). In the middle of the abactinal surface is a single dorso-central plate (dors). Around this are five basals (bas), one of which becomes converted into the madreporite. External to these, five radials (rad.) appear somewhat later. At the end of each developing arm is a single terminal or ocular plate (term), which is carried outwards as the ambulacral and adambulacral ossicles of the arm are developed, supporting the corresponding eye and tentacle. A ring of secondary radials (sec. rad) is developed between the radials and the dorso-central. In the adult, by the intercalary development of numerous additional ossicles, these primary plates of the apical system, as it is termed, lose their original arrangement, and become, with the exception of the madreporite and the terminal plates, no

![Diagram showing the relations of the chief plates of the apical system in the young Starfish.](image-url)
longer recognisable. Five oral plates, which when they first appear are on the abactinal surface, pass round to the actinal as development proceeds.

2. Example of the Echinoidea.

A Sea-Urchin.—(Strongylocentrotus or Echinus.)

General External Features.—The Sea-urchin (Figs. 293 and 294) is globular in shape, but somewhat compressed in one direction, so that two poles are distinctly recognisable. At one of these the degree of flattening is greater than at the other; this is the oral pole, the opposite pole being termed the anal or aboral. At the oral pole is a rounded aperture, the mouth, through which may be seen projecting five hard white points, the extremities of the teeth. Surrounding the mouth is a thin soft membrane known as the peristome or peristomial membrane. At the anal pole is a much smaller aperture, the anus, the space immediately surrounding which is termed the periproct.

The entire surface, with the exception of the peristome and periproct, is bristling with spines—cylindrical, pointed, solid appendages, the surface of which is longitudinally fluted. These are movably articulated with the body so that they may be turned about in all directions. When one of them is removed (see Fig. 309, p. 389), it is found that the joint is of the character of a ball and socket, a concavity on the base of the spine fitting over a hemispherical elevation of the surface of the Sea-urchin, and the spine being retained in place and caused to move by means of a capsule of muscular fibres enclosing the joint. Around the bases of the large spines are a number of very small spinnules. Here and there among the spines are to be observed minute pedicellariae (see Fig. 310, p. 389), which are comparable to the stalked pedicellariae of Asterias, but have each three jaws instead of two, and have a relatively long stalk, which is supported by a slender calcareous rod. Here and there are to be found also small rounded bodies termed the spheridia, which are perhaps, like the pedicellariae, to be looked upon as modified spines; they contain ganglion-cells and are apparently organs of special sense, having perhaps the function of detecting changes in the composition of the water.

Projecting from the surface among the spines all the way from the peristome to the periproct will be observed five double rows of tube-feet (Fig. 293), which in a living specimen will be found to be capable of great extension. These are similar to the tube-feet of the Starfish, and have similar functions; the sucker-like extremity of each is supported by a perforated sieve-like plate of calcareous matter. Each double row of tube-feet occupies a meridional zone of the surface, termed the ambulacral area,
corresponding to the ambulacral groove of the Starfish: the intermediate zones are termed the inter-ambulacral areas. At the oral end of each ambulacral area on the peristome is a pair of appendages similar to tube-feet, but without suckers and termed tentacles. Ten shrub-like appendages, the dermal branchiae, are situated in the peripheral part of the peristome, a pair opposite each inter-ambulacral area.

When the spines are removed, the body is found to be enclosed in a rigid globular shell, or corona (Fig. 294) as it is termed, formed of a system of plate-like ossicles, the edges of which fit accurately and firmly together, and the surfaces of which are ornamented with the rounded elevations or tubercles for the articulation of the spines. These plates are arranged in ten zones, each consisting of two rows, running in a meridional direction from the edge of the peristome to the neighbourhood of the periproct. Of the zones of plates there are two sets, each consisting of five, the members of which alternate with one another. In

Fig. 293,—Strongylocentrotus, entire animal with the tube-feet extended. (From Brehm's Tierleben.)
the case of one of these sets of zones—the ambulacral zones or ambulacral areas already referred to (amb)—each of the plates is perforated towards its outer end by two minute pores, the ambulacral

\[\text{Fig. 294.—Corona of Sea-urchin with the spines removed to show the arrangement of the plates, lateral view. Amb, ambulacral zone with its perforated plates; Ap, apical (aboral) pole; Int. amb, inter-ambulacral zones. (From Bronn's Tierreiche.)} \]

pores, for the protrusion of the tube-feet. The other five zones, the inter-ambulacral zones or areas (int. amb), have the plates not perforated. At its anal end each area, ambulacral or inter-ambulacral, ends in a single apical plate, so that the periproct is surrounded by a ring of ten plates, the apical system of plates (Fig. 295). Of these, the five that are situated at the ends of the ambulacral areas are termed the ocular plates (oc), owing to the fact that each of them bears a rudimentary eye; while the five opposite the inter-ambulacral areas, are termed the genital plates (gen), each of them being perforated by an opening which is the aperture of one of the five genital ducts,—the ducts of the ovaries or testes as the case may be. One of these genital plates (madr) has a swollen and spongy appearance, which distinguishes it from the others: this is the madreporite, through which, as in the case of the structure of the same name in the Starfishes, the madreporic
canal communicates with the exterior. The two ambulacral areas between which the madreporite lies constitute the bivium, the remaining three the trivium.

On the inner surface of the shell, close to the edge of the peristome, there project inwards five processes, the auricles (Fig. 297, aur), one opposite each ambulacral area. Within the ring of auricles lies a complex structure termed Aristotle’s lantern (Fig. 296). This consists of the five teeth (e) the apices of which are to be seen projecting through the mouth, together with a system of ossicles. The teeth are long, curved, and pointed; proximally each is supported by and partly embedded in a pyramidal ossicle, the alveolus (a), consisting of two halves united by a longitudinal suture.

Firmly united to the base of the alveolus is a stout bar, the epiphysis (b). Adjacent epiphyses are in close contact with one another, and running inwards from their points of union are five radially-directed, stout bars, the rotula (c), the inner ends of which unite to bound a circular aperture through which the oesophagus passes. With the inner end of each rotula is movably articulated a more slender bar, the radius (d), which runs outwards, parallel with, and closely applied to, the rotula, to end in a free, bifurcated extremity. Aristotle’s lantern as a whole is in the shape of a five-sided pyramid, at the apex of which project the five teeth; the pyramid is hollow, containing a passage which is the beginning of the oesophagus. The base has the appearance of a wheel, the tyre of which is represented by the five epiphyses, the spokes by the five rotulae, with the five radii in close contact with them, and the hub by the rounded central aperture. Passing between the various ossicles of the lantern, and from them to the auricles, are systems of muscles by means of the contractions of some of which the lantern as a whole can be protruded or retracted, while the action

Fig. 296.—Lantern of Aristotle of Ecfinus. A, Two of the five chief component parts apposed and viewed laterally. B, Lateral and C internal view of a single part. a, alveolus; a', suture with its fellow; b, epiphysis; b', suture with alveolus; c, rotula; d, radius; e, tooth. (From Huxley’s Invertebrates, after Müller.)
of others is to cause the movements of the alveoli by which the teeth are brought to bear on the food.

Nervous System.—Passing outwards through each auricle, and running along the inner surface of the corona opposite the middle of each ambulaeral area, is a *radial nerve* (Fig. 297, rad. ne). Within the ring of auricles the five radial nerves are connected with a *nerve-ring* (nerv. r) surrounding the mouth. At its distal end each radial nerve is connected with the eye (œ), borne by the corresponding ocular plate. These parts correspond to the *epidermal nervous system* of the Starfish; the deep and coelomic systems are only feebly developed.

Ambulacral System.—Internal to each radial nerve, and pursuing a corresponding course, runs a *radial ambulacral vessel* (rad. amb). From this are given off on each side a series of short branches to the tube-feet, with each of which is connected one of a series of compressed sacs, the *ampullae* (amp.), by two canals, one passing through each of the two pores. At their oral extremities the five radial ambulacral vessels unite with a *ring-vessel* surrounding the oesophagus. Appended to the ring-vessel are five *Polian vesicles* (pol. ves) in the form of small mamillated bodies. A *madreporic canal* (mad. can), corresponding to that of the Starfish, but with soft membranous walls devoid of ossicles, runs from the madreporite at the side of the periproct to the ring-canal surrounding the mouth.

Accompanying the madreporic canal is an *ovoid gland* (plex) similar in essential character to that of the Starfish and having similar relations, except that the connection with the reproductive organs has disappeared in the adult.

The *enteric canal* (Fig. 298, ali) is devoid of the radial cæca which it presents in the Starfish; it is a wide, soft-walled tube, which winds round the interior of the corona in its passage from the mouth to the anus held in place by a band of threads the
mesentery, passing out from it to the inner surface of the shell. It gives off a short blind diverticulum, the siphon (siph); this, together with the intestine itself, probably acts as an organ for the respiration of the celomic fluid.

The cælome contains a fluid in which, as in the Starfish, there are numerous corpuscles. Of these there are two kinds, (1) amoeboid corpuscles (amæbocytes) with long pseudopodia. (2) the vibratile corpuscles, which closely resemble sperms, having a rounded head and a slender vibratile tail; the latter aid in bringing about a constant circulation of the celomic fluid.

The part of the cælome in front of Aristotle's lantern is completely cut off from the rest by the arrangement of the membrane enclosing the lantern, and the function of the branchiae on the peristome is evidently the oxygenation of the celomic fluid enclosed in this compartment.

A blood-vascular system is also present, and has an arrangement corresponding to that already described in the case of the Starfish, with the addition of two large intestinal vessels (Figs. 297 and 298, int. vés). The reproductive organs consist of five masses of minute rounded follicles (Fig. 298, or) situated in the anal portion of the shell, and each communicating with the exterior by its duct, which perforates the corresponding genital plate. The sexes are distinct; as in the Starfish, there is little difference to be observed between the ovaries of the female and the testes of the male until we come to examine their microscopic structure. The genital rachides which in the Starfish connect the gonads with the genital stolon (ovoid gland) are, as already noticed, aborted in the adult Sea-Urchin.

The early stages in the development of the Sea-Urchin are very similar to the corresponding stages in the development of the Starfish described on page 359. The bilateral larva of the Sea-Urchin, which is termed a Pluteus, is provided with a number of elongated arms or processes supported by delicate
calcareous rods. A metamorphosis, in which the bilateral larva becomes converted into the radial adult, takes place as in the Starfish.

3. Example of the Holothuroidea.

A Sea-Cucumber.— *Cucumaria* or *Colochirus*.

General External Features.—The body (Fig. 299) is elongated, in shape not unlike a miniature cucumber, somewhat irregularly five-sided, with an opening at each end. One end is somewhat thicker than the other, and the opening at this thicker (oral or anterior) end is the *mouth*, that at the opposite (aboral or posterior) end is the *anus*. The body is five-sided, and along each side there extends a double row of *tube-feet*. In *Colochirus* there is a very distinct *ventral* surface, into which three of the five sides enter, distinguished by the absence of the rows of tubercles that occur on the dorsal portion of the surface, and by the presence of three distinct bands of tube-feet. This ventral part of the body with its three ambulacral areas is the equivalent of the *trivium* of the starfish, the rest representing the *bivium*. On the dorsal surface instead of typical tube-feet there are papillae devoid of sucking extremities, and similar appendages take the place of tube-feet at the ends of the three ventral bands. In *Cucumaria* the ventral surface is less distinctly defined, but its position is always to be determined by reference to the tentacles (*vide infra*); there are no papillae. The ventral surface is, it is to be noticed, parallel with the axis joining mouth and anus, not at right angles with it as in the Starfish and Sea-urchin, and the body is, when compared with theirs, greatly drawn out in the direction of the line joining mouth and anus.
There are no definite calcareous plates; but the integument is tolerably hard, owing to the presence in its substance of innumerable microscopic calcareous spicules, very variable in shape in different species of Cucumaria, and in Colochirus having the form of sieve-like or lattice-like plates, some of which are to be found even in the walls of the tube-feet. The tube-feet are, like those of the Starfish, used in locomotion, progression being effected by creeping with the ventral surface applied to the ground. In a Sea-cucumber living undisturbed under natural conditions there will be found protruded through the mouth a circlet of ten tentacles, which are to be looked upon as greatly developed and specially modified tube-feet. These are tree-like in shape—a central stem giving off a number of short branches, which may in turn be branched—and they are highly sensitive and contractile. Two of these tentacles will be observed to correspond to each of the ambulacral areas. The pair situated opposite the middle ambulacral area of the ventral surface are very much smaller than the others, and will be observed to perform the special function of pushing the food-particles into the mouth. All the tentacles are drawn completely back within the mouth when the animal is disturbed.

Structure of Body-wall.—When the wall of the body is divided, it is found to consist, in addition to the hardened integumentary layer, of two layers of muscle in addition to a thin layer of cells, the peritoneum or coelomic epithelium, lining the coelome. The outer layer of muscle is a complete, continuous layer of muscular fibres which have a circular arrangement, i.e. are arranged in a ring-like manner around the long axis of the body; while the inner layer is not continuous, consisting, in fact, merely of five flattened bands which run longitudinally from the oral to the anal extremities, each underlying one of the ambulacral areas. In close contact with each of these bands, on its inner surface, runs a radial ambulacral vessel (Fig 300, rad. amb.) together with a radial nerve.

Ambulacral System.—Just behind the bases of the tentacles and surrounding the beginning of the oesophagus is a circular ambulacral vessel (ring, ves.) which gives off the five radial vessels; these first run forwards and give off branches to the tentacles, and then run backwards, passing along the ambulacral areas and giving off branches to the tube-feet, each of which is provided with its ampulla. From the ring-vessel is also given off a large pear-shaped Polian vesicle (pol. ves.), and a short sinuous canal, the madreporic canal (mad. can.), which ends in a perforated extremity, not situated, like the madreporite of the Starfish or the Sea-urchin, on the outer surface of the body, but in the interior of the coelome.

A nerve-ring surrounds the mouth and gives off the five radial nerves. A vascular ring (vi. bl. ves.) lies close to the nerve-ring
and sends off five radial vessels, as well as dorsal and ventral vessels (int. ves.) accompanying the enteric canal, and a plexus surrounding the left respiratory tree.

The **cælome** contains a fluid in which float numerous amöebocytes similar to those of the Starfish, and also a number of flattened nucleated corpuscles containing a red colouring matter.

Fig. 300.—Internal organs of a Holothurian as seen when the body-wall is divided along the middle of the dorsal surface:

- **b. w.** body-wall; **circ. mus.** circular layer of muscle; **cl. cloae:**
- **cl. op.** cloacal opening with five teeth; **gen. ap.** genital aperture; **gen. du.** genital duct; **gen. gl.** genital gland; **int. intestine; inter. mes.** inter-amphulacral ossicles; **int. ves.** intestinal vessels; **long. mus.** longitudinal band of muscle; **mad. can.** madreporic canals; **mes. mesentery; pol. ves.** Polian vesicles; **rad. amb.** radial amphulacral vessel; **resp.** resp. respiratory trees; **ring-ves. ring-vessel of the ambulacral system; stom. stomach.** (After Leuckart.)
haemoglobin—almost identical with that which gives the red colour to the blood of the higher animals.

The **enteric canal** is, as already mentioned, surrounded at its oral extremity by the circle of **tentacles**, and within these, when they are fully exserted, is a narrow **peristome** with the mouth in the centre. When the tentacles are retracted the peristome becomes inverted, so that peristome and tentacles become enclosed within a chamber, the **buccal chamber**, into which the mouth leads. Surrounding the **oesophagus**, which lies immediately behind the buccal chamber, is a circle of ten **circum-oesophageal ossicles**, five ambulacral (**rad. oss.**) in position, and five inter-ambulacral (**inter. oss.**). Through each of the former pass the corresponding radial ambulacral vessel, blood-vessel, and nerve. The alimentary canal itself is a simple cylindrical tube, only indistinctly marked out into oesophagus, stomach (**stom.**), and intestine. It forms several coils within the coelome, to the wall of which it is attached by a thin membranous dorsal mesentery, and terminates behind in a comparatively wide chamber, the **cloaca** (**clo.**).

Opening into the cloaca is a pair of remarkable organs of doubtful function, the so-called **respiratory trees** (**resp.**). Each of these, beginning behind in a single tubular stem, becomes elaborately branched in front, some of the branches reaching nearly to the anterior end of the body-cavity. Each of the terminal branches ends in a ciliated funnel opening into the coelome. Besides having to do, most probably, with the respiration of the coelomic fluid and with the excretion of waste-matters, these organs also have a hydrostatic function; it is through them that, when the tentacles are withdrawn, the overplus of fluid which would impede the process is got rid of, and through them, in like manner, that the quantity is again increased when the tentacles are protruded again.

Reproductive Organs.—The Sea-urchin, like the Starfish and Sea-urchin, has the sexes separate. **Ovaries** and **testes** (**gen. gl.**) are very like one another, and consist of bunches of tubular follicles, which communicate with the exterior by means of a duct opening on the dorsal surface some little distance behind the oral end.

The early stages of development are very similar to those of the Starfish (**p. 358**). The bilateral larva, however, assumes a shape somewhat different from the Bipinnaria of the Starfish, and is termed the **Auricularia** (**Fig. 315**); it has a number of short processes developed in the course of the ciliated bands. The larval mouth and oesophagus, instead of being abolished as in the Bipinnaria, persist to the adult condition.
4. Type of the Crinoidea.

A Feather-Star.—*Antedon rosacea.*

General External Features.—In the Feather-star (Fig. 301), as in the Starfish, there are to be recognised a central disc and a series of five radiating arms. In the natural position of the animal the side of the disc which corresponds to the ventral or actinal surface of the Starfish is directed *upwards*, and the dorsal or abactinal surface *downwards*. The five arms are bifurcated at their bases; they are feather-like, and highly flexible; they act as the locomotive organs of the animal, their alternate flexions and extensions resulting in a slow movement through the water. On

![Image of Antedon rosacea](image_url)

the dorsal side of the disc are whorls of slender curved cylindrical appendages, the *dorsal cirri*, by means of which the feather-star is enabled to anchor itself temporarily to a rock or a sea-weed.

On the ventral side of the disc the body-wall is soft and flexible; containing only scattered irregular spicules of calcareous matter, and in the centre of this surface is an opening, the *mouth* (Fig. 302, *mo*). From the mouth five very narrow grooves, the *ambulacral grooves*, radiate outwards towards the bases of the arms, near which they bifurcate, so that ten grooves are formed, one passing along the ventral surface of each of the ten arm-branches to its extremity. The *anal opening* (*an.*) is likewise ventral, and is situated on a papilliform elevation in the interspace between two of the radiating canals.
The dorsal side of the disc is occupied by a large flat pentagonal ossicle, the *centro-dorsal ossicle*\(^1\) (Fig. 304, C, D) bearing on its outer surface a number of little cup-like depressions, with which the bases of the cirri are connected. The cirri (*cirr.*) consist each of a row of slender ossicles, covered, like all the rest of the animal, with epidermis, and connected together by means of muscular fibres. Concealed from view by the centro-dorsal ossicle is a thin plate termed the "rosette" (ros.), formed by the coalescence of the *basals* of the larva. At the sides are five *first radial* (*R.*\(^1\)) ossicles, also concealed by the centro-dorsal ossicles: with each of these articulates a *second radial* (*R.*\(^2\)), which is visible beyond the centro-dorsal. With each of the second radials articulate two *third radials* (*R.*\(^3\)), each forming the base of the corresponding arm-branch.

The ossicles of the arms—*brachials* (*Br.*\(^1\), *Br.*\(^2\)—are arranged in a single row in each arm. They are somewhat elongated in the direction of the long axis of the arm, strongly convex on their dorsal surfaces, longitudinally grooved ventrally, connected together by the investing epidermis, and by bundles of muscular fibres, by the contractions of which the movements of the arms are brought about. Fringing the sides of each arm are two rows of side-branches, or *pinnules*, each supported by its row of connected ossicles, and each grooved along its ventral surface.

The *coelome* contains numerous strands of connective tissue which serve to suspend the various organs.

Extending through the arms and pinnules between the supporting ossicles and the ambulacral grooves are three canals which are prolongations of the *coelome* (Fig. 303, *coel. can.*). Two of these—the *sub-ambulacral canals*—form a pair separated from one another by a median septum underlying the ambulacral groove. The

\(^1\) This has nothing to do with the *dorso-central* ossicle referred to above (p. 362) as one of the primary apical plates of the Starfish: the dorso-central is not represented in the Feather-star.
other—the cælien canal—runs between these and the supporting ossicles (oss.). The sub-tentacular canals and the cælien canal communicate with one another at the extremity of the arms.

The enteric canal begins with a wide funnel-shaped oesophagus leading to a spacious stomach having a small cæcum connected with it. Distally it becomes contracted and opens into a wide intestine, which winds round the coelome, giving off at its gastric end a number of small cæcal diverticula, and becoming narrower where it passes upwards to open on the exterior, the terminal part, or rectum, projecting as a tubular papilla on the surface. In the living animal the rectal tube is observed to undergo frequent movements of contraction and dilatation by means of which water is drawn into and expelled from the intestine, so that here, as in the Sea-urchin, there would appear to be a process of intestinal respiration.

The ambulacral system consists of a ring-vessel surrounding the mouth, and a series of radial vessels (Fig. 303, rad. amb.) which run in the ambulacral grooves, giving off branches to the pinnules. Connected with the radial vessels and their branches are a series of minute tubular appendages, the so-called tentacles (Fig. 304, tent.), which are homologous with the tube-feet of the Star-fishes and Sea-urchins, but are devoid of terminal suckers. These are not organs of locomotion, they bear numerous sensory papillae, and are therefore to be looked upon as tactile organs; but they probably also have a respiratory function. Connected with the ring-vessel are a number of ciliated, branched, tubular diverticula, the water-tubes, which are suspended within the coelome, and may open freely into it at their extremities. A large number of vessels with minute ciliated openings—the water-pores (wat. p.)—lead through the ventral wall of the disc: these and the ciliated tubes are to be looked upon as together representing the madreporic canal and its openings in the Star-fish and Sea-urchin.

The nervous system consists of two perfectly distinct parts. A nerve-ring (circ. ne.) surrounds the mouth, and from it are given off a series of ambulacral nerves—thickenings of the epidermis of

![Diagram](image-url)
the ambulacral grooves and their offsets—which extend throughout the length of the arms and pinnules. In the axis of the supporting ossicles of the arm is an *axial nerve* (ax. co.), which gives off branches (Fig. 303, ax. ne.) running through the axes of the ossicles of the pinnules. The *axial nerves* are connected internally, not with the circum-oral nerve-ring, but with a central body situated below the rosette, in the interior of the centro-dorsal ossicle. This, the *central capsule* (Fig. 304, cent. caps.), forms the investment of a body termed the *five-chambered organ* (chamb. org.), divided into five parts by radial septa, and continuous with the dorsal end of the genital stolon. Processes from the five angles of the central capsule combine to form a pentagonal ring from which pass out-

![Diagram](image-url)

Fig. 304.—*Antedon*, Diagrammatic view of a median vertical section through the disc, passing through one radius and one inter-radius. *amb.* ambulacral vessels; *ax. co.* axial nerve cord passing through the ossicles of the arm; *Br. 1, Br. 2* branchial ossicles; *CD.* centro-dorsal ossicle; *cent. caps.* central capsule; *chamb. org.* chambered organ; *cirr.* cirr.; *ect. ne.* ambulacral (epidermal) nerve-ring and radial nerve; *gen. st.* genital stolon; *int.* intestine; *mo.* mouth; *R. 1, R. 2, R. 3* radials; *ros.* rosette; *tent.* tentacles; *wat. p.* water-pores. (After Milnes Marshall.)

wards the axial nerves of the arms. The ambulacral nerves and their central ring represent the epidermal nerves of the Starfish; the axial nerves are represented in the latter only by the comparatively feebly-developed coelomic system.

A **blood-vascular system** is present, with a circum-oral ring-vessel giving off radial vessels to the arms, and a plexus of vessels surrounding the oesophagus, and enclosing the genital stolon.

Numerous bodies termed the **sacculi**, the character of which has given rise to much discussion, occur regularly arranged along the ambulacral grooves, and also in other parts. They are small spherical bodies which become vividly coloured by means of staining agents. They are sometimes supposed to be parasitic
Algae; but the regularity of their arrangement is opposed to such a view. It has been suggested with more appearance of probability that they may be masses of reserve materials, stored up for the nutrition of the animal.

The reproductive organs—ovaries or testes, as the case may be—are lodged in the dilated bases of the pinnules, which become considerably enlarged as the ova or sperms mature, those next to the bases of the arms alone remaining sterile. When mature, the sexual elements escape by means of short ducts. Each gonad is one of the terminal parts of a system of tubes lined by an epithelium, and extending from a central part or genital stolon (gen. st) lodged in the vascular plexus that surrounds the oesophagus and connected dorsally with the chambered organ, outwards through the arms, the terminal portions, lying in the pinnules, becoming dilated to form the reproductive organs, and the cells of their epithelium becoming developed into ova or sperms, while the rest constitute a non-fertile connecting rachis. This system is enclosed throughout by a plexus of blood-vessels.

Like the rest of the Echinoderms, the Feather-star undergoes a metamorphosis (Fig. 316). The larva is at first oval and covered uniformly with cilia. Afterwards the cilia become restricted to four transverse bands with a bunch of longer cilia at one end; the body becomes bent towards the ventral side, ossicles begin to be formed, and the posterior extremity becomes drawn out into a narrow process in which supporting ossicles soon appear. At the end of this posterior, or more correctly dorsal, process, a terminal disc is formed, and by means of this the larva fixes itself, the process forming a supporting stalk. The larva now assumes the form in which the term "pentaevinoid" has been applied, owing to the fact that, in its most essential features, it resembles the adult form of Pentacrinus, one of the stalked Crinoids (See Fig. 314), with a central disc, giving off five bifurcated arms with their pinnules, and supported on a narrow stalk springing from the middle of the dorsal surface. This fixed pentacrinoid larva passes into the adult, free-swimming Feather-star by the development of the dorsal cirri, the greater elongation of the arms, and the absorption of the stalk, the uppermost ossicle of which is represented in the adult by the centro-dorsal ossicle.

5. Distinctive Characters and Classification.

The Echinodermata are radially symmetrical animals, the radial arrangement of whose parts imperfectly conceals a more obscure and more primitive bilateral symmetry. The surface is covered with an exoskeleton of calcareous plates or ossicles, which usually support a system of movable or immovable calcareous spines. There is a large body-cavity or celome, and well-developed
alimentary, nervous, and vascular systems. A characteristic system of vessels, the ambulacral system, is connected with the locomotion of the animal, as well as with other functions: the organs of locomotion are elastic and contractile tubular bodies, the tube-feet, which are appendages of the ambulacral system. Nearly all the systems of organs of the animal partake to a greater or less extent of the general radial form of the body. Reproduction is entirely sexual. In the course of its development from the egg the Echinoderm passes through a peculiar larval stage, in which the symmetry of parts is bilateral instead of radial as in the adult animal. All the Echinodermata are marine.

The Echinodermata are classified as follows:

CLASS I.—ASTEROIDEA.

Free Echinoderms with star-shaped or pentagonal body, in which a central disc and usually five arms are more or less readily distinguishable, the arms being hollow, and each containing a prolongation of the coelome and of the contained organs. There are distinct dorsal and ventral surfaces, on the former of which the anus and the madreporite are situated, and on the latter the mouth and five narrow ambulacral grooves lodging the tube-feet. The larva has the form either of a Bipinnaria or of a Brachiolaria (see p. 397). This class includes the Starfishes.

Order 1.—Phanerozonia.

Asteroidea with large marginal ossicles. The dermal branchiae are present only on the dorsal surface. The ambulacral ossicles not closely crowded. Pedicellariae sessile.

Order 2.—Cryptozonia.

Asteroidea with the marginal ossicles inconspicuous. Dermal branchiae not restricted to the dorsal, but often present on the oral surface. Ambulacral ossicles crowded together. Pedicellariae stalked or sessile.

CLASS II.—OPHIUROIDEA.

Star-shaped free Echinoderms, with a central disc and five arms, which are more sharply marked off from the disc than in the Asteroidea, and which contain no spacious prolongations of the coelome. There are distinct dorsal and ventral surfaces. The anus is absent; the mouth, as well as the madreporite, ventral. There are no ambulacral grooves. The larva is a Pluteus. This class includes the Sand-stars and Brittle-stars.

Order 1.—Ophiurida.

Ophiuroidea in which the arms are simple.

Order 2.—Euryalida.

Ophiuroidea in which the arms are branched.
CLASS III.—ECHINOIDEA.

Free Echinoderms with globular, heart-shaped, or disc-shaped body enclosed in a shell or corona of close-fitting, firmly united calcareous plates. The mouth is nearly always polar: the anus usually at the opposite (aboral) pole; the madreporite is close to the latter. There are no ambulacral grooves; but the surface is divided into alternating ambulacral and inter-ambulacral zones or areas, which usually run from pole to pole. The larva is a Pluteus. This class includes the Sea-urchins, with the Heart-urchins and Cake-urchins.

Order 1.—Paleo-echinoidea.

Fossil Echinoidea in which the number of rows of plates in the corona is variable, and in which the plates overlap one another.

Order 2.—Regularia.

Echinoidea with globular corona containing twenty meridional rows of plates. Mouth and anus polar. A lantern of Aristotle is present. This order includes the Sea-urchins.

Order 3.—Clypeastridea.

Echinoidea with more or less flattened corona, with the mouth central, the anus excentric. A lantern of Aristotle is present. This order includes the Cake-urchins.

Order 4.—Spatangoidea.

Heart-shaped Echinoidea with the mouth and anus excentric. No lantern of Aristotle. This order includes the Heart-urchins.

CLASS IV.—HOLOTHUROIDEA.

Free Echinoderms with elongated, cylindrical or five-sided body, having the mouth and anus at opposite extremities. The body-wall is usually only supported by scattered ossicles or spicules. There is no external opening to the madreporic canal (except in some Elasipoda). The surface usually exhibits five ambulacral areas; but these may be absent. There is a circle of large oral tentacles. The larva is an Auricularia. This class includes the Sea-cucumbers and Bêche-de-mer.

Order 1.—Elasipoda.

Holothuroidea with well-marked bilateral symmetry, with tube-feet on the ventral surface (which is flattened) and papillae on the dorsal. Confined to the deep sea.

Order 2.—Pedata.

Holothuroidea with tube-feet either in longitudinal rows or scattered irregularly over the surface.
Order 3.—Apoda.
Holothuroidea devoid of tube-feet and of radial ambulacral vessels.

Class V.—Crinoidea.
Temporarily or permanently stalked Echinoderms with star-shaped body, consisting of a central disc and a series of five bifurcate or more complexly branched arms, bordered with pinnules. There are distinct dorsal and ventral surfaces; the latter bearing the mouth and anus, and the inner ends of a series of narrow ambulacral grooves. This class comprises the Feather-stars and Sea-lilies.

Order 1.—Palæocrinoidea.
Stalked Crinoidea in which the disc is large as compared with the arms, a number of inter-radial plates being present and often united with the disc. The ventral surface usually concealed by a "vault" of calcareous plates.
Extinct, palæozoic.

Order 2.—Neo-Crinoidea.
Stalked or free Crinoidea in which the disc is small as compared with the arms, and in which inter-radials, when present, do not combine with the plates of the disc. There is no "vault" covering the ventral surface.
Comprising all the living forms, together with several extinct mesozoic families.

Class VI.—Cystoidea.
Fossil Echinoderms with globular body, sometimes sessile, sometimes stalked, enclosed in usually irregular, polygonal plates. Mouth central; five radiating ambulacral grooves. Palæozoic.

Class VII.—Blastoidea.
Fossil Echinoderms with ovate stalked body, central mouth, and five ambulacral areas. Palæozoic.

Systematic Position of the Examples.

Asterias rubens is a species of the genus Asterias, which, with several others, constitutes the family Asteriidae of the order Cryptozoa. The family Asteriidae is characterised among the families of the Cryptozoa by the following distinctive features:—
The ossicles of the dorsal surface are small, unequal, reticulate plates, bearing isolated or grouped spinelets (paxillae). The margin of the actinostome is defined by the ambulacral plates. The pedicellariae are of two forms, forceps-like and scissors-like. The
tube-feet are in four rows. *Asterias* differs from the other genera of the family in having well-developed reticulate dorsal ossicles bearing definite spines.

The Sea-urchins of which a short description has been given are the genera *Strongylocentrotus* and *Echinus*, but the description is sufficiently general to apply to any member of the family *Echinoidea*, to which these genera, with a number of others, belong. The family *Echinoidea* is one of about five families of the sub-order *Ectobranchiata*, the members of which all differ from the other sub-order—Entobranchiata—of the *Regularia*, or regular Sea-urchins, in the possession of dermal branchiae, and in having the auricles in the form of complete arches.

The Sea-cucumber (Cucumaria or Colochirus) is a member of the Stichopoda—one of the families of the sub-order *Dendrochirotae* of the Pedata, or foot-bearing Holothurians. The *Dendrochirotae* differ from the *Aspidochirotae*—the other sub-order—mainly in having arborescent instead of shield-shaped tentacles, and the Stichopoda differ from the rest of the Dendrochirotae in having the tube-feet arranged in five regular zones. The genus *Cucumaria* is distinguished from the rest by the ten tentacles with the two ventral smaller than the others. *Colochirus* is closely allied to *Cucumaria*, the principal distinction being the presence in the former of papillae taking the place of tube-feet in certain situations as already noted.

The Feather Star (Anacton rosacea) is a member of the family Comatulidae, which is distinguished from the four other living families comprised in the order Neocrinoidea, by the absence of a stalk in the adult condition.

General Form and Symmetry.—Like the Coelenterata, the Echinodermata are radially symmetrical, the body being capable of division into a series of sub-equal *antimeres* along a series of radiating planes at right angles to the principal axis. In the majority of existing forms (Asteroidea, Ophiuroidea, and Crinoidea) the radial symmetry is expressed in the external form of the body, which is produced into a number of radially disposed parts, the *arms* or *rays*, arranged around a smaller or larger *central disc*. But in the Echinoida the body is sub-spherical, and in the Holothuroidea sub-cylindrical, the radiate arrangement being in these classes indicated externally only by the distribution of the tube-feet, and internally by that of certain of the systems of organs.

Although, however, the general external form and the arrangement of some of the internal organs in the Echinodermata indicates a radial symmetry, it is invariably found that this radial arrangement serves to hide a more primitive and more fundamental
bilateral symmetry. This is best marked in the larva, which has pronounced bilateral, instead of radial, symmetry, but is quite recognisable in the adult. In all Echinoderms there is, passing through the primary axis, a plane—the median plane—along which, and along which alone, the body is capable of being divided into two equal, or, to speak more correctly, approximately equal, right and left, halves. The existence of such a single median plane is, as already explained (p. 348), indicative of the bilateral form of symmetry.

The body is most usually five-rayed (Ophiuroidea, most Asteroidea, Crinoidea), cylindrical (most Holothuroidea) or globular (most Echinoida), the surface in the two last cases being marked by five bands or zones of tube-feet, which divide it into five ambulacral and five inter-ambulacral areas. In the Ophiuroidea and Asteroidea two of the rays—constituting the bivium—have between them the madreporite, marking the position of the madreporic canal of the ambulacral system; the remaining three rays form the trivium. The median plane passes through the madreporite, and thus midway between the two rays of the bivium, and bisects longitudinally the middle ray of the trivium. A corresponding disposition of the parts is traceable also, as will be subsequently shown, in the cylindrical and globular Echinoderms.

In all the Echinodermata dorsal or abactinal and ventral or actinal surfaces are more or less distinctly recognisable. In the Asteroidea, Ophiuroidea, and Echinoida, the ventral surface is that in the middle of which the mouth is situated, and which is, in the natural position of the animal, directed downwards or towards the surface to which it is clinging. The opposite dorsal or abactinal surface is, in the majority of the Asteroidea and Echinoida, marked by the presence of the anal aperture: in the Ophiuroidea and some Asteroidea the anus is absent, in some Echinoida it is situated on the border between the two surfaces, or even on the oral surface. In the Crinoidea the ventral surface, which is habitually directed upwards in the natural position of the animal, bears both mouth and anus, the former central, the latter eccentric and inter-radial. In the fixed Crinoids the dorsal surface has attached to its centre the distal end of the stalk; in the free forms it has connected with it whorls of slender curved appendages, the dorsal cirri, by means of which temporary attachment is effected. In the Holothurians owing to the elongation of the body in the direction of the line joining mouth and anus, dorsal and ventral surfaces corresponding to those of the other classes are not recognisable: but in many, as for example in Colochirus, there is a marked difference between one surface which is habitually directed upwards, and another which is habitually directed downwards: these dorsal and ventral surfaces in the Holothurian, it
is to be specially noticed, extend in the direction of the axisjoining mouth and anus, and not at right angles to it as in the
Starfishes and Sea-urchins.

In considering the general external form in the various classes
of Echinoderms, we have to take into account the arrangement of the
tube-foot—the organs of locomotion—as these have important
relations to the other parts, and to the whole plan of organisation
of the animal. These organs, as previously explained, are tubular
appendages with highly elastic and contractile muscular walls,
capable of being stretched out so as to extend a long way from the
surface of the body. In the majority of cases the tube-foot has at
its extremity a sucking-disc, by means of which it can be attached;
in a few, however, this sucking-disc is absent.

The entire surface is covered with a ciliated epidermis. In the
subjacent dermal layers there are always present calcareous bodies
or ossicles, varying very greatly in form and arrangement in the
different groups. Movable or immovable calcareous spines or
tubercles projecting on the surface are very general. Peculiarly
modified spines, termed pedicellaria, are commonly, though not
universally, present in certain parts in the Echinoidea and
Asteroidea. A pedicellaria consists in essence of two or three
calcareous jaw-like pieces or valves, movably articulated together,
and capable of being separated or approximated by the con-
traction of bundles of muscular fibres. Sometimes there is a long
stalk; sometimes (as in the case of Anthenea, p. 357) a stalk is
absent. During life the jaws or valves keep opening and closing.
That such specialised structures have some important function to
perform there can be no doubt, but there is some uncertainty as
to what their special purpose is. According to some observers,
the pedicellariae of the Sea-urchin have been seen passing from
one to another the particles of fecal matter discharged from the
anus, and their function would thus appear to be a cleansing one.
On the other hand, it is stated that when a Sea-urchin is attacked
the spines may be bent aside from the assailed portion of the
surface, so as to allow of the pedicellariae being brought to bear as
defensive weapons on the assailant, and from these and other
observations that have been recorded, both on Asteroide and on
Echinoids, it is concluded that the main function of these append-
ages is to act as defensive organs. Pedicellariae are absent in the
Ophiuroids, but in the Euryalida there are peculiar hook-like
organs of adhesion, most abundant on the ventral surface and
towards the extremities of the arms. The spheridilia, which have
already been referred to as occurring in the Sea-urchin, are only
doubtfully to be regarded as modified spines: they are confined
to the Echinoidea. Also confined to that class are the clavulace—
slender spines covered with strong cilia, which occur in bands on
the surface of the Spatangoids. Larger spines resembling the
clavulae in being covered with strong cilia, occur also in the Clypeasteroids and some Asteroids. The currents produced by the action of their cilia serve to keep constantly renewed the water in the neighbourhood of the anus and of the branchiae.

There are two principal systems of plates to be recognised, an oral and an apical; the former corresponding with the oral or actinal, and the latter with the aboral or abactinal surface. The former vary considerably in the different classes: the constant elements are five orals, which may or may not be recognisable in the adult. The apical system consists (1) of a dorso-central plate; (2) of five basals which are inter-radial in position; (3) of five radials, which are radial in position. In the Asteroidea (Fig. 292) the radials are late in making their appearance; before they are developed five terminal plates have become distinct, one at the end of each rudimentary arm; these become carried outwards by the extension of the arm, and each supports the corresponding tentacle. As a rule these plates of the apical system are only distinct in the young condition. In the Ophiuroidea the arrangement resembles that observable in the Asteroidea. In the Echinoidea (Fig. 295) the basals (genitals) are perforated by the ducts of the reproductive glands: the radials (oculars) are perforated for the eye and tentacle: the dorso-central (oral) rarely persists as a single plate in the adult, usually becoming broken up into a series of irregular plates. In the stalked Crinoidea the term dorso-central has been applied to a plate which is transformed into the disc of attachment at the base of the stalk, but the correspondence between this and the similarly named plate in the other classes is very doubtful: the ossicles of the stalk intervene between it and the basals. In the free forms the uppermost segment of the larval stalk is transformed into a centro-dorsal plate, and the basals nearly always unite into a rosette plate, which is concealed from view by the centro-dorsal and the radials. The apical system of plates is apparently not represented in the Holothuroidea.

Modifications of Form in the Five Classes.—The general shape in the Asteroidea is, as already pointed out, that of a star. There is a central part, or central disc, from which proceed a series of radially disposed arms or rays. The central disc and the rays are usually compressed dorso-ventrally, as in Anthenea and Asterina, but in some Starfishes the rays are approximately cylindrical; they nearly always taper distally. In the majority of Starfishes, as in the examples described, the arms are five in number, except in malformed individuals; but in some they are six, in others seven, eight, or more. The proportions borne by the arms to the central disc are subject to considerable variation. In some, as in Asterias, the arms are long and the central disc appears as little more than their point of union; in others, again, the whole Starfish has the form of a five-sided disc, in which the arms are
represented only by the five angles; while between these two extremes there are numerous intermediate gradations. The *Brisingidae* differ from all the rest of the class in having the arms almost as sharply separated off from the central disc as in the Ophiuroids.

The *dorsal* or *aboral*, and the *ventral* or *oral* surfaces are always distinctly marked off from one another. In the middle of the latter is the *mouth*, running out from which are five or more narrow *ambulacral grooves*, one of which is continued along the ventral surface of each arm to its extremity. Near to, but not quite in, the middle point of the dorsal surface is the *anal aperture*, absent in a few instances; and on the same surface, nearer the margin, between the two rays of the *bicum* in the five-rayed Starfishes, is the *madreporite*, a finely grooved calcareous plate perforated by a number of minute apertures. In some fossil Starfishes it is situated on the ventral surface. Sometimes instead of one madreporite there are several.

The wall of the body in the Starfishes contains a number of calcareous *ossicles*, movably articulated together and connected by bands of muscle, so that, though the body is firm, and in the dried condition often quite rigid, the arms are capable during life of slow movements of flexion and extension, enabling the animal to creep through comparatively small fissures and crannies. A special system of ossicles—the *ambulacral ossicles*—are arranged in a double row along each ambulacral groove, the ossicles of the two rows articulating movably with one another at the apex of the groove. At the end of the arm the two rows of ambulacral ossicles end in a *terminal* ossicle which supports the unpaired tentacle. *Spines* are invariably present, but are sometimes confined to the margins of the ambulacral grooves, in which position they are movably articulated with the underlying ossicles. *Tubercles* take the place of spines over most of the surface in many forms. In *Astropecten* the ossicles of the dorsal surface
take the special form to which the term *paxilla* is applied. Each paxilla is a plate which is produced into a short rod, divided at its extremity into a number of radiating processes.

The *tube-feet* are arranged in a double row along each of the ambulacral grooves, each connected through an aperture between the ambulacral ossicles with an ampulla, or, exceptionally, with two, situated in the coelome. Each double row of tube-feet terminates at the extremity of the arm in an unpaired appendage, the *tentacle*, which is tactile and olfactory, and not locomotive, in function. The tube-feet are provided (except in *Astropecten*) with terminal suckers.

In the Ophiuroidea (Fig. 306) the *central disc* is much more sharply marked off from the arms than in the Asteroidea. The arms, which are five in number, are comparatively slender, cylindrical, tapering towards the free extremities; in one group, the *Euryalida* (Fig. 307), they are branched. The mouth is in the middle of the ventral surface of the disc, as in the Asteroidea, but there are no ambulacral grooves and there is no anal aperture. Five pairs of slits on the oral surface (Fig. 306, C) lead into the genital sacs, which receive the sperms and ova from the gonads, and which appear also to act as organs of respiration and perhaps also of excretion. The surface is covered with thin plate like...
ossicles, usually beset along their edges with longer or shorter spines; sometimes irregular calcareous granules take the place of plates. Hook-like organs of adhesion are present only in the Euryalida. Each of the arms is supported by a row of internally situated ambulacral ossicles. Tube-feet are present and are protruded at the sides of the arms between the lateral plate-like ossicles; but they have no sucking-discs and no ampullae, and locomotion is effected in the majority of the Ophiuroids by active flexions and extensions of the arms. In one genus there is a pair

Fig. 307.—Astrophyton arborescens, dorsal view. (After Ludwig.)

of fin-like appendages, supported by slender spines, on each joint of the arms. The madreporite is situated inter-radially on the ventral surface, and not on the dorsal as in the Asteroidea. In the Euryalida there are five madreporites and five madreporic canals.

In the Echinoidea the body is either globular or heart-shaped, or flattened and disc-like; dorsal and ventral surfaces are always distinctly recognisable. The exoskeleton is in the form of a rigidly articulated system of calcareous plates, fitting in closely together
by sutures so as to form a continuous shell or corona. Asthenosoma, a deep-sea genus, differs from all the rest in having a corona possessing a certain degree of flexibility, and performing movements which are brought about by the contractions of five longitudinal bands of muscle running along the ambulacral areas on the inner surface.

In the globular forms, or regular Sea-urchins, the mouth is situated at the ventral pole of the globe, the anus at the dorsal, and

the plates of the corona are in twenty regular meridional rows, arranged in ten zones, five ambulacral and five inter-ambulacral, as described in the account of Echinus, with peristome, periproct, ocular and genital plates, and madreporite. Spines (Fig. 309), pedicellariae (Fig. 310), and spharidia are present, as already described (p. 363), the last-named appendages, however, being absent in one group. The spines are usually defensive organs simply, but in some Sea-urchins they act also as the locomotive organs, the animal moving by their agency along the sea-bottom.
The tube-feet, which are arranged in a double row in each ambulacral zone, are extremely extensible, and terminate in sucking-membranes strengthened by a calcareous rosette. An unpaired tentacle, corresponding to those of the Asteroidea, is supported on each of the ocular plates at the ends of the ambulacral zones. Two tube-feet in each double row, situated on the peristome, are likewise of the nature of tentacles, being devoid of sucking-membranes. Corresponding to the dermal branchiae of the Asteroidea are, in the majority, five pairs of branched hollow appendages surrounding the peristome.

Surrounding the mouth are five teeth, supported by an elaborate system of ossicles (Aristotle’s lantern, see p. 366), and a ring of processes, the auricles, from the interior of the corona surrounds this and gives attachment to some of the muscles by which the ossicles are moved.

In the heart-shaped forms or Heart-urchins (Fig. 311) the corona is heart-shaped, the mouth is usually more or less eccentrically placed on the oral surface, and the peristome is usually transversely elongated; the anus is on or near the border between the two surfaces. The ambulacral areas do not run continuously, but stop short at the margin (petaloid ambulacra); one of them, the anterior, is usually unlike the others and frequently devoid of pores. The genital and ocular plates are in the middle of the aboral surface, where the ambulacra converge, and are thus widely separated from the anus; there are usually only four genital plates, and the genital apertures may be reduced to two. Slender spines beset the entire surface and are the chief organs of locomotion. Modified spines, the clavulae, surround the anus in a ring and are distributed elsewhere. A few pedicellariae are present in the neighbourhood of the mouth, and sphaeridia also occur. A series of tree-like dermal branchiae surround the peristome. The “lantern of Aristotle,” with its teeth, is not represented.

In the Clypeasteridea or Cake-urchins the whole corona (Fig. 312) is usually greatly compressed so as to assume the form of a disc, sometimes notched at the edges or pierced by fenestrae. The mouth is in the middle of the flat or concave ventral surface, the anus
eccentrically situated near the margin. The ambulacra are petaloid. The genital and ocular plates are usually more or less fused together at their edges, and the genital apertures are often not in the genital plates, but in the corresponding ambulacral zones. The spines are exceedingly fine and hair-like. Sphaeridia are present, but pedicellariae and clavulae are absent. An "Aristotle's lantern" with teeth is present, as in the globular forms.

In the Holothuroidea the body is more or less elongated in the direction of the axis joining mouth with anus, which are placed at opposite extremities (anterior or oral, and posterior or anal) of the body. The shape is sometimes completely cylindrical, sometimes five-sided; in many there is more or less dorso-ventral compression, and the dorsal and ventral surfaces may differ greatly from one another. A flattened sole-like ventral surface bearing the three rows of tube-feet of the trivium is, as already stated, often distinguishable: it is most distinctly developed in Psolus and allied genera. In some Holothuroids the surface is enclosed in an armour of close-fitting plates; but in the vast majority the body-wall is comparatively soft, being strengthened merely by a great number of minute ossicles of a variety of shapes. In Synapta (Apoda) numerous minute anchor-like spicules, each connected with a latticed plate, project from the surface, and cause the animal to adhere to soft bodies with which it comes in contact.
Around the mouth is a whorl of tentacles—pinnate, shield-shaped, or arborescent. The tube-feet are sometimes entirely absent. When present they are usually uniform in character throughout, and may be arranged in five regular longitudinal rows, or scattered over the entire surface. Sometimes, as has already been stated in the account of Colochirus, the tube-feet of the dorsal surface and even some of those of the ventral may assume the form of papillae. In the Elasipoda the tube-feet of the dorsal surface are remarkably modified, taking the form of greatly elongated processes.

In the Crinoidea the general shape is that which has been described in the case of the feather-star—star-like, with a central disc and a series of radiating arms, which usually branch dichotomously. In the stalked forms (Fig. 314) a stalk, consisting of a row of elongated ossicles connected together by bundles of ligamentous fibres, attaches the animal to the sea-bottom. Along some of the joints of the stalk are usually arranged a number of slender, many-jointed appendages—the cirri. At its base the stalk usually breaks up into a number of root-like processes; distally it becomes continuous with the central disc. The ossicles forming the skeleton of the central disc are the basals and the radials: with the latter articulate externally the brachials, a single row of which gives support to each of the arms and its branches, while similar rows of smaller ossicles support the pinnules—the lateral appendages which fringe the arms in a double row. In the free forms (Feather-stars) the stalk is absent in the adult condition, though present...
in the larva, and the place of its terminal ossicle is taken by a plate—the centro-dorsal ossicle of the disc. To the centro-dorsal ossicle are attached whorls of many-jointed, slender, curved dorsal cirri.

The mouth in all the Crinoidea, with one exception (Actinometra), is situated in the centre of the ventral (upper) surface, and the anus in all, with the same exception, is excentric and inter-radial. Running outwards from the mouth are a series of very narrow ambulacral grooves, one of which runs outwards on the ventral surface of each arm, giving off branches to the arm-branches and to the pinnules. Bordering the ambulacral grooves and their branches are a pair of rows of short tubular tentacles, which correspond morphologically with the tube-feet of the other classes, but are devoid of the terminal suckers, and are not loco-motor, but probably sensory and respiratory in function.

The cœlome in the Echinoderms is a wide cavity lined by a ciliated cœlomic epithelium and containing a corpusculated fluid. Prolongations of it pass out into the rays, and, in the Ophiuroidea and Asteroidea, between the layers of the body-wall. In the Crinoidea
it contains numerous strands of connective tissue. Special organs providing for the respiration of this fluid are the dermal branchiae or papulae, the Stewart’s organs and the respiratory trees. The first of these, which are confined to the Asteroidea and Echinoidea, have been described in the accounts of the Starfish and Sea-urchin. In most Asteroidea they occur only on the dorsal surface, but in some forms they are present on the ventral surface as well. In some of the Echinooids the place of dermal branchiae in providing for the respiration of the compartment of the coelome between the peristome and Aristotle’s lantern is taken by Stewart’s organs, arborescent bodies which project inwards from the peristome. The respiratory trees are referred to below in connection with the enteric canal.

Some reference has already been made, in describing the general form of the body, to the ambulacral system of vessels. A ring-like circum-oral vessel (ring-vessel) in nearly all cases sends off a series of radial branches, one passing along each of the rays or ambulacral areas and giving off branches to the ampullae of the tube-feet or to the tentacles. In most of the Holothuroidea branches pass forwards to the circle of shield-shaped or branched oral tentacles, and in some cases there are vesicles or ampullae at the bases. In the Apoda, in which tube-feet are wanting, radial vessels are also absent, and the vessels to the tentacles come off directly from the ring-vessel. In all the classes, except Crinoidea, one or more bladder-like appendages—the Polian vesicles—are connected with the ring-vessel. The racemose vesicles, or Tiedemann’s vesicles (p. 354), are characteristic of the Asteroidea. In all, except the Crinoidea and the majority of the Holothuroidea, there is a communication between the ring-canal and the surrounding water through the madreporic canal. In the Asteroidea, and in Cidaris among the Echinoidea, the wall of this tube is strengthened by numerous calcareous ossicles. In the Asteroidea, Ophiuroidea, and Echinoidea, the communication with the exterior is through the madreporite; in few Holothuroids in which such a communication exists (Elasipoda) there is usually a simple opening, but sometimes a number of pores crowded together. In the remainder of the Holothuroidea the distal end of the madreporic canal, or canals, lies free in the interior of the body-cavity, with which it is placed in communication by a number of perforations. In the Crinoidea there is no madreporic canal; but the ring-vessel is placed in communication with the coelome by means of a system of ciliated water-tubes, while the coelome communicates with the exterior through a number of minute water-pores, which perforate the ventral body-wall. The fluid contained in the ambulacral system is similar to that in the coelome and contains similar corpuscles. In one Ophiuroid, however, the ambulacral system contains corpuscles coloured red with haemoglobin.
The system of vessels and sinuses to which the designation **blood-vascular system** is applied are specialised extensions of the coelome, from the main cavity of which they are not completely separated off. Their walls are for the most part lined by a ciliated epithelium by means of which the movement of the contained fluid, which does not differ from that in the coelome, is brought about. There is never any contractile part acting as a heart. The general disposition of the parts of this system in the various classes has already been referred to in the descriptions of the examples. The arrangement in the Ophiuroidea resembles that described in the Starfish. In the Holothuroidea and Crinoidea the axial sinus and aboral ring-vessel, present in the other three classes, are absent, and there are large intestinal vessels accompanying the enteric canal.

The **enteric canal** varies in the five classes more than any of the other systems of organs. It is a simple tube in the Holothurians and Echinoids, passing spirally through the body from the mouth at the oral to the anus at the opposite pole. In most of the latter group a complex masticatory apparatus with five teeth—the so-called "lantern of Aristotle"—is situated at its anterior extremity; the corresponding region in the Holothurians is surrounded by a circle of ossicles, which protect the nervous and vascular rings, and into which the longitudinal muscles of the body-wall are inserted.

In the Echinoidea there is a tubular cæcum, the *siphon*, connected with the intestine. In the Holothurians the so-called "respiratory trees" (absent in the Elasipoda and the Apoda) are branched appendages—usually two in number, sometimes single—of the cloaca or posterior wider portion of the intestine, and the "Cuvierian organs" are simple filiform glandular tubes, also connected with the cloaca.

The functions of the siphon and of the respiratory trees have already been referred to in the accounts of Echinus and Cucumaria. The Cuvierian organs, which occur only in a limited number of Holothurians, correspond to undivided basal branches of the respiratory trees: they are defensive organs, the animal when attacked throwing out numbers of these long filaments, which are very viscid and have the effect of entangling and hampering the assailant.

In the Crinoidea the alimentary canal is simply a coiled tube with both mouth and anal opening on the same (ventral) surface of the body. In the Ophiuroids the central mouth leads into a simple sac, giving off short diverticula, and there is no anal aperture. In the Asteroidea the alimentary canal is more complex than in the other classes. The stomach is divided, as already described in the account of the examples, into two portions, the cardiac and the pyloric, the former giving off five large rounded
radial diverticula, the cardiac pouches or cardiac caeca, and the latter giving off five pairs of very long branched diverticula, the pyloric or hepatic caeca. The intestine is short and conical, and opens, in all but a few, by an anal aperture. In some Asteroidea (as in Anthenea, Figs. 283 and 284) the intestine has connected with it a system of five elongated bifurcated inter-radial intestinal caeca; in others (as in Asterias, Fig. 281) these are represented only by two or three lobed diverticula. In one member of the class there are also ten caeca connected with the esophagus.

In the nervous system of the Echinodermata three distinct parts, the relative development of which differs in the different classes, are to be recognised. These are the epidermal or superficial, the deep, and the coelomic. The epidermal system is well developed in all the classes: its principal parts are a circum-oral nerve-ring and radial branches, but a plexus of nerve-fibres with occasional nerve-cells extends from it through the epidermis. In the Ophiuroids the radial nerves and the ring nerve are similar in their arrangement to what is to be observed in the Asteroids, but are more deeply placed, being covered over by the investing calcareous plates. The deep-lying nervous system is absent in the Crinoidea, very feebly developed in the Echinoidea, but well developed in the Asteroidea, Ophiuroidea, and Holothuroidea. Its general arrangement has already been described in the account of the Starfish. The coelomic system is best developed in the Crinoidea and is absent altogether in the Holothurians.

The sexes are distinct in all the Echinoderms, with one or two exceptions: but there is very rarely any trace of sexual dimorphism. Asterina gibbosa, the Starfish the development of which has been described (p. 358), is one of the exceptional hermaphroditic forms: the young animals of this species are male, producing sperms, but at a later stage they become female and produce only ova. In the family Synaptidae of the Apoda there are also numerous examples of hermaphroditism, the animal at first producing ova, later only sperms. In Amphiura squamata, an Ophiuroid, both ovaries and testes are present at once. The gonads, ovaries or testes as the case may be, are branching bodies inter-radial in position, and usually in pairs. In the Asteroidea there are five pairs, the ducts from which open usually on a special plate on the dorsal surface, but in one or two species open on the ventral surface. In the Echinoidea there are five ovaries or testes, the five ducts of which open on the genital plates of the apical system. In the Ophiuroidea there are five pairs of genital glands, a pair in the wall of each of five genital bursae, which open on the exterior by slits on the ventral surface close to the mouth. In the Holothuroidea there is only a single branched gland, sometimes imperfectly divided into two, with a duct opening on the dorsal surface not far from the mouth. In the Crinoidea the ovaries and testes
occupy a remarkable position, being situated in the dilated bases of the pinnules; but as in the other classes they are connected by means of a genital rachis running through the arm with a centrally situated genital stolon.

Development and Metamorphosis.—A few of the members of each class of Echinoderms are viviparous, in the sense that the development of the young takes place in some sheltering cavity, or brood-pouch, on the surface of the body of the parent. But in most development takes place externally, and the larvae are free-swimming. The ovum in all undergoes regular and nearly equal segmentation, resulting in the formation of a ciliated blastula, which becomes invaginated so as to form a typical gastrula, like that of some Coelenterata (p. 161). The invaginated cells form the lining membrane (the endoderm layer) of an internal cavity—the primitive alimentary cavity or archenteron; the enclosing cells form the ectoderm; between the endoderm and ectoderm, and derived from the former, appear the cells of the mesoderm or middle layer. From the archenteron is given off a single or double hollow out-growth, the vaso-peritoneal vesicle or vesicles, from which are derived the body-cavity with its enclosing peritoneal membrane, and the vessels of the ambulacral system with their various appendages. In the Crinoidea the vesicle destined to form the ambulacral system is developed independently of the peritoneal vesicles destined to form the body-cavity. A canal opening on the exterior by a dorsally situated opening, the dorsal pore (sometimes double), is formed by invagination from the surface ectoderm, and comes into relation with a canal formed by out-growth from the rudimentary ambulacral system to form the foundation of the madreporic canal of the adult. In the Crinoidea there are formed five dorsal pores and five canals, but the two sets of structures do not enter into direct communication (see p. 375).

The part of the vaso-peritoneal vesicle (hydrocele) destined to give rise to the ambulacral system, at first rounded, becomes compressed, and subsequently divided round the border into five lobes. Each of these lobes grows outwards to become developed subsequently into one of the five radial ambulacral vessels of the Echinoderm; the central part of the hydrocele gives rise to the ring-vessel surrounding the oesophagus.

The cilia, which at first (in the gastrula stage) covered the surface of the larva uniformly, become restricted to two definite bands, one in front of the mouth or pre-oral, the other in front of the anus or pre-anal. These bands undergo characteristic changes in the different classes, and the form of the larva at the same time undergoes modification by the formation, except in the Crinoidea, of variously arranged processes along the course of the ciliated bands. The resulting larva, or *Echinopectum*, exhibits always marked bilateral symmetry.
In the Asteroidea the larva is either a Bipinnaria (Fig. 315, 4 to 6) or a Brachiolaria. The former has a series of bilaterally arranged processes or arms; the latter has, in addition, three processes not developed in the course of the ciliated ridges. The Bipinnaria is usually free-swimming, but sometimes, as in the
In the case of Asterina (p. 361), creeps on the surface of a rock by means of the larval organ. In at least one form the Bipinnaria, developed in a brood-pouch, adheres to the parent by means of the larval organ which takes the form of a short stalk. In both the Ophiuroidea and the Echinoidea (Fig. 315, 7 to 9) the larva has the form which is known as the Pluteus. The Pluteus has a series of slender arms directed forwards and supported by a skeleton of delicate calcareous rods. A remarkable feature of the Pluteus in one case at least (Echinoeumus pusillus) is that the ciliated bands consist of rows of flagellate collared cells, similar to those of the endoderm of Sponges. The larva of the Holothuroidea, the Auricularia (2 and 3), has a number of short processes developed in the course of the ciliated bands; subsequently, in the *pupa*

![Fig. 316.—Development of Antedon. A, larva with ciliated band, posterior tuft of cilia, and mouth (to the right); B, larva with the developing plates of the pentacrinoid stage; C, pentacrinoid stage.](image)

stage, the ciliated bands become broken up into a series of ciliated hoops encircling the body. Of the Crinoidea the development of Antedon alone is known, and has been already described (p. 377). The larva (Fig. 316) is barrel-like, with four transverse bands of cilia and a bunch of stronger cilia at the posterior end. The posterior end of the larva becomes drawn out to form a narrow process or stalk, by means of which it becomes attached to some foreign object. The attached condition of Antedon, termed the pentacrinoid stage, is only temporary; as the development approaches completion, the stalk is absorbed, and the Feather-Star becomes free.

In the transition from the bilateral larva—Pluteus, Bipinnaria, Brachiolaria, or Auricularia—to the radial adult there is a marked metamorphosis. As the adult form becomes developed on one side of the larva, the larval arms or processes become absorbed. In the
Holothuroidea and Ophiuroidea all the organs of the larva are carried on into the adult; in the Asteroidea and Echinoidea the larval mouth and oesophagus are abolished, and a new permanent mouth and oesophagus formed as a fresh invagination from the surface. In the very limited number of Echinoderms that are viviparous there is no such marked metamorphosis; but even in these the larva is at first distinctly bilateral in its symmetry.

Ethology, etc.—The Echinodermata are, without exception, inhabitants of the sea. In the adult condition the majority creep on the sea-shore or on the sea-bottom, the stalked Crinoids being exceptional in their permanently attached condition; but the larvae of the great majority are *pelagic*—i.e. live swimming in the upper strata of the ocean.

Echinoderms inhabit all depths of the sea, ranging from the shore between low- and high-water limits to the greatest depths. Members of all the classes are found at all depths; but the stalked Crinoids, and the Elasipoda among the Holothuroidea are virtually confined to the deepest waters of the ocean, only one genus of the former and one species of the latter occurring in comparatively shallow water. Echinoderms are found in the seas of all parts of the globe. Like the majority of marine invertebrate groups, the phylum is more abundantly represented, as regards the number of genera and species, as well as of individuals, in the warmer regions; the Crinoidea, the Holothuroidea and the Echinoidea are all much more abundant in tropical and warm temperate seas than in colder latitudes.

Echinoderms are of gregarious habits, large numbers of the same species frequently being found closely associated together in a comparatively narrow area. The movement of locomotion in the Starfishes is, as previously described (p. 348), a slow creeping one through the agency of the tube-feet; the same holds good of the Echinoidea and those of the Holothuroidea (*Pedata*) that possess tube-feet. The footless Holothurians (*Apoda*, such as *Sympatomy*) creep along with the help of the tentacles. Most of the Ophuroids move by lateral flexions, sometimes sluggish, sometimes remarkably rapid, of the arms. The Comatulae, on the other hand, swim along by the dorso-ventral flexion and extension of the pinnate arms propelling them through the water. Many Asteroids, Ophiuroids, and Echinoids bury themselves in sand or mud: others creep into narrow fissures in rock or coral. Movements of *manducation* are performed by the tentacles in the Holothurians: in the Starfishes the mouth papillae are separated from one another and the cardiac part of the stomach everted in order to enfold the prey, often of relatively large size. In those Echinoidea that possess a lantern of Aristotle there are very powerful and efficient movements of mastication. On the whole, as might be expected from the comparatively highly developed muscular and nervous systems,
the co-ordination of movement is very much more complete in the Echinodermata than in the groups already dealt with.

A remarkable characteristic of the Echinoderms is the faculty of self-mutilation which many of them possess, together with the capacity for replacing parts lost in this way or by accidental injury. This is most marked in many Ophiuroids, some Asteroids, and some Holothurians, and does not occur at all among the Echinoids. Many Brittle-stars and some Starfishes, when removed from the water, or when molested in any way, break off portions of their arms piece by piece until, it may be, the whole of them are thrown off to the very bases, leaving the central disc entirely bereft of arms. A central disc thus partly or completely deprived of its arms is capable in many cases of developing a new set; and a separated arm is capable, in some instances, of developing a new disc and a completed series of arms. In some Starfishes (Ophiuroids and Asteroids) a process of separation of the arms and their development into complete individuals frequently occurs altogether independently of injury, and seems to be a regular mode of reproduction in these exceptional cases. Many Crinoids, also, readily part with their arms when touched, and are capable of renewing them again; and some, at least, are capable of renewing the visceral sac of the central disc when it has become accidentally removed.

In the case of many Holothurians it is the internal organs, or rather portions of them, that are capable of being thrown off and replaced—the oesophagus, or the cloaca with the Cuvierian organs, or the entire alimentary canal, being ejected from the body by strong contractions of the muscular fibres of the body-wall, and in some instances, at least, afterwards becoming completely renewed.

Two out of the seven classes of the phylum Echinodermata—the Cystoidea and Blastoidea—are represented only by fossil forms; and these are found only in rocks of the older (Palæozoic) formations, no representatives having survived to more recent times. Of the five classes that have living members, one, the Crinoidea, was very much more abundantly represented in the older geological periods than it is at the present day, the remains of stalked Crinoids forming great beds of limestone of Silurian to Carboniferous age; the free Comatulae only appeared at a much later period. The other classes, or at least the Echinoidea, Asteroidea, and Ophiuroidea, were represented at a very early period by forms not very widely different from those now living; but the earliest Echinoids were peculiar in having the number of rows of plates variable, and in the plates overlapping one another. The Holothuroidea, owing to their comparatively soft integument, were less fitted to leave any remains in the form of fossils, and it is not till we come to the Mesozoic Period that undoubted traces of their existence are found.
Affinities.—The presence of radial symmetry was formerly regarded as involving a near relationship with the Coelenterata, which were grouped with the Echinoderms under the comprehensive class-designation of Radiata (see section on the History of Zoology). But leaving out of account the presence of a bilateral symmetry underlying and partly concealed by the radial, we are led by a study of the anatomy of the various systems of organs to the conclusion that the Echinoderms are in no way closely or directly related to the Coelenterates. One very great and very important difference between the two phyla consists in the presence in the Echinodermata of an extensive coelome or body-cavity between the alimentary canal and the body-wall. In addition to this the Echinodermata are characterised by the possession of highly elaborated systems of organs—alimentary, vascular, and nervous—such as occur in none of the Coelenterata, all of which exhibit extreme simplicity in their internal structure. A further point of difference, not perhaps of so much importance, is the absence in the Echinoderms of any tendency to form colonies of zooids by asexual multiplication by means of buds: all Echinoderms are simple, i.e. non-colonial, animals, and each of them is developed, save in certain very exceptional cases, as a result of a sexual process from an impregnated ovum. In spite, then, of the radial symmetry, we are forced to the conclusion that the Echinodermata are not more nearly related to the Coelenterata than to some of the groups of Worms. They are, in fact, a singularly isolated group, and we look in vain among the known members, living and fossil, of other phyla, for any really close allies. The intermediate forms—whatever they may have been like—between the Echinoderms and other groups have become extinct, and have left no remains in the form of fossils, or such remains have not yet been discovered. So difficult has it been found to connect the Echinoderms with other animal types that it has even been proposed to regard an Echinoderm as a radially arranged colony of zooids connected together centrally, each ray being a zooid equivalent to an entire simple worm-like animal. But the history of the development is entirely at variance with such a view.

Whatever may have been the group of animals from which the Echinodermata were developed, there is every probability that it was a group with bilateral and not radial symmetry. The radial symmetry is evidently, as has already been pointed out, of a secondary character: it is only assumed at a comparatively late period of development, and even in the adult condition it does not completely disguise a more primitive bilateral arrangement of the parts. Accordingly, within the phylum itself, it is reasonable to regard those classes as the more ancient which have the radial symmetry less completely developed. Again, the free condition which characterises all existing Echinoderms, with the exception
of a few Crinoids, is probably less primitive than the attached, since in other phyla the radial symmetry is co-ordinated with, and seems to be developed on account of, a fixed, usually stalked condition. Probably then stalked Echinoderms were the progenitors of the existing free forms. The fossil Cystoidea, some of which were stalked, and in which the radial symmetry is not always strongly marked, are to be looked upon as the most primitive of all the classes of Echinodermata, and a probable genealogy of the whole phylum is indicated in the diagram below.

![Diagram](Fig. 317.—Diagram to illustrate the relationships of the classes of Echinodermata.)

According to another view, however, the most primitive of existing Echinoderms are *Synapta* and its allies (Holothuroidea apoda). The other Holothuroids are supposed, according to this conception of the relationships of the various classes, to have been derived from a Synapta-like ancestor. From the primitive stock of the Holothuroids is supposed to have been derived a form which gave origin to all the stalked classes. From this ancestral stalked Echinoderm, again, the remainder of the free classes—the Echinoidea, Asteroidea and Ophiuroidea—are regarded as having been descended.
SECTION X

PHYLUM ANNULATA

The phylum Annulata comprises four classes of Worms—the Chaetopoda or Earthworms and marine Annelids, the Archi-annelida, the Gephyrea, and the Hirudinea or Leeches. All of these, except the Gephyrea, have the elongated body divided externally into a number of rings, which represent a division of the internal parts into a series of segments or metameres. There is usually an extensive coelome, and there is in most a system of blood-vessels. The nervous system consists of a cerebral ganglion, oesophageal connectives, and a double ventral nerve-cord, which in all but the Gephyrea is segmented into a series of ganglia. The organs of excretion are in the form of metamerically arranged pairs of tubes, the nephridia or segmental organs, leading from the coelome to the exterior, and all these, or certain specially modified pairs of them, may have the function of permitting of the passage outwards of the reproductive elements.

CLASS I—CHÆTOPODA.

The Chaetopoda, comprising the Earthworms, Fresh-water Worms, and Marine Annelids, are Worms the body of which, unlike that of a Flat-worm or a Round-worm, is made up of a series of more or less completely similar segments or metameres, each containing a chamber or compartment of the body-cavity and a section of the alimentary canal and other organs. At the sides of each are a pair of muscular processes, the parapodia, which do duty as limbs, bearing bundles of setae or bristles, and bearing also, usually, certain tactile appendages, the cirri. There is an extensive coelome, incompletely divided into a series of chambers corresponding to the segments, by a series of muscular partitions, which act also as mesenteries, being attached internally to the alimentary canal. The latter extends throughout the length of the body; the intestine is usually constricted between the segments. There
is a well-developed blood-vascular system in the majority of the Chaetopoda; and organs of respiration in the form of gills or branchiae are usually developed. The excretory organs are in the form of segmentally arranged pairs of tubes, the nephridia. The nervous system consists of a bilateral principal ganglion or brain, situated in the prostomium, and a double chain of ganglia extending throughout the body. The sexes are in some distinct, in others united. When a definite larval form occurs it is a Trochosphere.

1. Examples of the Class.

a. Nereis dumerilii

General External Features.—Various species of *Nereis* occur abundantly between tide-marks on the sea-shore, under stones, and among sea-weed in all parts of the world. The worm varies considerably in colour even in the same species, the differences being partly due to differences in the stage of development of the sexual elements. In *N. dumerilii* the prevailing colour is some shade of violet, with a blush of red in the more vascular parts due to the bright red colour of the blood. In shape (Fig. 318) the body, which may be about 7 or 8 centimetres in length, is long and narrow, approximately cylindrical, somewhat narrower towards the posterior end. A very distinct head, bearing eyes and tentacles, is recognizable at the anterior end; the rest is divided by a series of ring-like narrow grooves into a corresponding series of segments or metameres, which are about eighty in number altogether; and each of these bears laterally a pair of movable muscular processes called the parapodia, provided with bundles of bristles or setae. The head (Fig. 321) consists of two parts, the prostomium (prost.) and the peristomium (perist.).

1 Though *Nereis dumerilii* is here named as the example, and the majority of the figures refer specially to that species, the description given would apply almost equally well to a considerable number of species of the genus.
The former bears on its dorsal surface four large rounded eyes in front a pair of short cylindrical tentacles (tent.), and further back a pair of somewhat longer stout appendages or palp (palp.). The peristomium, which bears some resemblance to the segments of the body, though wanting the parapodia, bears laterally four pairs of long slender cylindrical tentacles (perist. tent.); on its ventral aspect is a transversely elongated aperture, the aperture of the mouth. The segments of the body differ little in external characters from one another throughout the length of the worm. Each bears laterally a pair of parapodia, which in the living animal are usually in active movement, aiding in creeping, or acting as a series of oars for propelling it through the water. When one of the parapodia (Fig. 319) is examined more attentively it is found to be biramous, or to consist of two distinct divisions—a dorsal, which is termed the notopodium (noto.), and a ventral, which is termed the neuropodium (neuro.). Each of these is further subdivided into several lobes, and each bears a bundle of setae. Each of the bundles of setae is lodged in a sac formed by invagination of the epidermis, the setigerous sac, and is capable of being protruded or retracted and turned in various directions by bundles of muscular fibres in the interior of the parapodium. In each bundle there is, in addition to the ordinary setae, a stouter, straight, dark-coloured seta (ac.), the pointed apex of which projects only a short distance on the surface; this is termed the aciculum. The ordinary setae (Fig. 320) are exceedingly fine, but stiffish, chitinous rods, of which two principal kinds are recognisable; both have a terminal blade articulating with the main shaft of the seta by a distinct joint; but in the one variety the shaft of the seta is finer than in the other, and the terminal blade long, slender, and nearly straight, whereas in the other variety it is short and
slightly hooked. On the dorsal side of the parapodium is a short cylindrical, tentacle-like appendage, the *dorsal cirrus* (Fig. 319, *dors. cirr.*), and a similar, somewhat shorter, appendage, the *ventral cirrus* (*vent. cirr.*), is situated on its ventral side. The last segment of the body, the *anal segment*, bears posteriorly a small rounded aperture, the *anus*; this segment is devoid of parapodia, but bears a pair of appendages, the *anal cirri*, similar in character to the cirri of the ordinary segments, but considerably longer. On the ventral surface, near the bases of the parapodia, there is in each segment a pair of very fine apertures, the openings of the nephridia.

The **enteric canal** is a straight tube running throughout the length of the body from the mouth to the anus. Between the outer surface of this tube and the inner surface of the wall of the body is a considerable space—the *coelome*, body cavity, or *perivisceral cavity*—filled with a fluid, the *coelomic fluid*. The walls of the coelome (Fig. 322) are lined with a thin membrane, the *coelomic epithelium* or *peritoneum*, of which the outer layer—that lining the body-wall—is the *parietal layer* (*par. peri.*), that covering the outer surface of the alimentary canal the *splanchnic* or *visceral* layer (*visc. peri.*). The space is divided by a series of transverse partitions or *septa* passing inwards from the body-wall to the wall of the alimentary canal opposite the grooves between the segments, and thus dividing the coelome into a series of chambers, each of which corresponds to one of the segments. These partitions are not complete, spaces being left around the alimentary canal and elsewhere, through which neighbouring chambers communicate.

The mouth leads into a wide cavity, the *buccal cavity*, continued back into a *pharynx* (Fig. 321, *ph.*). These two chambers extend through the peristomium and the first to the fourth segments of the body. They are lined with a tolerably thick cuticle, continuous with a similar layer lining the outer surface of the body, and in the pharynx are a number of very small dark brown chitinous *denticles*, which are very regularly arranged. The posterior part of the pharynx (*dentaly region*) has very thick walls composed of bundles of muscular fibres, which are concerned in the movements of a pair of laterally placed chitinous *jaws*. Each jaw is elongated in the direction of the long axis of the body, rounded at the posterior end or base, where it is embedded in muscle, pointed at the apex, which is strongly incurved; the inner edge is divided into a number of strong serrations or teeth: the whole jaw might be compared to a pruning-hook with its cutting edge deeply serrated.

Behind the pharynx the alimentary canal narrows considerably to form a tube, the *oesophagus* (*oes.*), which runs through about five segments to open into the intestine.

Running backwards and inwards from the wall of the peristomium
to the wall of the buccal cavity and pharynx are a number of bands or sheets of muscle, the protractor muscles, by the contraction of which this anterior part of the alimentary canal is capable of being everted as a proboscis until the jaws are thrust forth and thus rendered capable of being brought to bear on some small living animal, or fragment of animal matter, to be seized and swallowed as food. The proboscis is withdrawn again by a retractor sheet of muscle, which passes inwards and forwards to be inserted into the wall of the alimentary canal at the junction of the pharynx and oesophagus.

Into the oesophagus open a pair of large unbranched glandular pouches, or aeca (gl.), which probably are of the nature of digestive glands. The intestine (int.) is a straight tube of nearly uniform character throughout, regularly constricted between the segments—the constrictions becoming much deeper towards the posterior end of the body. The part of the intestine which lies in the last segment is termed the rectum.

The wall of the alimentary canal (Fig. 322) consists (1) of the visceral layer of the peritoneum (visc. peri.); (2) of a layer of longitudinal muscular fibres (long. mus.); (3) of a layer of circular muscular fibres (circ. mus.); (4) of the enteric epithelium (ent. ep.),
consisting of close-set, long, narrow cells. To these layers is super-added in the buccal cavity and the pharynx an internal chitinous cuticle, continuous with that of the general outer surface.

Developmentally the buccal cavity and the pharynx constitute the stomodaeum, the rectum the proctodaeum, the rest of the alimentary canal the mesenteron.

The wall of the body consists of a cuticle, an epidermis or deric epithelium, muscular layers, and the parietal layer of the peritoneum referred to above. The cuticle (cut.) is a thin chitinous layer which exhibits an iridescent lustre due to the presence of two intersecting systems of fine lines; it is perforated by numerous minute openings, the openings of the epidermal glands. The epidermis (ep.) is very thin, except on the ventral surface, where it becomes considerably thickened. It consists of a layer of cells containing numerous twisted unicellular glands, which are most abundant on the ventral surface, particularly near the bases of the parapodia; on the dorsal surface the epidermis contains plexuses of fine blood-vessels. The muscular layers are two in number—an external in which the fibres run circularly (circ. mus.), and an
internal in which they run longitudinally. The latter is not a continuous layer, but consists of four bundles of fibres, two dorso-lateral (dors. long. mus.) and two ventro-lateral (vent. long. mus.).

Nereis has a well-developed system of vessels filled with blood of a bright red colour. A main dorsal vessel (Figs. 321 and 322, dors. ves.) runs from one end of the body to the other above the alimentary canal, and is visible in places through the body-wall in the living animal. It, as well as the majority of the vessels, undergoes contractions which are of a peristaltic character—waves of contraction passing along the wall of the vessel so as to cause the movement of the contained blood. These peristaltic contractions are more powerful in the case of the dorsal vessel than in that of any of the others, and run with great regularity from behind forwards, so as to drive a current of blood in that direction. The contractions are brought about partly by a series of muscular fibres which are arranged in rings round the wall of the vessel at short intervals; but the wall of the vessel is itself contractile.

Along the middle of the ventral surface below the alimentary canal runs another large longitudinal vessel, the ventral vessel (vent. ves.), in which the current of blood takes a direction from before backwards. Connecting the dorsal and ventral vessels, there are in each segment two pairs of loop-like transverse vessels which give off branches to the parapodia, the alimentary canal, and neighbouring parts. Some of these branches communicate with plexuses of fine vessels in the interior of the lobes of the parapodia and in the integument of the dorsal surface, and with dilatations or sinuses situated in the bases of the parapodia. A delicate longitudinal neural vessel accompanies the nerve-cord.

Nereis is devoid of any branchiae; but there can be little doubt that the lobes of the feet with their rich blood-supply, and the areas of integument occupied by plexuses of blood-vessels, subserve the function of respiration.

There is a well-developed nervous system (Fig. 323) which is bilateral and metameric in its arrangement, like the other systems of organs. Situated in the prostomium is a large bilobed mass of nerve-matter containing numerous nerve-cells, the cerebral ganglion or brain (c). This gives off tentacular nerves to the tentacles and palpi, and two pairs of short thick optic nerves to the eyes. Behind, two thick nerve-strands, the oesophageal connectives (d), curve round the mouth in the peristomium to meet on the ventral aspect behind the mouth and below the pharynx. The oesophageal connectives, with the cerebral ganglion, thus form a ring around the anterior part of the enteric canal. Running backwards from the point of union of the oesophageal connectives, along the entire length of the body of the worm, on the ventral aspect, is a thick cord of nerve-matter, the ventral nerve-cord (h). In each segment this cord presents a little dilatation from which
nerves are given off to the various parts of the segment: and each of these enlargements is really double, consisting of a pair of closely-united ganglia. The intermediate parts of the cord, between successive pairs of ganglia, are also double, consisting of a pair of longitudinal connectives enclosed in a common sheath. Given off behind from the cerebral ganglion is a system of fine nerves with occasional small ganglia, the stomatogastric or visceral system, distributed to the anterior part of the alimentary canal.

The tentacles and palpi, as well as the cirri, are probably organs of the sense of touch. The only other sense-organs are the four eyes, situated on the prostomium. The eye (Fig. 324) consists of a darkly pigmented cup, the retina (re.), with a small rounded aperture, the pupil, and enclosing a mass of gelatinous matter, the lens (l.). The wall of the cup is composed of numerous long and narrow cells lying parallel with one another in a radial
direction. The outer end of each cell narrows into a nerve-fibre forming part of the optic nerve; near this end is a nucleus; the main body of the cell is densely pigmented; the inner part projects towards the lens as a clear hyaline rod (r). The cuticle of the general surface passes over the eye, and a continuation of the epidermis, with its cells somewhat flattened, constitutes the cornea (co).

The organs which are supposed to perform the function of excretion are a series of metamerically arranged pairs of tubes, the segmental organs or nephridia (Figs. 321 and 322, neph., Fig. 325 occurring in all the segments of the body. The nephridium consists of two parts—a body and a narrow anterior prolongation.

Fig. 324.—Nereis. Section through one of the eyes. co. cornea; cu. cuticle; l. lens; r. layer of rods; re. retina. (After Andrews.)

The body is of an irregular oval shape directed nearly transversely, but slanting somewhat. The outer end, situated in the base of the parapodium near its middle, is much the narrower. The inner end is continuous with a narrow prolongation about equal in length to the body, which runs forwards and inwards to become attached to the mesentery. The external opening or nephri-diopore (ext. op.) is a fine circular pore capable of being widened or contracted, situated on the ventral surface not far from the base of the ventral cirrus. This leads into a canal which runs through the anterior prolongation to its extremity, where it bends sharply back again and runs to the body, through which it pursues an extremely tortuous course to the outer end, and then bends back again and runs in the anterior prolongation to the extremity of the latter, where it opens into the coelome through a ciliated bell or funnel (fun.), the nephrostome, projecting through the mesentery
into the cavity of the segment next in front of that in which the body of the organ lies. Throughout its course the canal is excavated in a mass of nucleated material of a granular character not distinguishable into cells.

Nereis is unisexual. The sexual elements, ova or sperms, are formed from temporary masses of cells, ovaries or testes, which are developed towards the breeding season by a proliferation of the cells of the membrane (peritoneum) lining the coelome and the structures it contains. In Nereis dumerilii there is in the male only a single pair of these proliferating masses of cells (testes), situated in one of the segments between the nineteenth and the twenty-fifth. These, during the season of their active development, give off groups of cells which become disseminated throughout the coelomic fluid. The original cells (mother-cells) undergo division into smaller cells, each of which develops into a sperm with a minute rod-shaped head and a long vibratile flagellum or tail. In the female the ovaries (Fig. 322, ov.), formed by a similar process of proliferation, take the form of rounded masses of cells, metamerically arranged, surrounding the principal vessels throughout the length of the body. The young ova become detached from the ovaries, and attain their full development while floating about in the coelomic fluid. Both ovaries and testes dwindle after they have given off the sexual cells, and at the non-breeding season of the year are not to be detected.

Ova and sperms, when fully ripe, are discharged, reaching the exterior, in the case of the sperms probably through the nephridia, in the case of the ova, which are much too large to pass out in this way, probably through apertures temporarily formed by rupture of the body-wall; and impregnation takes place by contact between the two sets of elements while floating freely in the sea-water.
Nereis dumerilii is an extremely variable species. If we compare a number of specimens, we find numerous individual differences between them. The most striking of these are differences of colour and of the number of segments in the body; but a careful examination reveals many other points in which individuals differ. Thus the precise form of the lobes of the parapodia varies, together with the number of setae in the two bundles: so also do the relative length of the tentacles, the number of teeth on the jaws, and the number and arrangement of the denticles in the pharynx. Not only are such individual differences common, but the species occurs in two distinct forms or phases, which differ from one another so widely that they have been referred to distinct genera. One of these is the Nereis phase, which is that described in the preceding paragraphs. A Nereis dumerilii may become sexually mature in this form, or may first undergo a series of changes by which it becomes converted into the second or Heteronereis phase (Fig. 318, B). The principal changes which take place during this metamorphosis are a great increase in the size of the eyes, and a great modification of the parapodia in the posterior portion of the body, the lobes becoming larger and more leaf-like, and the setae of the Nereis becoming superseded by others which are considerably longer, more numerous, and somewhat oar-shaped. The Heteronereis, instead of creeping about on the bottom, swims about actively through the water by wriggling movements of the body combined with active paddling movements of the parapodia with their long setae. After a time the Heteronereis, like the Nereis, becomes sexually mature, developing ova and sperms, the latter of which differ remarkably in shape from those of the Nereis phase.

Development.—The egg of Nereis when first discharged is enclosed in a transparent thick gelatinous envelope, within which are two membranes—an outer very thin and delicate, and an inner (zona radiata) thicker and very distinctly striated in a radial direction. The protoplasm of the ovum contains a number of oil-drops and yolk-spherules. When fertilisation takes place the yolk-spherules move away from what is destined to become the upper pole of the egg, leaving a polar area composed of granular protoplasm. The zona radiata disappears, and the contents of the ovum undergo for a time amœboid changes of form. Then the spherical form is reassumed, two small bodies—the polar globules—are thrown off at the upper pole, and the process of segmentation (Fig. 326) begins. Up to a fairly advanced stage this corresponds very closely with the segmentation of the Polyclad oosperm as described on page 256. The oosperm divides first into two parts, then into four. From these four cells—the meganereis—there are separated off in succession three sets of micromeres, making twelve in all. One of these, belonging to the
second set, somewhat larger than the others, and differing from them in its subsequent history, is termed the first somatoblast (som. 1); a second somatoblast (som. 2) is soon given off from the same megamere that gave origin to the first.

The germinal layers are now all established. The micromeres constitute the ectoderm, destined to give rise to the epidermis and all its derivatives, to the cerebral ganglion and nerve cord, to the oesophagus and rectum. The megameres eventually give origin to the cells of the endoderm, forming the internal epithelium of the alimentary canal. The second somatoblast gives rise to the entire mesoderm of the Annelid. The micromeres extend,

as they multiply by division, at first as a cap of small cells over the upper pole of the embryo; eventually the cap extends itself so as completely to cover the four megameres and the descendants of the somatoblasts except at one point, the blastopore, at the lower pole, where the investment remains for a time incomplete. When the blastopore closes, the process of epibolic gastrulation is completed. A thickening of the layer of ectoderm cells, the apical plate, in the middle of what is destined to form the head-end of the embryo, is the rudiment of the cerebral ganglion; in close relation to it are formed a pair of pigment spots, the larval eyes. From the middle of the head-end projects a tuft of cilia (Fig. 327, A.,
Fig. 327.—**Nereis.** Later stages in the development. *A,* stage at which the prototroch and the apical tuft of cilia first become distinct; *B,* somewhat later stage, in which the stomodectal invagination is being formed, and the rudiments of the mesoderm bands are distinct; *C,* late trochosphere stage in which there are rudiments of the setigerous sacs; *D,* somewhat later stage, in which the parapodia have begun to become prominent and the provisional sete project freely; *E,* larva with three segments; *an,* anus; *ap. cil,* apical cilia; *ap. pl,* apical plate; *eye,* eye; *fr. bod.* frontal bodies; *int.* intestine; *l. mus.* longitudinal muscle; *mes,* mesoderm; *mo,* mouth; *neur. pl.* neural plate; *para.* parapodia; *pig.* pigmented area; *prot.* prototroch; *sen.s h.* sensory hairs; *set. sacs.* setigerous sacs; *som.* second somatoblast and group of cells formed from it; *st.* stomodeum; *tent.* tentacles. (After E. B. Wilson.)
Encircling the body of the larva behind this is a thickened ridge, the prototroch (prot.), the cells of which develop strong cilia. Just behind the prototroch the cells of the ectoderm become pushed inwards, in the middle of what will eventually become the ventral surface, so as to line a sort of depression or pouch: this is the stomodæum (st.) or rudiment of the mouth and oesophagus. The anus (an.) does not appear until later; the position which it will subsequently occupy is indicated at this stage by a pigmented area (pig. ar.) marking the point at which the blastopore becomes closed. The first and second somatoblasts divide to form a mass of small cells which extend on the ventral surface behind the prototroch and mouth, constituting what is termed the ventral plate; of this plate the more superficial cells are descendants of the first somatoblast—one of the twelve original micromeres; and those situated more deeply are derived from the second somatoblast or mesomere. A superficial thickening along the middle of the ventral plate is the rudiment of the ventral nerve-cord (neur. pl.): the deeper cells divide and extend to form a pair of mesoderm bands or muscle plates, from which the muscles of the body-wall are developed; the muscular layers of the wall of the alimentary canal are derived from certain of the same set of cells which migrate inwards from the lower end.

A pair of micromeres separated from the rest at an early stage are destined to form the larval excretory organs, the head kidneys: at first situated at the upper end, they sink below the surface and migrate downwards till they come to lie below the prototroch; each then elongates, and a number of vacuoles which have become formed in the interior coalesce in such a way as to form a long narrow canal. The embryo has now reached the completed Trochosphere stage.

The endoderm cells become arranged so as to bound a canal-like space, the beginning of the lumen of the middle part of the alimentary canal (oesophagus and intestine) (int.), the cells subsequently giving rise to the enteric epithelium. This canal becomes continuous in front with the stomodæum, and behind with a second smaller ectodermal invagination, the proctodæum, which arises in the position of the former pigment area. The part of the larva behind the prototroch now elongates, and two pairs of invaginations, the setigerous sacs (set. sae), appear at its sides: in the interior of these, to which a third pair is soon added, are developed setæ which grow out to a great relative length as the larval or provisional setæ. Constrictions soon appear marking off the first three segments, and at the same time the mesoderm bands undergo a corresponding division into three pairs of mesoderm segments. The mesoderm segments of each pair grow inwards towards one another and surround the alimentary canal: in the interior of each appears a cavity which is the beginning of a
segment or chamber of the cælome. As the two mesoderm segments become closely applied to one another and unite around the alimentary canal, their two cavities also come into close relation, and eventually are separated from one another only by thin vertical septa, which afterwards form the dorsal and ventral mesenteries. Successive mesoderm segments also come into close relationship with one another, their cavities eventually only remaining separated by thin transverse partitions, which form the intersegmental septa or mesenteries.

The region in front of the prototroch becomes modified to form the prostomium of the adult. The body increases in length, and additional segments with their setigerous sacs become distinguishable (E) until, on the development of the tentacles, the outgrowth of the parapodia (para.) with their cirri and the permanent setæ (which replace those first formed), the formation of the full number of segments, and the completion of the internal organs, the adult condition of the worm is attained.

b. The Earthworm (Lumbricus).

General External Features.—The Earthworm (Fig. 328) has a long narrow body, which may be described as approximately cylindrical, but slightly depressed towards one end, the posterior. Dorsal and ventral surfaces are readily recognisable, the latter being much paler in colour than the former, and exhibiting a slight flattening; an anterior end is distinguishable in the living animal as that which is directed forwards in the ordinary creeping movements of the worm. The surface, as in the case of Nereis, is very distinctly marked out into segments or metameres by a series of ring-like constrictions; the segments, which are very numerous, amounting to about 150, are somewhat longer towards the anterior end than they are further back.

At the extreme anterior end is a rounded lobe, the prostomium, immediately behind which is the opening of the mouth. Next to the prostomium is the most anterior segment, the peristomium, which bounds the mouth behind. The eyes and tentacles present in Nereis are not represented. On the most posterior segment, the anal segment, is a small median opening, the anal aperture. A limited region of the body in front of the middle, comprising segments from the thirty-second to the thirty-seventh, has a swollen appearance: this is termed the clitellum. There are no parapodia like those of Nereis, but running along the lower surface of the worm are to be recognised with the aid of a lens four double rows of short bristles or setæ (Fig. 329), a pair of each row occurring in each segment, which thus possesses eight altogether. The extremities of all these setæ are directed backwards, and they act as fulcras for the forward movements of the worm on the surface.
of the ground or in the interior of its burrow. The setae in the
clitellum, and those in the neighbourhood of the genital apertures,
are much slenderer than the rest. Along the middle line of the
dorsal surface, from about the eleventh segment backwards, is a
row of small apertures, one at the line of division between each
contiguous pair of segments: these, which are termed the *dorsal
pores*, perforate the body-wall and open internally into the cælome.
On the ventral surface are two rows of minute apertures—a pair

![Diagram of Lumbricus agricola](image)

Fig. 328. *Lumbricus agricola.* A, entire specimen, lateral view; B, ventral view of anterior
portion of the body, magnified. 1, 15, 33, first, fifteenth, and thirty-third segments. The
black dots represent the setae. (After Vogt and Jung.)

on each segment—the *excretory apertures* or *nephridiopores*. On
the ventral surface of the fifteenth segment (Fig. 328, 15), is a
pair of slit-like apertures with somewhat tumid lips, the *male
reproductive apertures*; and on the segment immediately in front,
the fourteenth, are two smaller rounded apertures, the *female
reproductive apertures*. In the intervals between the ninth and
ten, and tenth and eleventh segments are two pairs of small
pores, the openings of the *receptacula seminis.*
The **body-wall** (Fig. 330) consists of a cuticle, an epidermis or dermic epithelium, a dermis, muscular layers with associated connective-tissue, and, lining the inner surface, a thin cellular membrane, the *peritoneum* or *colonic epithelium*. The cuticle (*cut.*) is similar to that of *Nereis*, and has a similar iridescent lustre; it is perforated by numerous minute apertures. The epidermis consists, except on the clitellum, of a single layer of cells elongated in the vertical direction: many of these cells have the character of unicellular glands; many others are nerve-cells, and are connected by fine nerve-fibres with the nerve-cord. On the clitellum the epidermis is thickened, and blood-vessels extend between the cells. Below the epidermis is a layer of connective-tissue, the *dermis*. The muscular fibres which make up the greater part of the thickness of the body-wall are arranged in two principal sets—a layer of...
circularly arranged fibres (circ. mus.) situated externally, immediately below the dermis, and a layer of longitudinally arranged fibres (long. mus.) situated internally. The circular layer is interrupted at all the intervals between the segments; the longitudinal layer is interrupted along a series of longitudinal lines, so as to be divided into seven bundles.

The setae are lodged in sacs, the setigerous sacs. (see Fig. 339), lined by a continuation of the epidermis. In the region of the body in which the reproductive organs are lodged some of these sacs are enlarged and glandular, and receive the special name of the capsulogenous glands.

The enteric canal (Fig. 331) is, as in Nereis, a tube which runs through the entire length of the body from the mouth at the anterior to the anus at the posterior end. As in the case of Nereis, it lies in a cavity, the coelome, lined by a thin cellular membrane, the peritoneum, and filled with a fluid, the coelomic fluid, containing colourless corpuscles. It is divided into a series of chambers corresponding to the segments by a series of delicate transverse partitions, the septa or mesenteries, consisting of folds of the peritoneal membrane enclosing muscular fibres.

The mouth leads into a small buccal cavity. This is followed by a much larger thick-walled, rounded chamber, the pharynx (ph.).
From the wall of the pharynx there run outwards to the body-wall a number of radially arranged bundles of muscular fibres which, when they contract, draw the pharynx backwards, and at the same time dilate it. Behind the pharynx follows a comparatively narrow tube, the oesophagus (oes.), which extends through about seven segments. At the sides of the oesophagus, in each of the segments ten, eleven, and twelve, is a pair of rounded projections (oes. gl.). The first pair—the oesophageal pouches—are hollow, and their cavities are in communication with the lumen of the oesophagus. The other two pairs—the calciferous glands—are thickenings of the wall of the oesophagus, the fluid in the interior of which is milky, owing to its containing numerous particles of carbonate of lime; the numerous small cavities which they contain are in communication with the oesophageal pouches. Posteriorly the oesophagus is followed by a rounded thin-walled chamber, the crop (cr.), and this is followed by a very thick-walled chamber, also of rounded form, the gizzard (giz.). From this the intestine (int.) extends throughout the rest of the length of the body to the anal aperture. It is wide with thick but soft walls, constricted opposite the septa, i.e. in the intervals between the segments. Running along the middle of its dorsal surface is a longitudinal fold, the typhlosole (Fig. 330, typh.), projecting downwards into the lumen. On the wall of the intestine outside the muscular layers and surrounding the intestinal blood-vessels are a number of granular, yellow cells—the chlorogen cells (hep.): these are specially abundant in the typhlosole. The terminal part, situated in the last segment, is termed the rectum.

The whole alimentary canal is lined internally by a cuticle, which is thicker in the gizzard than elsewhere, and by a single layer of columnar epithelial cells, the enteric epithelium. Some of these cells, more granular than the others, grouped in certain regions, more particularly along the typhlosole, are of the nature of unicellular digestive glands, secreting a digestive fluid. Others seem to be specially concerned in the absorption of the digested food. External to this is a layer of connective-tissue. The greater part of the thickness of the wall is made up of muscular fibres, of which there are two layers, an external longitudinal and an internal circular. These layers are greatly thickened in the walls of the pharynx and of the gizzard.

The Earthworm, like Nereis, has a well-developed vascular system, consisting of blood-vessels with well-defined walls. The blood is bright red, the colour being due to the same colouring matter, viz. haemoglobin, as in the case of the blood of the higher animals, occurring, however, not in corpuscles, but in the liquid part or plasma; corpuscles are present, but they are colourless. The main trunks are the dorsal, the ventral, the sub-neural, the two lateral neural, and a series of transverse branches. The dorsal
vessel (Fig. 330, *dors. v.*) runs along the middle of the dorsal surface between the body-wall and the intestine; it is readily visible shining through the former in the living worm. The *ventral vessel* (*vent. v.*) lies below the alimentary canal, the *sub-neural* below this again under the nerve-cord; the *lateral neural* lie on either side of the nerve-cord. The *transverse* branches correspond in number to the segments; they run round from the dorsal vessel to the ventral, giving off branches in their course. Six of them, viz. those in the sixth to the eleventh segments inclusively, are dilated and pulsate rhythmically; these have the function of driving the blood through the system of vessels, and are hence frequently termed the "hearts." The walls of all the principal vessels are contractile, and assist in bringing about the movement of the blood, which is propelled in such a way as to run forwards in the dorsal vessel and backwards in the ventral.

The *nervous system* (Fig. 332) consists of a dorsal bilobed *brain* or *cerebral ganglion* and a double *ventral chain* of ganglia, together with a pair of *oesophageal connectives* by which the former is connected with the anterior end of the latter. The *brain*, which is of small size, is situated in the third segment above the beginning of the alimentary canal; it is divided by a median constriction into two lateral parts of pyriform shape with their broad ends in contact. The connectives pass from this round the sides of the alimentary canal to unite in the middle below with the most anterior of the ventral chain of nerve-ganglia. In this way a complete *nerve-ring* or *nerve-collar* surrounds the anterior part of the enteric canal in the third segment. From this the ventral chain of ganglia extends backwards to the posterior end of the body. In each segment it presents a slight enlargement, most conspicuous in the more posterior segments. The whole chain is double, the swelling in each segment consisting of a pair of intimately fused ganglia. From the brain nerves are given off to the prostomium; and from the ventral chain three pairs of nerves are given off in each segment. From the oesophageal connectives a series of *stomatogastric* nerves pass to the pharynx and neighbouring parts of the alimentary canal.

![Diagram of Lumbricus nervous system](image-url)
The Earthworm is devoid of organs of sight or hearing. It exhibits sensitiveness to bright light, which may be due to direct action on the central parts of the nervous system. The sense of hearing appears to be absent; but a faculty analogous to taste or smell, enabling the animal to distinguish between different kinds of food, is well developed. The goblet-shaped bodies, groups of narrow epidermal cells, most abundant on the prostomium and peristomium, have probably to do with this faculty.

The organs of excretion—the segmental organs or nephridia—(Fig. 333) are similar to those of Nereis, but somewhat more complicated. They are slender tubes which occur in pairs in all the segments of the body except the first three and the last. Externally each nephridium opens by one of the small excretory pores which have already been mentioned as occurring on the ventral surface; internally it ends in a funnel-shaped ciliated extremity with an aperture, the nephrostome, opening into the cavity of the corresponding segment. The tube is thrown into several loops attached to the posterior surface of the corresponding mesentery by a fold of membrane. Two parts are clearly recognisable—an inner narrow and an outer thick part: in the former the narrow central lumen is a perforation through the axis of a string of cells, and is thus intracellular; it is lined in parts with cilia arranged in two rows: in the latter the passage is lined by cells, and is thus inter-cellular, and there is a thick muscular investment. The nephridia are abundantly supplied with blood by means of nephridial branches of the ventral vessel.

Reproductive Organs.—The Earthworm is hermaphrodite. There are two pairs of very small flattened testes (Fig. 334, te, te'), partly divided into a number of digitate lobes, situated in the tenth and eleventh segments. A pair of comparatively large sacs, the anterior vesicula seminales (ant. ves. sem.), lie partly in the
cavity of the ninth segment, but extend into the tenth, where they coalesce in the middle to form a large median sac of somewhat irregular form, the anterior sperm reservoir (ant. sp. res.). The anterior pair of testes project into this, and the cells destined to form the sperms, developed in the former, pass by dehiscence into the large median cavity. On either side is a large ciliated funnel, or rossete (fun.), leading outwards from the interior of the reservoir. A second pair of vesicula seminales (mid. ves. sem.), situated in the eleventh segment, also open into the anterior sperm reservoir. A third pair (post. ves. sem.), situated in the twelfth segment, unite in front to form the posterior sperm reservoir (post. sp. res.), which lies in the middle of the cavity of the eleventh segment. The posterior pairs of testes have the same relation to this as the anterior pair have to the anterior reservoir; and a posterior pair of ciliated funnels (fun.) leads outwards from its cavity. Each ciliated funnel leads to a narrow, somewhat convoluted duct, the vas efferens, and the two vasa efferentia of each side unite to form a vas deferens or spermiduct (v. def.), right or left as the case may be, which passes almost straight backwards
to open by the corresponding male aperture on the fifteenth segment.

The female reproductive organs consist of a pair of ovaries, a pair of oviducts with a pair of receptacula ovarum, and two pairs of receptacula seminis. The ovaries (ov.) are minute pear-shaped bodies, which are situated in the thirteenth segment, attached to the septum between the twelfth and thirteenth. The oviducts (ov. d.) are a pair of short tubes, each with a comparatively wide funnel-shaped opening into the cavity of the thirteenth segment, and extending backwards and outwards in the fourteenth segment, to open at the female aperture on the ventral surface of the latter. The receptacula ovarum are a pair of reniform sacs which open into the funnel-shaped ends of the oviducts. The receptacula seminis (rec.) are two pairs of rounded sacs which open on the exterior in the intervals between the ninth and tenth, and tenth and eleventh segments.

Though hermaphrodite the Earthworm is not self-impregnating, but two individuals provide for mutual fertilisation by an act of copulation. The copulating individuals become applied together by their ventral surfaces, the heads pointing in opposite directions, and become attached in this position by the setæ of the genital region and by a viscid secretion from the clitellum and of certain glands, called the capsulogenous glands, situated in the neighbourhood of the reproduction organs. The sperms from the male apertures of each pass along temporarily formed grooves to the receptacula seminis of the other.

When the ova are mature they are discharged from the ovary into the cavity of the thirteenth segment, whence they pass out to the exterior through the oviduct, to be enclosed in the cocoon, after having been detained for a time in the receptaculum ovarum.

Development.—The oosperms or fertilised ova of the Earthworm are enclosed, together with a quantity of an albuminous fluid derived from the capsulogenous glands, in a cocoon, the wall of which is formed of a viscid secretion from the glands of the clitellum, hardened and toughened by exposure to the air. The cocoon is deposited in the earth and the embryos develop into complete, though minute, worms before they make their escape. The segmentation is somewhat unequal. A flattened blastula (Fig. 335 A) is formed, with a large but flattened segmentation cavity. This becomes invaginated to form a cylindrical gastrula (B); the blastopore becomes narrowed and subsequently gives rise to the mouth of the adult. A pair of large mesoderm cells (m) early become marked off from the other cells of the gastrula; these become divided to form a pair of mesoderm bands composed of several rows of small cells, which grow forwards towards the mouth. By swallowing movements the embryo at this stage takes
in the albuminous fluid in the interior of the cocoon, and increases rapidly in size, bursting the enclosing vitelline membrane. As the embryo elongates, the mesoderm bands become divided into segments, and the subsequent history of these is essentially similar to what has been already described in the case of Nereis. The

![Diagram](image_url)

Fig. 335.—Early stages in the development of **Lumbricus.** A, lateral view of flattened blastula; B, ventral view of gastrula with slit-like blastopore; C, lateral view of later stage: blastocoele; blastopore; ect, ectoderm; end, endoderm; m, primary mesoderm cell; mes, mesoderm bands; ner, cell from which the primitive nerve cord (ne. co.) takes origin; nph, cells taking part in the formation of the nephridia; st, stomodaeum. (After Wilson.)

most essential difference between the two forms consists in the non-occurrence in the Earthworm of any free-swimming Trochosphere stage.

2. **Distinctive Characters and Classification.**

The Chaetopoda are Annulata with the body made up of distinct metameres, which are usually numerous and similar throughout
The metameres are provided with chitinous setae developed in sacs (setigerous sacs) of the epidermis, and usually elevated on muscular appendages, the parapodia. There is a large coelome divided internally into chambers by transverse septa or mesenteries, and not in communication with the blood-vascular system, which is nearly always highly developed. The ventral nerve-cord consists of a chain of ganglia. The reproductive cells are formed by a proliferation of certain parts of the peritoneum or membrane lining the coelome, and usually reach the exterior through modified or unmodified nephridia.

Sub-Class I.—POLYCHÆTA.

Chaetopoda with the sexes distinct and the ovaries and testes of simple character and metamERICally repeated. Highly developed parapodia are present, in most instances, bearing numerous long seta. There is usually a definite head with eyes and tentacles, and often cirri and branchiae on the segments of the body. A metamorphosis takes place: the larva is a Trochosphere. All the Polychaeta are marine.

Order 1.—Archi-Chætopoda.

Aberrant or primitive Polychaeta in which the nervous system is not separated from the epidermis and the ventral cord is not segmented into ganglia. Only one genus (Saccocirrus).

Order 2.—Errantia.

Carnivorous free Polychaeta with protrusible pharynx usually armed with chitinous jaws. There is a well-developed head. The segments are completely or nearly similar throughout the length of the body, and the parapodia are equally developed throughout, and provided with cirri. The branchiae, when present, are not confined to the anterior end.

Order 3.—Sedentaria.

Vegetable-feeding Polychaeta which permanently inhabit tubes; devoid of protrusible pharynx and of jaws or teeth. The head is frequently very small, and sometimes devoid of eyes or of tentacles. The body is distinguishable, by differences in the form of the segments and of the parapodia, into two or even three regions. The parapodia are little prominent in the posterior parts, and usually without cirri. The branchiae, when present, are usually confined to the anterior end, and are sometimes represented by modified cephalic tentacles.

1 The Archi-Chætopoda are usually classed with the Polychaeta, but their alliances are perhaps quite as close with the Oligochaeta.
Sub-Class II.—Oligochaeta.

Chaetopoda with the sexes united, the ovaries and testes compact and few in number. No definite parapodia are developed and no cirri, and only a small number of simple setae on each segment. The head is not distinct. There is no metamorphosis. Mostly terrestrial or fresh-water forms.

Order 1.—Naidomorpha.

Small Oligochaeta with relatively few segments, with asexual as well as sexual reproduction. Male genital pores on, or in front of, the seventh segment. The anterior part of the body is often distinguished from the rest by a difference in the form or arrangement of the setae. Eye-spots are frequently present.

Order 2.—Lumbricomorpha.

Reproduction is only sexual. The anterior part of the body is never specialised, and the setae are similar throughout (except in special parts, such as the clitellum). The male genital pores are behind the seventh segment. There are no eye-spots.

Systematic Position of the Examples.

Nereis dumerilii is one of many species of Nereis, differing from one another in certain minor details of their structure—such as the relative length of the palpi and tentacles, the size and form of the eyes, the shape of the parapodia, the form of the setae, and the like. The genus Nereis differs from the other genera of the family Nereidae, to which it belongs, in having the parapodia biramous, and the cirri simple, and in the presence of a series of denticles in the pharynx in addition to the pair of jaws. The family Nereidae differs from all the other families of the Errantia in the union of the following characters:—The body is always elongated and made up of a considerable number of segments. The prostomium is well developed, and bears a pair of tentacles, a pair of palpi, and four eyes. The peristomium is devoid of parapodia, and has four pairs of tentacles. The parapodia are either uniramous or biramous; both dorsal and ventral cirri are present; the setae are compound (articulated). There is a pair of anal cirri. In the pharynx there is always a pair of horny jaws, and usually a number of denticles as well.

There are several species of the genus Lumbricus, differing from one another in the general form of the body, the number of the segments, the shape of the pro stomial lobe, and other minor points. All of them agree in the presence of the following features,
which characterise the genus and distinguish it from the many other genera of the family Lumbricidae:

The prostomium is dovetailed completely into the peristomium. The setae are always in couples. The clitellum begins between the twenty-sixth and the thirty-second segment, and extends over six or seven segments. The male apertures are always on the fifteenth segment. There are three pairs of vesiculae seminales, in the ninth, eleventh, and twelfth segments, connected across the middle line in the tenth and eleventh by sacs enclosing the ciliated funnels.

The family Lumbricidae is distinguished from the other families of the sub-order Megadrili, which comprises all the Earthworms, by the combination of the following features:

The clitellum usually begins behind the twentieth segment and occupies from six to nine segments; it is incomplete ventrally. The male apertures are not situated further back than the fifteenth segment. There are three or four pairs of vesiculae seminales, in the ninth to the twelfth segments. The testes and ciliated funnels are in the tenth and eleventh segments. The female apertures are on the fourteenth.

The general form of the body in the Chaetopoda is cylindrical, but in many, e.g. some members of the families Polynoidae (Fig. 336) and Amphipomidae, there is a very considerable degree of dorso-ventral compression. In most the body is very long in comparison with its breadth; but this is not a universal rule, the length being in some cases not more than five or six times the breadth. The surface is marked out by a number of more or less distinct annular constrictions or impressed lines into a corresponding series of segments or metameres, which are usually very numerous, often some hundreds in number, though in some cases there are not more than from twenty to thirty. These segments are usually very similar throughout the length of the body; but in the Tubicolous Polychaeta (Fig. 337) there may be two or even more regions distinguishable from one another by the form of the segments and of their appendages. In the Oligochaeta there is a thickened zone, the clitellum, comprising sometimes only one segment, sometimes a number.
Each segment, with certain exceptions to be noted presently, bears either a pair of parapodia or merely certain setae representing the parapodia. Parapodia are lateral hollow processes of the body-wall bearing a number of bristles or setae. Frequently the parapodium is divided horizontally into two distinct lobes or branches—a dorsal which is termed the notopodium, and a ventral which is termed the neuropodium. Even when this is not the case there may be two bundles of setae representing the two parts. The setae are nearly always chitinous;

![Diagram of a Serpulid](image-url)

Fig. 337.—A Serpulid (Vermilia cespitosa). Lateral view of animal removed from its tube

abd. abdomen; *br.* branchiae; *op.* operculum; *th.* thorax.

in *Euphrosyne* they are calcified. They are hollow or solid, entire or divided into a number of joints. In shape (Fig. 338) they vary greatly in different groups; often several very distinct forms of setae are present in different parts of each parapodium of a single worm, or in parapodia of different regions of the body. Some are exceedingly delicate and hair-like, others needle-shaped, others compressed and sabre-like, others bayonet-like. Very often there is a long, straight, narrow part or handle with which is articulated a terminal blade, or bayonet, or hook.
Sometimes the setae are quite short, projecting little beyond the parapodia, and are hook-like or comb-like. Usually each bundle contains, in addition to the ordinary setae, a stouter straight simple seta, which scarcely projects on the surface: this is termed the *aciculum*. Each seta or each bundle of setae is lodged in a sac, the *setigerous sac* (Fig. 339), formed by an invagination of the integument, and lined by cells continuous with the epidermis. Each seta is derived from one of these cells, and is to be looked upon as a specially developed part of the cuticle of the general outer surface. The setigerous sacs are usually provided with protractor and retractor muscles, by the action of which the setae may be thrust out or retracted.

In addition to the setae the parapodium bears very commonly certain soft appendages of a sensory character, the *cirri* (Fig. 319, *dors. cirr.*, *vent. cirr.*) There are usually both dorsal and ventral cirri, the latter nearly always much smaller than the former. The cirri are usually filamentous; sometimes jointed; sometimes they are laterally compressed and leaf-like. In *Polynoe* (Figs. 336 and 340) and its allies certain of the parapodia bear, instead of dorsal cirri,
flattened scales, the clytra (el.), richly supplied with nerves; these are sometimes looked upon as modified dorsal cirri; but in some members of the group cirri and clytra occur together on the same segment.

In Sternaspis a ventral shield formed by a thickening of the cuticle in the posterior region of the body bears a number of setae round its edge.

In the Oligochaeta (Fig. 341) the parapodia are absent as processes of the body-wall, and are merely represented by a small number of short setae each lodged in its sac; and cirri are not developed.

The first segment or prostomium, together with the second or peristomium, forms in many Polychaeta a very distinct head; the prostomium in such a case bears eyes and tentacles and contains the cerebral ganglion; on the peristomium is the opening of the mouth, and also certain tentacles, the peristomial tentacles. A ventral pair of prostomial tentacles, somewhat thicker than the rest, are sometimes to be distinguished, and are termed the palpi. Neither prostomium nor peristomium bears parapodia, though an
aciculum is sometimes developed in the latter; the prostomium, in fact, is not quite correctly termed a segment, being different from the true segments both in structure and in mode of development. In the Oligochaeta there is no definite head, tentacles are entirely absent, and in the terrestrial forms the prostomium does not lodge the cerebral ganglion. In *Sternaspis spinosa* the prostomium is elongated and bifurcated like the proboscis of the *Gephyrea armata* (vide infra).

The last segment is termed the anud segment, owing to its bearing the anal opening; it differs from the preceding segments also, usually, in wanting the parapodia and in having a pair of special cirri, the anud cirri.

Branchiae are borne on the dorsal surfaces of more or fewer of the segments in many of the Polychaeta. Sometimes they occur on all, or nearly all, the segments; sometimes they are confined to the middle region of the body; sometimes they are present only at the anterior end, as in the majority of the *Tubicola* (Figs. 337 and 342). In the *Terebellidae* the branchiae are situated on the dorsal surfaces of some of the anterior segments. In the *Serpulidae* they form two incomplete lateral circlets of elongated appendages, situated at the anterior end of the body, and apparently appendages of the prostomial segment, supported sometimes by a cartilaginous skeleton; one of them is enlarged to form a stopper, or operculum (op.), often armed with calcareous plates and spines.
for the closure of the mouth of the tube in which the annelid lives. In shape the branchiae are sometimes filiform, sometimes compressed and leaf-like, sometimes branched in a tree-like manner, sometimes pinnate. In *Serpula* (Fig. 349) and its allies each branchia consists of an elongated stem, on which are borne two rows of short filaments. The surface of the branchiae is usually ciliated. They are richly supplied with blood-vessels, when a blood-vascular system is developed; in *Glycera*, in which there are no blood-vessels, each branchia contains a diverticulum of the coelome.

In the Oligochaeta branchiae are rarely present; but in certain worms of the family *Tubificidae* there are metamerically arranged simple branchiae on the segments of the posterior region, which is the part ordinarily protruded from the tube.

The **body-wall** consists of a cuticle, an epidermis, muscular
layers, and a layer of peritoneum. The cuticle, composed of a chitinoid material, usually presents two systems of fine lines intersecting one another at right angles: it is perforated in many places by the ducts of the unicellular glands of the epidermis. The epidermis consists of a single row of cells, with, in some cases, smaller cells of replacement intercalated between their inner ends. In shape the cells vary greatly in different families and often in different parts of the body of the same worm, being sometimes flattened, sometimes cubical or polyhedral, but more usually more or less vertically elongated. Cilia occur on the surface in certain parts in many Chaetopoda. Among the ordinary cells of the epidermis there are usually numerous unicellular glands often containing rod-like bodies. In the tubicolous forms these unicellular glands are active in secreting the material for the construction of the tube. In addition the epidermis frequently contains sensory cells, which are in many cases contained in certain special elevations or sensory papille.

The muscular part of the body-wall consists of two layers, in the outer of which the fibres are disposed circularly, while in the inner their arrangement is longitudinal. The circular layer is continuous, or, more usually, interrupted opposite the intervals between the segments. The longitudinal layer is disposed in four bands in the Polychaeta, two dorso-lateral and two ventro-lateral. In the Oligochaeta it is divided by the setigerous sacs which pass through it.

The peritoneum or coelomic epithelium consists of a single layer of cells. These are usually non-ciliated, but are ciliated in the Aphroditea, Glycera, and some others, the movement of the cilia bringing about an active circulation of the fluid in the coelome, the coelomic or perivisceral fluid.

The body-cavity or coelome, a wide space intervening between the wall of the body on the one hand and that of the enteric canal on the other, is divided in many Chaetopoda by a series of transverse septa or mesenteries into a series of chambers corresponding to the segments. The septa are not complete partitions, there being always apertures of greater or less extent by which the cavities of neighbouring segments communicate. The septa consist of double folds of the peritoneum enclosing muscular fibres.

The enteric canal is an elongated, and nearly always straight, tube, running through the entire length of the body from mouth to anus. A number of different parts are usually distinguishable; but their disposition varies to a very great extent in the different groups. The buccal cavity, into which the mouth leads, is followed by a muscular pharynx: these are both formed in the embryo by invagination of the ectoderm, and therefore correspond to a stomodaeum. The muscular pharynx is absent in some of the tubicolous-
Polychaeta; when present it is frequently protrusible to a greater or less extent (see Fig. 336); around its extremity, when it is fully protruded, are to be seen a circle of papillae in some forms; and in many one or more horny teeth, situated in its interior, are brought into play. A gizzard with thick walls may follow upon this protrusible pharynx, sometimes preceded by an osophagus, which may be dilated behind into a crop. The intestine is nearly always more or less deeply constricted between the segments, and in the Aphroditida, or Sea-mice (Fig. 343), there are in each of the segments (with the exception of one or two of the most anterior and one or two of the most posterior) a pair of cece which are to a greater or less extent branched at their extremities. In the Hesionida and Syllida a pair of cece which open into the anterior part of the intestine frequently contain gas, and probably have a hydrostatic function. In some of the terrestrial Oligochaeta (Earthworms) a fold of the intestinal wall, the typhlosole, projects into its lumen. The intestine is straight in most, but is somewhat coiled in the Chloromidae, Sternoaspid, and others. The wall of the alimentary canal consists (1) of the visceral layer of peritoneum; (2) of longitudinally arranged muscular fibres; (3) of circularly arranged muscular fibres; (4) of enteric epithelium. The peritoneum on the surface of the intestine has in many Chaetopoda its cells enlarged and granular to form the so-called chloragen cells, which probably have an excretory function. The epithelium is very generally ciliated; it contains numerous gland-cells. In addition the stomodaeum and the proctodaeum are lined internally by a cuticular layer, which is continuous with the cuticle of the general surface. The anus is usually terminal in position, sometimes directed towards the dorsal aspect. There is, in most instances, a longitudinal mesentery running to the alimentary canal from the dorsal body-wall; and sometimes a ventral mesentery is also present bearing a corresponding relation to the ventral surface.

Some Chaetopoda are entirely devoid of blood-vessels. In one family in which this occurs (the Glyceridae among the errant Polychaeta), the perivisceral fluid, which assumes some of the functions of the blood, contains numerous red corpuscles, the red colour of which is due to the presence of haemoglobin (see p. 34). In the majority of the Chaetopoda there is a highly developed vascular
PHYLCM in and it very 437 plasma.

The chief blood-vessels are usually dorsal and ventral longitudinal trunks. These are connected together by metamerically arranged transverse branches. In some of the Tubicola the dorsal vessel is not present, its place being taken by a circum-intestinal sinus or a circum-intestinal plexus of vessels lying in the wall of the alimentary canal. The movement of the blood is effected in most instances by peristaltic contractions of the dorsal vessel or of a circum-intestinal sinus or plexus, or of a short and wide dorsal cardiac sac given off by the latter anteriorly, having the effect of driving the blood from behind forwards. In some instances, as in the Earthworms and some Tubicola, specially dilated lateral vessels are contractile, and by their pulsations bring about the circulation of the blood through the system of vessels. Plexuses of fine capillary vessels in the integument of various parts frequently aid in respiration, and are particularly well developed in certain forms in which definite organs of respiration are absent.

The nervous system consists of a cerebral ganglion or brain and a double ventral chain of ganglia. The cerebral ganglion is distinctly bilobed, and may be looked upon as composed of two intimately united ganglia. It is almost invariably situated in the pro stomium, though placed a little further back in the Earthworms; it gives off branches to the eyes and tentacles. From it there run backwards and downwards the paired oesophageal connectives, which embrace the anterior part of the alimentary canal between them, and below join the anterior end of the ventral chain of ganglia. The latter always exhibits indications of being made up of two lateral halves, in the double character of the connecting commissures, and frequently of the ganglia themselves. One of these double ganglia occurs in each segment, and from it a number of nerves pass out to the various parts of the segment. In certain Tubicola (Serpula and others) the two halves of the chain are separated from one another by a wide space, across which transverse commissures pass between the ganglia. Connected with the cerebral ganglia, or with the oesophageal connectives, or with both, there is a system of delicate stomatogastric nerves passing to the walls of the anterior part of the alimentary canal. In the majority of the Chaetopoda the cerebral ganglion and the ventral chain are separated from the epidermis by muscular layers; in some, however, the ventral chain is in contact with the epidermis: and in certain primitive or aberrant forms, the Archi-Chaetopoda (Fig. 344) and Sternaspis, the cerebral ganglion is in close union with
the epidermis; in these also the ventral cord is not segmented into ganglia. Running longitudinally through the ventral cord in many forms are certain *giant fibres* of very large size; though these may have rather a skeletal than a nervous function, they are simply greatly enlarged and modified nerve-fibres. Nerve-cells may be confined to the ganglia, or may be distributed over the entire surface of the ventral cord. *Giant nerve-cells* occur in some forms in certain regions. Small ganglia occur frequently in various peri-

![Diagram](image)

Fig. 341 — *Saccocirrus*, transverse section, to show the position of the nerve cords. *dors. v.* dorsal vessel; *int.* intestine; *ne. co.* nerve cord; *set.* setae. (After Fraipont.)

pheral parts, at the bases of cirri or of sensory papillae more especially.

The *organs of special sense* are *eyes*, *tentacles* and *cirri*, and *otocysts*. *Eyes*, absent in all the Oligochaeta with a few exceptions, and in some of the tube-forming Polychaeta, as well as in a few free forms of that sub-class, are very general in their occurrence. Their structure is, as a rule, very simple, but in some reaches quite a high grade of development. Usually they are confined to the prostomium, but *Polyopthalmus*, in addition to the prostomial eyes, has pairs of eye-like organs on many of the segments of the body. *Leptochone* has a pair on each segment, and in *Fabricia* there is a pair on the anal segment, while in many species of *Sabella* and all the species of *Dasychone* there are eyes or eye-like organs on the branchial filaments.
Most usually the eye is (as in Nereis, p. 410, Fig. 324) a spherical capsule with a wall composed of a single layer of cells, which are elongated on the inner side, i.e. the side turned towards the brain, while on the outer side they are usually flattened. The outer thin part of the wall of the capsule or cornea, is sometimes united with the epidermis; when the two layers remain distinct, the outer one is the outer cornea, the inner the inner cornea. In many cases a thickening of the surface cuticle over the cornea forms a cuticular lens. The cells of the inner portion of the wall of the capsule form the elements of the retina; they are long narrow cells, sometimes composed of three distinct segments—(1) a clear rod, directed towards the central cavity; (2) a middle segment which is densely pigmented; and (3) a segment containing the nucleus of the cell and directed towards the brain or the optic ganglion, with which it is connected by a nerve-fibre. Frequently the second and third segments are not to be separately recognised, the whole of that part of the cell which contains the nucleus being densely pigmented.

A refractive mass fills the interior of the capsule, and is sometimes distinguishable into a firmer outer part, the lens, and a more fluid inner part, the vitreous body. This refractive mass is often continuous with the cuticle externally, and internally may be in continuity with the rods. In some cases the structure of the eye is very much simpler.

Otocysts are only exceptionally present. They consist of capsules of ciliated cells, in the fluid contained in which there is one or several calcareous otoliths.

Ciliated grooves occur on the prostomium of many forms; in Aricia they are present on all the segments; they have a special nerve-supply, but their function can only be conjectured. Tactile cells of the epidermis, with or without a projecting tactile hair or stiff cilium, are very common, especially on the prostomium in the Oligochaeta and on the tentacles and cirri in the Polychaeta. Groups of these are often aggregated together in papillae or goblet-bodies with special nerve-supply, and often with a ganglion or a single nerve-cell at the base.

The organs of excretion of the Chaetopoda are a series of segmentally arranged tubes, the nephridia, of which a pair, as a rule, occur in each of the segments of the body, with the exception usually of a few at the anterior and a few at the posterior end. In its simplest form the nephridium is a curved tube, ciliated internally, opening on the exterior by a laterally placed pore at the one extremity, and at the other ending in a ciliated funnel or nephrostome, which opens into the cavity of the corresponding segment. The nephridia thus effect a communication between the coelome and the exterior, and serve to carry off waste products which have passed into the coelomic fluid; but in many instances
the cells lining the tube are active in separating out such waste matters, and are loaded with granules and concretions. The communication which they establish with the exterior also enables the nephridia to take on the additional function of reproductive ducts, as will be more particularly noticed in discussing the reproductive system. The outer part of the tube is usually more or less dilated; the inner narrower part in some cases consists of a row of perforated cells, the lumen being intra-cellular. The external apertures are nearly always ventral in position; in Polyzoæ and its allies they are situated on short tubercles or papillæ. Sometimes the nephridia are confined to a certain region of the body. In some families of Polychæta there is a single pair of large nephridia in the anterior region of the body, with or without smaller pairs in the posterior segments, the former alone appearing to have an excretory function. In Sternaspis only a single pair of nephridia is present. In the great majority of the Polychæta the nephridia have the function of reproductive ducts as well as of excretory organs. In the Oligochoæta the ordinary nephridia do not possess this function: usually they are simple elongated and coiled tubes, a pair or sometimes more than one in each segment; but in some these are replaced or supplemented in certain of the segments, or in all, by a branching system of tubes with scattered ciliated funnels. In one genus, though paired nephridia are present, they do not open directly on the exterior, but communicate with a branching system of tubes consisting of four principal longitudinal vessels and segmentally repeated transverse branches. Sometimes the ordinary nephridia are not developed in the segments lodging the reproductive organs, their place being there taken by three pairs of tubes (mesonephridia) which become modified to give rise to the reproductive ducts; but ordinary nephridia may be present in these segments as well. In some Oligochoæta the nephridia of the most anterior segments open into the mouth or pharynx, and have apparently taken on the function of digestive glands (peptonephridia).

The mode of development of these tubes varies in different instances. In some cases they are formed, like the excretory tubes of Platwyelminthes and Trochelminthes, from cells of ectodermal origin (ecto-nephridia). In others their source is mesodermal, each tube being formed as a funnel-like outgrowth of the peritoneum (peritoneal funnel) which subsequently comes to open on the exterior (mesonephridia). In other cases, again, both ectoderm and mesoderm take part in their formation, the peritoneal funnel becoming connected with an ingrowth of the ectoderm (diplo-nephridia). The ordinary nephridia of the Oligochoæta are ectonephridia; those of the Polychæta for the most part diplonephridia.

The permanent nephridia of the adult Chaetopod are preceded in the larva by a series of provisional or embryonic nephridia of a
temporary character. These have been found to occur in the head (prostomium) of many larval Oligochaeta and Polychaeta. They are ciliated intra-cellular tubes, sometimes branched, which do not open into the cavity of the prostomium. Sometimes ciliary flames projecting into the lumen occur at the inner ends of the branches or of the undivided tube. Embryonic nephridia have also been shown to occur in the body in certain forms.

In the arrangement of the reproductive organs in the Chaetopoda there is an essential difference between the two subclasses, the Oligochaeta being hermaphrodite, and the Polychaeta, with only a very few exceptions, unisexual. In the latter the gonads, ovaries or testes as the case may be, are masses of cells which are developed as the result of a sort of proliferation of the coelomic epithelium in certain positions (Fig. 345). Usually these organs, which are only conspicuous about the breeding season, occur in the great majority of the segments of the body; sometimes they are confined to a certain region. The exact place which they occupy in the interior of the segment varies in different cases. Sometimes they surround one of the principal blood-vessels; sometimes they are situated laterally, in the bases of the parapodia. The sperms frequently undergo the final stages in their development after they have become detached from the testes.

Fig. 345.—Diagram to illustrate the development of a gonad from the peritoneal (coelomic)-epithelium in one of the Polychaeta.

- *perit.* peritoneal membrane; *repr. gl.* gonad (reproductive organ); *vent. vess.* ventral vessel. (After E. Meyer.)
while floating in the coelomic fluid, and the same sometimes holds good of the ova. Both sperms and ova appear to reach the exterior, in the majority of cases, through the nephridia, which may become modified and enlarged at the breeding season, though in some forms it is stated that the reproductive cells escape through temporary or permanent openings in the body-wall. Impregnation takes place externally in nearly all.

In the Oligochaeta the reproductive organs are confined to a certain limited region of the body. There are either, as in the Earthworms, two pairs of testes, or a single pair, as in the aquatic forms. The testes are small, and frequently become reduced to mere vestiges in the adult animal, having mainly become broken up into sperm-mother-cells, which in some way reach the vesiculae seminales to undergo development into mature sperms. The vesiculae seminales are comparatively large sacs, which vary in number and arrangement in the different genera. One or two median sperm-sacs, formed by the coalescence of pairs of vesiculae, may be present or absent. In the same segments as the testes, and opening into the sperm-sacs when the latter are developed, are either two or four ciliated funnels (mesonephridia), according to the number of the testes, leading into efferent ducts. All the four ducts, when four are present, may remain distinct, or the two ducts of each side may open into a common atrium, or they may unite to form a common elongated vas deferens, opening at the male genital aperture.

There are never more than two ovaries, which, like the testes, are of very small size. The ova may become mature in the ovary, or groups of cells may become detached from the latter and one cell in each group ripen into an ovum. A receptaculum ovarum occasionally receives the ova after they leave the ovary. There are two oviducts, which open by funnel-shaped apertures into the coelome.

Development.—The Oligochaeta deposit the eggs in cocoons, either buried in the earth or attached to water-plants. The cocoon contains, in addition to a number of fertilised ova, a quantity of an albuminous fluid which serves as nourishment to the developing embryos. Segmentation is always unequal. In the forms in which food-yolk is scanty there is a process of embolic invagination (Lumbricus rubellus); in the others (Pabipex, &c.) the process is of the epibolic type. In the former case a blastula and an invaginate gastrula are formed in the way already described in the case of the Earthworm. In Lumbricus trapezoides the gastrula divides into two, each half subsequently giving rise to an embryo. In the latter the micromeres spread over the megameres very much as in the Polychaeta. A pair of mesoderm cells early appear, and by their division form the mesoderm bands. No free larval stage similar to the Trochosphere occurs in any of the
Oligochæta, but the stage intervening between the completion of the gastrula and the commencement of the segmentation of the mesoderm bands corresponds to the Trochosphere in essential respects, and in some forms there is recognisable a feebly developed circlet of cilia comparable to the prototroch, and in some a pair of head nephridia.

Impregnation and the development of the embryo take place externally in all the Chaetopoda, with a very few exceptions, in which development takes place in the coelome or in the interior of a dilated segmental organ. In the Polychæta, in the great majority of cases, fertilisation takes place by the sperms coming in contact with the ova when both have become discharged, and the development of the embryos goes on while they are floating freely in the sea. There are a few cases in which the impregnated ova are received into a sort of brood-pouch and there pass through at least the earlier stages of their development. Such a brood-pouch is formed in certain Errantia by the raising up of the integument on the ventral surface. In some species of Polyææ and allied genera, the fertilised ova and the resulting embryos adhere in masses to the dorsal surface under the shelter of the elytra. In some other Errantia they are stuck by means of some viscid secretion all over the dorsal surface, or they may adhere singly to the ventral cirri. In certain Tubicola (Fig. 346) they develop in a cavity in the operculum; in others, in the interior of the tube, between the body of the worm and the inner surface of the latter, or on its outer surface. In some, again, though the ova do not remain in any way attached to the parent worm, they may be deposited in clumps or packets enclosed in gelatinous matter. Usually they have no other covering but the egg-membrane.

The segmentation of the ovum in the Polychæta is unequal. In the great majority the inequality between the megameres and micromeres is very marked. In some Serpulids, however, the difference is very slight, and the two sets of cells are at first scarcely distinguishable. In such cases the cells arrange themselves in such a way as to form the wall of a hollow sphere, the blastula, with an internal closed cavity, the segmentation cavity. The megameres, which may or may not have been distinct from the first, lie on one side of the blastula; and soon this side becomes invaginated (Fig. 347, A), the result being the formation of an embolic gastrula. In the great majority of forms, however, an epibolic gastrula is formed after the manner already described in the case of Nereis; but forms of the process of gastrulation intermediate between these two extremes have been observed to occur. The blastopore of the gastrula, however formed, does not give rise directly either to the mouth or to the anus. It becomes elongated into a slit which becomes closed up,
and the anus and proctodaeum are formed by a fresh invagination in the original position of its posterior end, while another invagination of the ectoderm further forwards gives rise to the

mouth and stomodæum. The embryo then passes into the Trochosphere stage.

The arrangement of the cilia on the surface of the Trochosphere varies in different Polychæta. Sometimes, though rarely, the præ-
oral circlct is absent, and the surface is covered uniformly with cilia: such larvae are said to be atrochal. Sometimes there are two circlcts close together, the one immediately in front of, and the other immediately behind, the mouth. Sometimes, in addition to the pre-oral circlct, there is a peri-anal circlct round the anal end (telotrochal larvae). In some cases, instead of a pre-oral circlct, there is one further back round the middle of the body (mesotrochal), or there may be several between the mouth and the anal end (polytrochal).

The post-oral portion of the larva elongates, and traces of segmentation become visible; sometimes a series of constrictions are developed before there is any trace of parapodia, sometimes rudiments of the latter with their setae are developed first. The number of segments, at first very small, becomes added to from behind as the body gradually elongates. The establishment of external segmentation is accompanied by the division of the mesoderm bands into a series of segments, the history of which has been sketched in describing the development of Nereis. The ectoderm of the ventral plate develops a median thickening which gives rise to the ventral nerve-cord. Anteriorly this becomes connected by a pair of thickenings at the sides of the mouth, the rudiments of the esophageal connectives, with the developing cerebral ganglion.

The completion of the metamorphosis is brought about by the increase in length of the body, and concomitant increase in the
number of segments, by the full development of the various systems of internal organs, and by the formation of the tentacles and other appendages. The parapodia, when first formed, very usually bear relatively long *provisional seta*, which are subsequently thrown off to make way for those of the adult.

Asexual reproduction by simple fission followed by regeneration of the lost segments, or by proliferation followed by fission, occurs in certain groups of Chaetopoda both among the Oligochaeta and the Polychaeta. Simple fission occurs in *Salmacina*, one of the Serpulids: a constriction becomes formed at a certain point towards the posterior end; rudiments of a new set of cephalic branchiae bud out on one side at this point, and this posterior part becomes a distinct zooid, which is eventually separated off and develops the full number of segments characteristic of the adult. This is not in any way a case of alternation of generations, as both parent and offspring are similar and sexual (hermaphrodite). In *Nais* and *Chaeogaster* (Oligochaeta) there is multiplication by proliferation of the segments at the posterior end; then the appearance of a constriction separating off five or six of the most posterior segments, followed by a fresh proliferation in front of the constriction, and this in turn by the appearance of a second constriction five or six segments further forwards—the result being the development of a chain of zooids which remain for a time connected together. The sexual cells become fully developed only after the zooids have become separated from one another. In some of the Syllideae (Errantia) there is a distinct *alternation of generations*. The asexual worm developed from the ovum gives rise by a process of posterior proliferation and constriction (Fig. 348) to sexual zooids, a number of which may remain for a time connected together in a string before becoming separated. These sexual zooids become developed into mature males or females, which may be remarkably unlike the parent form in the shape of the parapodia, the character of the setae, and similar points; and in some instances the two sexes not only differ from the asexual parent form but from one another, so that the three forms, before their relationship was known, have been set down as representing three distinct genera.

Syllis ramosa, which occurs in the interior of certain deep-sea sponges, is exceptional among the Chaetopoda in giving rise by
lateral branching to a colony, from which sexual zooids afterwards become separated off.

Mode of Life, etc.—Very few Chaetopoda are true *parasites*; but a considerable number are to be set down as *commensals* habitually associating with another animal for the sake of food and shelter. The Earthworms burrow in soil containing decaying vegetable matter, passing the mould through their intestine and subsequently throwing it off in the shape of castings on the surface. They also feed on decaying leaves, and sometimes on animal substances. Some of the fresh-water Oligochaeta (*Tubificidae*) manufacture tubes of mud held together by a tenaceous secretion from the epidermal unicellular glands. Some of the Errant Polychaeta form temporary tubes of a gelatinous character, or more permanent parchment-like tubes sometimes strengthened by means of agglutinated sand-grains. But the majority of the Errantia, which live for the most part on other small animals, are not confined to tubes, but move about freely. Some burrow in sand; others even in harder substances, such as the shells of Mollusca, or in limestone, shale, or sandstone. The Tubicola secrete tubes the substance of which is derived from the epidermal glands. These tubes are sometimes membranaceous or parchment-like, sometimes membranaceous but hardened by the deposition of grains of sand or particles of broken shells or bits of sea-weed; sometimes (Fig. 349) they are of a hard, shelly, calcareous character, sometimes composed entirely of foreign particles cemented together; very frequently they are permanently fixed to foreign objects. Some Tubicola, such as species of *Polydora* and *Syllarioides*, near relatives of which construct tubes, excavate galleries in rock or coral, or in the shells of various Mollusca. The Tubicola are vegetable-feeders.

A few Polychaeta, such as the *Alciopidae* and *Tomopteris*, as well as, in a certain phase, the *Nereidae* and *Syllidae*, are pelagic, but the majority live on the sea bottom. They occur in greatest abundance near the shore: but are also found at all depths in the ocean, the Tubicola being more abundant than the Errantia in the deeper zones.
Owing to the soft character of most of their parts, there are comparatively few actual remains of Chaetopoda in the older geological formations, though there are many burrows and tracks which have been ascribed to members of that class. Tubes of tubicolous Polychaeta have, however, been found in formations dating from the Cambrian period onwards. Some tubes not distinguishable from those of the existing genus, Spirorbis, are found as far back as the Silurian; and others, apparently closely related to the living Serpula, as far back as the Carboniferous. In addition there are a number of tubes of extinct forms ascribed to the tubicolous Polychaeta. The horny jaws of various Errantia have been detected in strata from the Cambrian period onwards; and many tracks and burrows occurring in rocks of all ages are ascribed, some with more, some with less certainty, to this group of worms. No fossil remains of Oligochaeta are known.

APPENDIX TO THE CHÆTOPODA.

CLASS MYZOSTOMIDA.

The Myzostomida are a group of worms which appear to have their nearest relatives in the Chaetopoda, though with certain special features of their own. They are all external parasites of various Crinoids, both of the stalked and the free varieties or internal parasites of certain Starfishes. They are disc-shaped animals (Fig. 350) devoid of any trace of external segmentation. There are patches of cilia here and there on both dorsal and ventral surfaces. At the sides there are five pairs of parapodia (p), each with a chitinous hook and a supporting rod; in the intervals between these there are in Myzostoma four pairs of small suckers; and round the margin are a series of ten or more pairs of cirri provided terminally with motionless sensory cilia, and with a ventral groove lined by adhesive cells. The mouth, situated at the anterior extremity, leads into a muscular pharynx (Fig. 351, ph) capable of being protruded as a proboscis; from this a narrow oesophagus leads to the stomach, which gives off a number of branched lateral diverticula (da). A short cloaca (Klo) leading from the stomach opens on the exterior at the posterior end of the body. There is no distinct coelome, the space between the alimentary canal and the body-wall being filled by connective tissue (parenchyma), leaving only the cavities in which the sexual elements are lodged. Bundles of dorso-ventral muscular fibres form imperfect transverse septa as in some Platyhelminthes.

There is no blood-vascular system, and specialised organs of respiration are likewise wanting. No nephridia have been detected. The nervous system comprises a large stellate ganglion
situated ventrally, probably representing a number of fused ganglia, and giving off a number of nerves; and of two nerve-rings, one round the oesophagus, the other round the pharynx, the two rings being connected together by a series of longitudinal nerves: the oesophageal ring presents a very obscure dorsal thickening, which is the only representative of a cerebral ganglion.

Most of the Myzostomida are hermaphrodite. There is some doubt about the position of the ovary, but in the sexually mature animal branching spaces in the parenchyma between the ceca are found to be filled with ova (o). A large uterus (w) opens into the cloaca by three ducts. There are two elongated and usually branched testes (h), each of which has two vasa deferentia leading to a vesicula seminalis (sh) which opens near the lateral margins. A few species are dioecious. In one species, in addition to the ordinary hermaphrodite individuals, there are much smaller males—the "complemental males."

Fig. 350.—Myzostoma. (After von Graff.)
The development of the Myzostomida closely resembles that of the Polychaeta. A trochosphere larva is first formed, and this becomes metamorphosed into a larva with provisional setæ, bearing a close resemblance to the larva of Nereis (p. 415).

CLASS II.—GEPHYREA.

The Gephyrea are marine Annelida devoid of any trace of segmentation in the adult condition, without parapodia, and either without setæ or with only a limited number; with either an invaginable anterior body region or introvert, at the extremity of which is the mouth surrounded by tentacles, or with a long, highly retractile proboscis representing the pre-oral lobe of the larva, and having the mouth situated at the base. The anus is sometimes terminal and posterior, sometimes anterior and dorsal. There is an extensive coelome filled with a corpusculated fluid, and not divided by
septa. The ventral nerve-cord is not made up of a series of ganglia. There is, as a general rule, only a single pair of nephridia. The sexes are separate; the ovaries and testes simple masses of cells; the nephridia act as reproductive ducts. The larva is a trochosphere.

1. Example of the Class—Sipunculus nudus.

General External Features.—Sipunculus occurs on sand at moderate depths off the coast in most countries outside of the tropics. It is an elongated worm of a cylindrical shape, somewhat narrower towards one—the anterior—end. There is no trace of division into segments. The anterior portion of the body, to the extent of about a sixth of the total length, is capable of being involuted within the part behind. The surface of this anterior part, which is termed the introvert (Fig. 352), differs in appearance from that of the rest of the body in being covered more or less closely with chitinous papillae. The papillae of the posterior portion of the introvert are shaped like the bowl of a spoon, with the concavity turned towards the body-wall and the tip directed backwards; they are so closely arranged as to overlap one another like the shingles of the roof of a house: further back they become longer and narrower, mammilliform, and more scattered. When the introvert is fully evaginated, there appears at its extremity a horseshoe-shaped fold of the integument, the tentacular fold (tent.), which is lobed and plaited (Fig. 353) so that it assumes somewhat the appearance of a circle of tentacles. For a little space immediately behind the tentacular fold the surface of the introvert is free from papillae.

The posterior portion of the body is devoid of papillae, but is marked out by a number of narrow impressed lines into a number of elongated four-sided areas.

Body-wall.—The surface is covered by a chitinoid cuticle having an iridescent lustre similar to that presented by the cuticle of Nereis and Lumbricus, and due to the same cause—viz., the presence of two systems of intercrossing lines. The papillae on
the introvert are local thickenings of this cuticular layer. Beneath the cuticle is an epidermis consisting of a single layer of cells, usually sac-like, but capable of being altered as a result of contraction or compression into a spindle-like shape. Below the epidermis is a layer of connective-tissue, the dermis, in which, as well as to some extent in the epidermis itself, are a number of dermal bodies. Of these there are three kinds—bicellular glands, contained in papillae; multicellular glands, scattered through the integument, and not contained in papillae; and sense-papillae, small rounded thickenings of the epidermis in the anterior region of the introvert, with their summits covered with cilia. There are also numerous pigment cells. Numerous canals branch through the dermis. Beneath this are three layers of muscle—(1) an outer circular layer, continuous in the introvert, but divided into annular bands in the rest of the body; (2) an oblique layer, well developed only between the origins of the two retractor muscles of the introvert; (3) a longitudinal layer, which is separated by spaces into a series of parallel bands. Between the bundles of the longitudinal layer of muscle runs a series of canals which communicate with the body-cavity by transverse branches.

There is a spacious cælome, but it is traversed in all directions by filaments and strands of connective-tissue, with which are mixed very fine muscular fibres: these mostly run from the wall of the body to the alimentary canal. Floating in the cælomic fluid are (1) colourless corpuscles; (2) reproductive elements; (3) peculiar ciliated bodies, the urns, which may be parasitic ciliate Protozoa, but whose nature is obscure.

The blood-vascular system is very feebly developed. It consists of dorsal and central longitudinal sinuses (i.e. channels differing from true vessels in wanting an internal epithelium), communicating in front with a circular sinus at the base of the tentacular fold.

The alimentary canal (Fig. 354) is a cylindrical tube of uniform character throughout. It is twice the length of the body, running back from the mouth towards the posterior end, and then bending sharply round to run forwards to the anus, the two limbs being twisted spirally round one another. Running along the entire length of the alimentary canal, with the exception of the terminal
part or rectum, is a narrow groove. Twisted round the posterior part is a long narrow cecum, which opens into the beginning of the rectum. Two groups of rectal glands occur close to the anal opening.

The nervous system (Fig. 355) differs considerably from that of the rest of the Annulata. There is a relatively small bilobed cerebral ganglion situated on the dorsal aspect just behind the tentacular circle, to which it gives off on each side several pairs of nerves.

Fig. 354.—Dissection of the internal organs of *Sipunculus nudus*. *dors.*, *dorsal*; *retr.*, *dorsal retactor* muscles of the intro-vert; *int.*, intestine; *m. n. co.*, muscles accompanying the nerve cord; *n. co.*, nerve cord; *neph.*, nephridium; *oes.*, oesophagus; *rect.*, rectum; *tent.*, tentacular fold. (After Vogt and Jung.)

Fig. 355.—Anterior part of the nervous system of *Sipunculus nudus*. *cerebr.*, cerebral organ; *com. a.*, commissure connective; *n. nu. ret.*, nerves to retactor muscles; *n. spl.*, splanchnic nerves; *n. hi. 1 h.*, nerves to tentacular fold; *I, II.*, nerves from ventral cord. (After Ward.)
Anteriorly and dorsally it gives off a number of digitate processes lying in the coelome. The esophageal connectives (coms. oes.) which it gives off behind are greatly elongated; each gives off muscular nerves (m. m. ret), and also a visceral nerve (n. spl) passing to the alimentary canal. The two commissures unite behind to form a central cord, which extends throughout the rest of the length of the body. The ventral cord presents no appearance of ganglia: it sends off laterally a large number of pairs of nerves (I., II.); on section it appears distinctly double. Two delicate muscular bands (Fig. 354 m. a. co.), which take origin anteriorly from the body-wall, become attached to the nerve-cord, and follow it throughout its length, giving off small branch bands to accompany the lateral nerves. A canal with folded and pigmented walls, which opens in the middle line of the dorsal surface just behind the tentacular fold (Fig. 353 ccr. org.), extends backwards to the anterior ventral surface of the cerebral ganglion, where it ends blindly. It is possible that this, the cerebral organ, may be a sensory organ of some kind. Eyes are entirely absent. The digitate processes of the cerebral ganglion, which bear a number of ciliated cups along their edges may be sensory in character.

Sipunculus has only a single pair of nephridia which like those of the majority of the Polychaeta are of the character of diplo-nephridia. These (Fig. 354, neph.) are situated tolerably far forwards, the external openings being about 2 cm. in front of the anus. They are long, nearly straight tubes, of a brown or yellowish colour, and very mobile in the living condition. Near the external opening, which is situated at the anterior end, is the internal opening into the coelome. The sexes are separate. There are no definite gonads except at a certain season of the year, when cellular elevations developed in the connective tissue covering the ventral retractor muscles of the introvert represent ovaries or testes as the case may be. These give origin to cells which become detached and develop into the fully-formed sexual elements while floating about in the coelomic fluid. The segmental organs act as gonoducts.

2. Distinctive Characters and Classification.

The Gephyrea are Annulata with the body devoid of any appearance of segmentation in the adult condition. There is a large coelome, which is not divided into chambers by mesenteries or septa. A blood-vascular system is sometimes present, sometimes absent. The ventral nerve-cord is not composed of a chain of ganglia. There is usually only one pair of nephridia. The sexes are separate, the gonads simple, and the nephridia act as gonoducts.
The larva is in most cases a typical trochosphere, and may develop a metameric segmentation which disappears as development proceeds.

Order 1.—Inermia.

Gephyrea with an introvert, and usually tentacles or a tentacular fold. The anus is dorsal. Setae are absent. Nephridia a single pair, or absent altogether.

Order 2.—Armata.

Gephyrea with an elongated prostomial proboscis. The anus is posterior. Two or more setae. A single nephridium, or two or three pairs.

Systematic Position of the Example.

Sipunculus nudus is one of several species of the genus *Sipunculus*. *Sipunculus* differs from other genera of the family *Sipunculidae*, of which it is a member, mainly in having a tentacular fold around the mouth, instead of a series of distinct tentacles. The family *Sipunculidae* is one of two families of the order *Inermia* and differs from the other, the *Priapulidae*, in the presence of either tentacles or a tentacular fold at the oral, and the absence of filiform appendages at the aboral end.

The Gephyrea are a class of worms whose position among the Annulata is determined more from a consideration of their development than of their structure in the adult condition, though the latter suggests a tolerably close affinity with the Chaetopoda. The body of a Gephyrean is unsegmented, usually more or less completely cylindrical, broadest behind and narrowing towards the anterior end. The surface is covered with a chitinous cuticle developed often into papille, or tubercles, or hooks. In the Armata, setae are present, but they are always very few in number and not implanted in parapodia; in *Echidna* there is only a single pair, situated about the middle of the ventral surface; in most species of *Echiura* (Fig. 357), in addition to this ventral pair, there are a number arranged in one or two circlets around the posterior end. In the Inermia the anterior part of the body is capable of being invaginated within the part behind; at the extreme anterior end of this invaginable part or introvert, when it is evaginated, is the mouth surrounded by a circle of sometimes pinnate, sometimes simple, tentacles, or by a lobed and plaited tentacular fold. The prostomium is in such forms quite rudimentary. In the Armata there is no introvert, but an elongated, highly contractile, simple or bifurcated
proboscis, which is the greatly produced prostomium; in Bonellia (Fig. 356) the proboscis, when fully extended, is five or six times the length of the body; in Echiurus (Fig. 357) it is much shorter; at the base of the proboscis on the ventral side is the opening of the mouth. In Priapulus (Fig. 358) there is at the posterior end an elongated simple or bifurcated caudal appendage covered with hollow papillae. The anus is situated at the posterior end of the body in the Armata; in the Inermia it lies far forwards on the dorsal surface, except in the case of Priapulus, in which it is terminal.

Body-wall.—Beneath the cuticle is an epidermis, which is composed of a single layer of cells. Among the cells are unicellular, rarely multieellular, glands, and sensory cells. Various colouring matters, such as the bright green characteristic of Bonellia, are contained in the cells of the epidermis. The muscular wall of the body consists of external circular and internal longitudinal layers, sometimes with oblique and internal circular layers superadded. There is an extensive undivided célose, covered, as in the case of
the Chaetopoda, with a coelomic epithelium, which is sometimes ciliated.

The alimentary canal in the Incernia consists of a muscular pharynx, intestine, and rectum; in the Siphunculidae (Fig. 354) the intestine is bent on itself, and spirally twisted as it runs forwards to the anal opening, which, as already noted, is situated far forwards on the dorsal surface: at the junction of intestine and rectum is a single simple cæcum or a pair; and a number of small branching cæca are connected with the rectum close to the anal opening. Retractor muscles pass from the body-wall to the pharynx. In the Armata (Figs. 359 and 361) there is a thin-walled buccal cavity, an elongated and coiled intestine, opening at the posterior extremity of the body into a dilated rectum: in most there is an elongated cæcum or siphon applied to the ventral aspect of the intestine proper. Into the rectum there open a pair of remarkable cæca, the posterior nphridia (Figs. 359 and 361, post. neph.), supposed to be excretory in function; these open into the coelome by means of a number of ciliated funnels (Fig. 360).

There are no specialised organs of respiration in the Gephyrea. A blood-vascular system is sometimes present, sometimes absent. When present, as it is in most Gephyrea, it usually comprises a contractile dorsal vessel closely applied to the intestine, and a peripharyngeal ring or plexus. Cilia are present in places in the interior of the vessels.

The nervous system (Figs. 355 and 362) consists of a nerve ring, sometimes greatly elongated, surrounding the anterior part of the alimentary canal, with sometimes a dorsal and anterior thickening representing a cerebral ganglion; and of a nerve-cord, devoid of ganglia, running backwards from this along the middle of the ventral surface, and giving off pairs of branches at regular intervals: the branches of the same pair sometimes form complete rings (Fig. 362, *nr. ri.*) by uniting dorsally. Eyes of a very simple character, consisting of mere spots of pigment, are present in some of the Incernia.
Priapulus is devoid of nephridia. In the Armata a pair of appendages of the rectum are, as already mentioned, to be regarded as posterior nephridia. In addition there are present anterior nephridia. In Bonellia (Fig. 359, ant. neph.), and in some Inermia, there is only one. In the majority of cases there is one pair, while in various species of Thalassema there are from one pair to four. They are tubes which open externally on the ventral surface, and internally communicate with the coelome by means of ciliated apertures, the form and position of which varies in different cases. They act as efferent ducts for the reproductive organs.

Elements (gonoducts); but their function as excretory organs has not been definitely established.

The sexes are usually distinct, and the reproductive organs are of very simple character, consisting merely of ridges or clumps of cells (gonads), sometimes enclosed in a membrane, developed at various points on the body-wall, or on the wall of one of the main blood-vessels. The cells of these ovaries or testes may develop in situ into perfect ova or sperms; more usually they become detached, and undergo the later stages of their development while floating in the coelomic fluid.

A remarkable instance of extreme sexual dimorphism occurs in Bonellia. The ordinary large individuals (Fig. 356),
to various points in the structure of which reference has been already made, are females. The single, greatly enlarged nephridium contains a spacious cavity, which has been termed the uterms. In the interior of this is found the very small male (Fig. 363). This is not unlike a Planarian in appearance, compressed and covered with cilia, with a pair of ventral hook-like setae. In the interior of the body bundles of dorso-ventral muscular fibres placed at regular intervals give an appearance of rudimentary segmentation. The alimentary canal is rudimentary and completely closed, both mouth and anus being absent. There is a pair of nephridia placed posteriorly. The sperms, developed from modified coelomic cells, reach the exterior through a duct, dilated externally into a vesicula seminalis, and opening internally into the coelome by a funnel-shaped aperture. In Hamingia, also, there are imperfectly developed males which are lodged in the nephridia of the female.

Development.—The larva of Echiurus (Fig. 364) has a well-developed pre-oral or prostomial lobe with a pre-oral and post-oral circket of cilia, and in other respects closely resembles the trochosphere embryo of a Chaetopod. The posterior part of the
body elongates, and the mesoblast-bands, developed as in the Chaetopoda, become divided into as many as fifteen segments. A circle of setae is developed at the anal end, and subsequently the two ventral setae are formed in the same manner as in the Chaetopoda. The pra-oral lobe becomes narrowed to form the cylindrical proboscis of the adult; and the rudimentary segmentation gradually disappears as development advances.

In Bonellia there is unequal segmentation, as in most Chaetopoda, resulting in the formation of four large megameres and eight small micromeres: the latter multiply rapidly, and grow over the megameres so as eventually to enclose the latter in a complete layer of ectoderm, save at one point, where there is a gap, the blastopore. Here the ectoderm bends inwards to give rise to a continuous mesoderm layer superficial to the megameres. The blastopore soon closes up. The megameres divide to form the cells of the endoderm, among which a lumen only appears comparatively late; mouth and stomodaeum are developed as an outgrowth, at first solid, from the endoderm. The anus becomes formed still later by invagination at the hinder end of the body; and a pair of epidermal vesicles which appear at its sides form the rudiments of the

Fig. 363.—Male of **Bonellia.** alt, alimentary canal; cell, groups of coelomic cells destined to give rise to sperms; repr, ap, reproductive aperture; eos. sem, vesicula seminalis. (After Greel.)

Fig. 364.—Trochosphere of **Echiurus.** an, anus; ap. pl, apical plate; int. intestine; mo, mouth; ne. co, rudiment of nerve cord; os. oesophagus; os. con., oesophageal connective; stom. stomach. (After Hatschek.)
posterior nephridia. A rudimentary pre-oral lobe becomes estab-
lished. The mesoderm remains unsegmented, but splits into
somatic and splanchnic layers going to form the muscular system,
blood-vessels, and other mesodermal organs. Before the alimentary
channel is formed the larva, which had previously been spherical
with two bands of cilia and a pair of eye-spots, becomes elongated
and dorso-ventrally compressed; and becomes covered uniformly
with cilia so as to present the general appearance of a Planarian.
It becomes converted into the adult female by a metamorphosis,
including the elongation of the pre-oral lobe to form the proboscis,
and the development of the pair of setae of the adult. The
male never goes through this metamorphosis, but remains in the
Planarian stage: it at first adheres to the proboscis of a female,
then enters the oesophagus, and afterwards, when sexually mature,
enters the cavity of the nephridium.

In the Inermia the early stages of the development closely
resemble those of the embryo of one of the Polychaeta, and a
trochosphere is formed, closely resembling the corresponding stage
in the latter class. But at no stage in the development has any
trace been observed of the temporary segmentation which forms so
marked a feature in the development of Echiurus.

Distribution, Affinities, etc.—The Gephyrea are all marine.
They are only capable of very slow creeping locomotion, and live
for the most part either in natural rock-fissures, or in burrows
which they excavate for themselves either in sand or mud, coral or
rock. Their distribution is general; and they occur at considerable
depths as well as in shallow water.

The differences between the Inermia and the Armata are so
considerable, that there is some doubt whether they ought to be
united together in one class. The Inermia diverge most widely
from the Chaetopoda in the entire absence of setae and in the
absence of segmentation at any stage.

Affinities between Phoronis (p. 328) and the unarm ed Gephyrea
have often been supposed to exist, and it has by some zoologists been
proposed to regard Phoronis as an outlying member of that class.
It seems probable, however, that the very manifest resemblances
which undoubtedly exist do not indicate a near relationship, but
are the result of converging modifications of originally widely
different stocks. The most striking of these points of resemblance
are two—(1) the approximation of the anus towards the oral aperture,
and (2) the presence of the tentacular circele. But a study of the
development shows that these common features are developed in
totally different ways in the two cases. The forward position of
the anus in the Sipunculida is brought about by a gradual displace-
ment resulting from the growth of the aboral region of the body;
and the invagination and evagination by which the corresponding
result is attained in Phoronis do not occur. Again, while in Phoronis
the tentacles of the adult may be looked upon as formed by the
development of processes along the line occupied by the post-oral
circele of cilia, in the Sipunculida the tentacular lobes have
nothing to do with the post-oral circele, but are formed by the
growth of a series of lobes from the margin of the mouth itself.
The larva of the Sipunculida again is, as already pointed out, very
nearly related to the larva of the Chaetopoda, and is a typical
trochosphere; while the Actinotrocha larva of Phoronis diverges
somewhat widely from that type.

CLASS III.—ARCHI-ANNELIDA.

More primitive in some respects than the other Annulata are the Archi-
ANNELIDA, comprising only the two families of the Polygordiidae and the Histrio-

![Diagram of Polygordius nesopolitanus](from Parker's Biology, after Praipont.)

Fig. 365.—Polygordius nesopolitanus. A, the living animal, dorsal aspect, about five times
natural size; B, anterior end, lateral view; C, ventral view of the same; D, portion of the
body showing the metameres; E, ventral view of the posterior extremity; An. anus;
An. seg. anal segment; c. p. ciliated pit; gr. grooves between metameres; Mth. mouth;
Mt.mr. metameres; p. papillae; per.st. peristomium; pr.st. prostomium; s. setae on tentacles (f).

drilidae. They are all marine and all of small size. The prostomium (Fig. 365,
pr. st) is small, the peristomium (per. st) large. The segments (Mt.mr) are only
faintly marked off externally for the most part, though the internal division of
the coelome by means of septa is complete. Parapodia and setae are absent, but the prostomium bears a pair of tentacles (t). Several pairs of simple nephridia are present. The position of the nervous system (Fig. 367) is more primitive than in any of the rest of the Annulata, with the exception of the Archi-Chaetopoda; it is continuous with the epidermis, and not separated from it by mesodermal elements as in the others. A pair of ciliated grooves (e. p.) are probably to be looked upon as organs of special sense.

The Histriodrilidae are minute worms which live as parasites on the lobster (*Astacus*), feeding on its eggs. The body consists of only about eight narrow segments. The head has sensory tubercles and two short processes having the function of limbs: a similar but larger pair of limbs occurs on the last segment of the body. The alimentary canal consists of oesophagus, intestine, and rectum; the oesophagus contains three horny jaws. A pair of closely united cerebral ganglia are situated in the prostomium, and are connected behind by oesophageal connectives

![Diagram](image)

Fig. 365.— *Protodrilus*, entire animal, int., intestine; musc., muscular appendage of oesophagus; oes, oesophagus. (After Hatschek.)

with a ventral cord, which is dilated into a ganglion in each segment. There are four pairs of simple segmental organs in the female, five in the male. The sexes are separate; the gonads, whether ovaries or testes, are formed by the germination of the visceral layer of the peritoneum. Genital ducts are present in both sexes.

The family *Polygordiidae* includes two genera—*Polygordius* and *Protodrilus*. There are a pair of prostomial tentacles, long in *Protodrilus*, short in *Polygordius*. The segmentation is only very indistinctly marked externally in *Protodrilus*; in *Polygordius* it is indistinct in front, but better marked behind. In *Polygordius lacteus* a series of tooth-like processes occur round the anus, and in front a circle of adhesive papillæ. In *Protodrilus* there is a ventral ciliated
There is a vascular system with dorsal and ventral longitudinal vessels. In each segment is a pair of simple nephridia. In Protodrilus there are two...
of ganglia. The sexes are united in Protodrilus, ovaries occurring in all the first seven segments, and testes in some of those immediately following. In Polygordius the sexes are separate; the ovaries or testes (Fig. 367, sqy) are developed in the posterior segments. There are no special reproductive ducts.

The larva of Polygordius is a typical trochosphere (Fig. 368), and its metamorphosis into the adult worm (Fig. 369) takes places as in the Polychaeta in all essential respects.

CLASS IV.—HIRUDINEA.

1. Example of the Class—The Medicinal Leech (Hirudo medicinalis and H. quinquestriata).

The medicinal Leech is found in ponds, swamps, and slowly flowing streams in many parts of the world. H. medicinalis is the common British species: H. quinquestriata is an allied Australian form.

External Characters.—It is a vermiciform animal, some 6–10 cm. (2–3 inches) in length, but is capable of contracting and elongating itself so as to produce great alterations in form and proportion. It moves by "looping" movements, and is also a good swimmer. The body (Fig. 370) is depressed or flattened dorsoventrally, the dorsal surface convex, the ventral flattened. The anterior end presents a ventrally directed cup-like hollow, the anterior sucker (a. s.), in the middle of which is a small aperture, the mouth (mth.). The hinder end bears a disc-like posterior sucker (p. s.), also directed downwards, and at its junction with the trunk, on the dorsal surface, is the very small median anus (a.). The animal is brightly coloured, the dorsal surface in H. medicinalis being longitudinally banded with alternate stripes of greenish grey and rusty red, the ventral surface greenish yellow, spotted with black: in H. quinquestriata the whole under-surface is rust-coloured.

The whole body is encircled by close-set transverse grooves, dividing it into annuli. These, like the annuli of some Earthworms, are more numerous than the true segments or metameres, the study of the internal organs showing that, except at the two extremities, each segment contains five annuli. There are also external characters by which the actual segmentation is plainly indicated. The rust-coloured streaks on the back of H. medicinalis are spotted with black, and at every fifth annulus the spots are larger than on the intervening rings: the annuli thus marked are the fifth or last of their respective segments. Moreover, the same rings bear on the ventral surface minute paired apertures, the nephridiopores or excretory apertures (a. p. I–17): of these there are altogether seventeen pairs, marking the fifth rings of the sixth to the twenty-second segments.
Fig. 370—Hirudomedicinalis. A. dorsal; B. ventral aspect: a. anus; a. s. anterior sucker; a. e. pair of eyes; a. s. fifth pair; g. p. s. male gonopore; g. p. f. female gonopore; n. p. 1. first pair of nephridiopores; n. p. 17. seventeenth pair; p. s. posterior sensory papillae; 1—XXVI. segments. (Partly after Whitman.)
PHYLUM ANNULATA

In front of the first and behind the last pair of nephridiopores one important external mark of segmentation fails, but a further indication is furnished by the presence on the first ring of each undoubted metamere of a number of delicate transparent elevations, the segmental papillae (s. p.), which have probably a sensory function. These structures are found along the whole length of the body, and as they mark the first ring of all those segments the extent of which can be checked by the nephridiopores, it is legitimate to assume their segmental value in the anterior and posterior regions, where the controlling excretory apertures are absent. By the clue thus furnished it is found that there are five segments in front of that bearing the first pair of nephridiopores, and four behind that bearing the last pair, making a total of twenty-six metameres: of these the first six and the last four have less than the normal number of rings.

The anterior sucker bears on its dorsal surface five pairs of small black spots, the eyes (e. 1, c. 5), the arrangement of which shows them to be special modifications of sensory papillae, since they occupy in the first five segments the precise position occupied in the sixth and following segments by segmental papillae.

The perfectly definite and comparatively small number of metameres in the leech offers a striking point of contrast with what we have met with in the Chaetopoda, and is to be looked upon as a mark of higher differentiation.

Body-wall.—The body is covered externally by a thin cuticle (Fig. 371, cu.), which is constantly being cast off in patches and renewed. Beneath it is an epidermis (d. ep.) consisting of hammer-shaped cells, separated at their inner ends by spaces in which blood capillaries run. The blood is thus brought into close relation with the surrounding water, and the skin becomes a highly efficient respiratory organ. The space between the epidermis and the enteric canal is filled by a peculiar form of connective-tissue, consisting of a gelatinous matrix with interspersed cells and fibres. Many of the cells are large, branched, and abundantly pigmented, and have their branches directly connected with the smaller blood-vessels. Surrounding the enteric canal is the peculiar and characteristic botryoidal tissue (b. t.) consisting of branched blood-vessels, the walls of which are formed of large cells loaded with black pigment.

Numerous unicellular glands are produced from the epidermis: the gland-cells themselves lie in the connective-tissue, and are continued into long ducts which open on the surface. Special glands in the ninth, tenth, and eleventh segments secrete the substance from which the cocoon is formed (vide infra, p. 474): the segments in question therefore constitute the clitellum.

The muscular system is well developed, and consists of an outer layer of circular (c. m.) and an inner of longitudinal (l. m.)
fibres. There are also dorso-ventral fibres (d. v. m.) passing vertically between the pouches of the crop (vide infra), and radial fibres extending from the wall of the enteric canal to the integument: these take the place of the septa of Chaetopods.

The alimentary organs are greatly modified in accordance with the blood-sucking habits of the animal. Surrounding the mouth are three jaws, one median and dorsal (Fig. 374, d. j.), the other two ventro-lateral (v. l. j.). Each (Fig. 372) has the form of a compressed muscular cushion, with a sharp, evenly curved, free edge covered with chitin, which is produced into numerous serrations or teeth: by means of its muscles each jaw can be moved backwards and forwards through a certain arc, and the three, acting together, produce the characteristic triradiate bite in the skin of the animal upon which the Leech preys.

The mouth leads into a muscular pharynx (Figs. 373 and 374, ph.) situated in the fourth to the seventh segments.
Radiating muscles pass from its walls to the integument, and by their contraction dilate its cavity and suck in blood from the wounds made by the jaws. Around the pharynx are numerous unicellular salivary glands, which open close to the mouth: their secretion has the effect of preventing the coagulation of the blood taken as food.

The pharynx communicates by a very small aperture with the second and largest division of the enteric canal, the huge crop (cr.), a thin-walled tube extending from the eighth to the eighteenth segment, and produced into eleven pairs of lateral pouches (cr. 1, cr. 11), the first ten of which are directed outwards and correspond each to a segment, while the eleventh (cr. 11) passes directly backwards as far as the twenty-fourth segment. The crop is capable of great dilatation, and its form varies greatly according to whether it is empty or gorged with blood. Posteriorly the crop communicates by a minute aperture with the stomach (st.), a
tubular chamber with a dilated anterior end, and having its wall produced internally into a spiral fold: this is the digestive portion of the canal; the blood is passed into it from the crop with extreme slowness, and undergoes an immediate change, its colour turning from red to green. The digestion of a whole cropful of blood takes many months. The stomach is continued into a narrow intestine (int.): this passes into a somewhat dilated rectum (ret.) which turns slightly upwards and opens by the anus (an.) in the last annulus.

The excretory system consists of seventeen pairs of (*nephridia* (nph. 1–17), situated in segments 6–22. A typical nephridium (Fig. 375) has the general form of a loop passing upwards from the ventral body-wall, produced into an offshoot which extends inwards (mesially) to the corresponding testis, and connected posteriorly with a small bladder or vesicle (vs.). The principal loop is divisible into two chief parts, the main lobe (m.l.) and the apical lobe (a. l.), connected with one another by a short recurrent lobe (r. l.): the offshoot to the testis is known as the testis-lobe (t. l.); it is absent in *H. quinquestriata*

All these parts are formed of a close-set mass of gland-cells, traversed by a complex system of minute intra-cellular passages or ductules, which finally unite into a comparatively wide inter-cellular tube or duct: this winds through the main and apical lobes, and finally enters the vesicle, which opens posteriorly in the last annulus of the segment. The free end of the testis-lobe is swollen into a lobed mass which lies in a blood sinus (Fig. 375).
371, nst) in connection with the testis: comparison with other Hirudinea shows that this dilated end of the nephridium represents a nephrostome which has lost its open funnel-like end in correlation with the absence of a distinct coelome. The cells of the botryoidal tissue appear to carry waste matter to the nephridia.

There is a complex vascular system, containing, like that of the Earthworm, red blood, the plasma coloured with haemoglobin and containing sparsely distributed colourless corpuscles. But a striking difference from the preceding annulate types is found in

the fact that the blood-containing spaces are of two kinds—blood-vessels proper, having muscular walls; and blood-sinuses, the walls of which are devoid of muscle.

The two principal blood-vessels are lateral in position (Figs. 373 and 376, l. v.), running fore and aft at the level of the middle of the nephridia and uniting with one another at the anterior and posterior ends of the body. They send off branches both dorsally and ventrally, some of which anastomose with one another. The ultimate branches break up into capillaries in the integument, nephridia, &c.

The two principal sinuses are respectively dorsal (d. s.) and ventral (v. s.), the former lying just above the enteric canal in the middle dorsal line, the latter occupying a similar position on the

\[\text{Fig. 375.—Nephridium of } \text{Hirudo medicinalis.} \quad a. l. \text{ apical lobe; } m. l. \text{ middle lobe; } \\
np. \text{ nephridiopore; } nst. \text{ nephrostome; } r. l. \text{ recurrent lobe; } t. l. \text{ testis lobe; } vs. \text{ vesicle; } \\
v. d. \text{ vesicle duct. (After Bourne.)} \]
ventral side, and enclosing the ventral nerve-cord. The two sinuses are in connection with one another posteriorly, and are also in communication, by means of their branches, with the capillaries of the skin. There is thus an indirect connection, by means of capillaries, between the blood-vessels and the sinuses, but no direct communication exists. The sinuses in which the nephrostomes are lodged open into the ventral sinus. As we shall see more particularly in the general account of the class, the sinuses represent a greatly reduced celome.

The nervous system is of the usual annulate type. There is a small brain (Figs. 373 and 374, br.) situated above the anterior end of the pharynx immediately behind the median dorsal jaw.

It is connected by a very short pair of oesophageal connectives with the ventral nerve-cord, which consists of twenty-three well-marked rounded ganglia (gn. 1–23) united by delicate double connectives. The first, or sub-oesophageal ganglion is larger than the others, and is shown by development to be made up of five united pairs of embryonic ganglia: the last ganglion is also of unusual size, and results from the fusion of six pairs of ganglia distinct in the embryo. The whole ventral nerve-cord is contained in the ventral sinus. Nerves are given off from the ganglia, but not, as in the Earthworm, from the connectives, in which also, nerve-cells are wholly absent.

The principal sense-organs are the eyes, of which there are five pairs (Fig. 377) situated round the margin of the anterior sucker, on the dorsal side, one pair in each of the first five segments. They occupy positions taken in the succeeding segments by lateral
sense-organs, with which they are obviously homologous. The structure of the eyes is peculiar: they are cylindrical in form (Fig. 377), the long axis of the cylinder being at right angles to the surface of the body. The outer layer is formed of black pigmented tissue (pi.), surrounding a layer of large, clear, refractive cells (p.), which occupy the greater part of the organ. A nerve (n.) enters at one side, and is continued up the axis of the cylinder by a row of sensory cells.

The margin of the anterior sucker also bears a large number of goblet-shaped organs, which are very probably organs of taste. The minute structure both of these and of the segmental sense-organs is very similar to that of the eyes. The function of the segmental sense-organs is unknown.

Reproductive Organs. — The Leech is monoecious. There are nine pairs of testes (Figs. 373 and 374, ts.), in the form of small spherical sacs, situated in segments 12–20. Each gives off from its outer surface a narrow efferent duct, which opens into a common vas deferens (v. d.). In the tenth segment the vas deferens increases in width and forms a complex coil, the vesicula seminalis (v. sem.), from which is continued anteriorly a somewhat dilated muscular tube, the ductus ejaculatorius (d. ej.). From each ejaculatory duct a narrow tube passes to the base of the penis (p.), a curved eversible muscular organ which opens on the ventral surface of the second annulus of the tenth segment, in the middle line. The base of the penis is surrounded by a number of unicellular glands, which constitute the prostate and secrete a substance by which the sperms are aggregated into masses called spermatotheces.

The ovaries are coiled filamentous bodies, each enclosed in a small globular ovarian sac (ov. s.), situated in the eleventh segment. From each ovarian sac a short oviduct passes inwards and backwards, and unites with its fellow into a median duct, the walls of which are supplied with albumen-secreting gland-cells. The common oviduct opens into a curved muscular tube, the vagina (va.), which opens in the middle line on the ventral surface of the second annulus of the eleventh segment, i.e. one segment behind the male aperture.
It will be noticed that the ovaries of the Leech form a single pair, while the testes are multiple and segmental; also that, while the gonads and efferent ducts of both sexes are paired, the penis and the vagina are median and unpaired. In the latter respect the contrast between the Leech and the Annulata previously discussed is very striking. Further important peculiarities are the enclosure of the ovary in a sac from which a duct leads directly to the exterior, and the fact that the testes are hollow sacs discharging the sperms into a cavity from which they pass directly to the efferent ducts. In Chaetopods, it will be remembered, the gonads lie freely in the coelome, their products—ova or sperms—are discharged from their external surfaces and carried off either by ordinary nephridia or by nephridia specially modified into gonads. It seems tolerably certain that the cavities both of the ovarian sacs and of the testes represent shut-off portions of an almost obsolete coelome, and that their ducts are meso-nephridia.

Development.—When breeding two Leeches copulate, and one impregnates the other by passing spermatophores through its penis into the vagina. Simultaneous mutual impregnation has also been described. The clitellar segments (ninth to eleventh) secrete a cocoon (Fig. 378), into which spermatophores, ova, and a quantity of albumen, secreted by the albumen-glands, are passed. The animal then withdraws its head from the cocoon, the two ends of which close up by their own elasticity, producing a closed capsule in which embryonic development takes place. Segmentation is unequal, and results in the formation of a globular embryo, which, after hatching, swims about in the cocoon, actively devouring its albuminous contents, and finally escaping in a form closely resembling the adult.

2. **Distinctive Characters and Classification.**

The Hirudinea are Annulata in which the body consists of a limited and definite number of segments, and is marked externally by secondary rings or annuli, a variable number of which go to a segment. The anterior end of the body is suctorial, and several of the hindmost segments are fused to form a powerful sucking disc, which is directed downwards and backwards. The mouth lies in the anterior sucker, the anus is usually dorsal and immediately in front of the posterior sucker. The coelome is always more or less obliterated by connective-tissue, and is represented by sinuses of varying dimensions which contain blood. True
blood-vessels, with muscular walls, are also present. The nervous system consists of a brain united by short oesophageal connectives to a ganglionated ventral nerve-cord. The excretory organs are segmentally arranged nephridia. The sexes are united, the testes numerous and usually segmentally arranged, the ovaries a single pair. The testes have the form of sacs, and discharge their products internally; the ovaries either have a similar structure or are band-like and enclosed in ovarian sacs into which the ova are set free. The penis and the vagina are unpaired, and open by median apertures, the male anterior to the female, on the ventral surface of the body. Development is usually direct, i.e. unaccompanied by a metamorphosis. Leeches are either free-living or are permanently or intermittently parasitic: they inhabit either the land, fresh-water, or the sea.

The class is divided into the following two orders:—

ORDER 1.—**Rhynchobdellida.**

Hirudinea in which the anterior part of the body can be protruded and retracted so as to form a proboscis or introvert.

Fig. 379.—Three **Rhynchobdellida.** *br,* gills; *pv,* everted proboscs. (1, after Bourne; 2 and 3, after Cuvier.)
This order includes Clepsine, parasitic on Snails, Frogs, &c.; Piscicola, on fresh-water Fishes; Pontobdella and Branchellion, on marine Fishes (Fig. 379).

ORDER 2.—GNATHOBDELLIDA.

Hirudinea in which there is no proboscis: the mouth is usually provided with three toothed jaws.

This order includes Hirudo, the common Leech, parasitic on Vertebrata; Aulostoma, the Horse-leech, free-living and carnivorous; Trocheta, of subterranean habits; Haemadipsa, the Land-Leech.

Systematic Position of the Example.

Hirudo belongs to the family Hirudinidae, of the order Gnathobdellida.

The absence of a proboscis places it in the order Gnathobdellida: the possession of ten eyes, and the presence of five rings to all the segments except a few at the anterior and posterior ends, distinguishes it as a member of the family Hirudinidae: the genus Hirudo is distinguished by the constant presence of twenty-six segments and of 102 annuli.

In the essential features of their organisation the Leeches are a very uniform group: there are, however, a few interesting modifications of structure which must be referred to.

Form and Size.—Most kinds do not exceed a few centimetres in length, but the American species Macrobdella valdiviana is said to attain a length of 76 cm. (2½ feet). The number of annuli to a segment varies from three to five, but the general form of the body is remarkably uniform, the external differences between various species depending largely on colour and on the development of papillae, which in some cases are large and prominent.

The proboscis (Fig. 380), the possession of which is distinctive of the Rhynchobdellida, is simply the retractile anterior end of the body, which, by the action of special muscles, can be drawn back into a temporary sheath. The organ is thus an introvert, like that of Gephyrea Inermia.

The chief differences in the structure of the enteric canal depend upon the varying number, or, in some cases, the total absence, of lateral pouches to the crop; for instance, the horse-leech has only a single pair, corresponding to the eleventh pair in Hirudo, while Nephelis has none at all. In the Rhynchobdellida there is a distinct slender gullet (Fig. 380, gul) leading from the pharynx to the crop (cr.), and thrown into a coil when the proboscis is retracted. Among the Gnathobdellida the median jaw
is absent in some land-leeches, and in other species all three jaws are rudimentary or absent.

The varying development of the blood-vessels and sinuses presents many points of interest tending to explain the condition of things described above in the medicinal leech. In the latter, as we have seen, there are lateral vessels with contractile muscular walls, and dorsal and ventral sinuses with non-contractile walls. In *Pontobdella*, one of the Rhynchobdellida, there are dorsal (Fig. 381, 2, d.v.) and ventral (v.v.) as well as lateral vessels, and lateral (l.s.) as well as dorsal and ventral sinuses, and in each case the vessel is enclosed in the corresponding sinus. The ventral sinus (v.s.) also contains the nerve-cord (n.c.) and the ovaries (ov.), and offshoots of it surround the testes (t.s.) and the nephrostomes (nst.). This arrangement clearly suggests the partial obliteration, by growths of connective tissue, of an originally continuous coelome. Another interesting condition occurs in *Nephelis* (3), in which the middle region of the body contains a series of paired, metamERICALLY arranged spaces (e.), surrounded by blastoidal tissue, and containing the nephrostomes. Development seems to show that these cavities are derived from true coelomic spaces in the embryo, formed, as in Chaetopoda, by a splitting of the mesoderm in each segment.

In most instances the skin, with its abundant supply of capillaries, constitutes the only respiratory organ, but in *Branchellion* (Fig. 379, 3) a Rhynchobdellid parasitic on the Electric Rays (*Torpedo* and *Hypnos*) and on one of the Australasian Skates (*Raja nasuta*), differentiated respiratory organs or gills (br.) are present in the form of delicate lateral outgrowths of the segments.

In most members of the class the nephridia are formed on the same general type as those of Hirudo, but differ in the structure of the nephrostomes, which may be ordinary ciliated.

Fig. 380.—Proboscis of Clepsine. A, retracted; B, everted; cr., crop; gul., gullet; mth., mouth; pr., introvert; s. gl., salivary glands. (After Bourne.)
funnels, or may be more or less degenerate, as in Hirudo. In the Rhynchobdellid Pontobdella a very interesting modification of the nephridial system occurs. Instead of distinct nephridia, there is found on the ventral surface of the body a very complex network (Fig. 382, nph.), which sends off on each side of each segment a short branch terminating in a nephrostome (nst.), and a similar branch which opens externally (np.). This arrangement reminds us of the excretory system of certain Earthworms and of Turbellaria.

The nervous system always closely resembles that of Hirudo, as also do the sense-organs. The number of eyes is subject to considerable variation: they may be developed on the posterior sucker, or may be absent altogether.

Reproductive Organs.—The testes usually have the segmental arrangement found in Hirudo, their number varying from five to twelve pairs. But in Nephelis they are very numerous, and are not arranged segmentally. In the Rhynchobdellida the muscular penis is absent, its place being taken by an eversible sac or bursa copulatrix. The form of the ovary with its containing sac in Hirudo is exceptional. As a rule, there is an elongated hollow ovary, producing ova from its epithelial

![Diagram](attachment://fig381.png)
lining, and thus agreeing very closely in structure with the testis.

In Clepsine, a fresh-water Rhynchobdellid, copulation in the ordinary sense of the word has never been observed, but one individual has been seen to deposit one or more spermatophores on any part of the body of another—often on the back. The spermatophore, which is nearly $3\frac{1}{2}$ mm. long, apparently exerts a solvent action on the skin, since, after a short interval, the spermatic fluid streams through the skin into the coelomic spaces, probably making its way at last to the ovaries. This extraordinary process of hypodermic impregnation probably takes place in other genera, but has been most closely followed in Clepsine.

It is in Clepsine that the early stages of development are best known. Segmentation is unequal, the embryo consisting, in the eight-celled stage (Fig. 383, A), of four large ventrally placed megameres (mg.) and four dorsal micromeres (mi.). One of the megameres, posterior in position, divides into two cells (B);

one of these divides again, and its products of division give rise to paired germinal bands (C, g.b.), like those of the Earthworm. The micromeres increase in number, forming a cap of cells, the commencement of the ectoderm, on the dorsal pole of the embryo,
and at the same time the germinal bands grow forwards (D), diverging as they go, and take up a position beneath the margin of the ectoderm-cap: as the latter extends its area they converge anteriorly, and thus furnish it with a thickened margin, the bands themselves being in contact in front and behind, and divergent in the intervening region, so as to enclose a nearly circular space. The ectoderm-cap, accompanied by the germinal bands, now grows over the megameres, finally enclosing them completely by uniting on the ventral surface. This process is obviously one of epibolic gastrulation.

The ectoderm of the embryo gives rise, as usual, to the epidermis of the adult as well as to the stomodæum (E, F, mth.) and proctodæum. From the germinal bands are formed the ventral nerve-cord and the nephridia. The endoderm arises from small cells budded off from the megameres, which gradually grow round what is left of the latter. The remains of the megameres thus become enclosed in the enteron of the embryo and undergo gradual absorption, serving simply as food, and not giving rise to any part of the tissues. The cocoon contains no albumen, and the yolk of the megameres supplies the whole of the nutriment required by the embryo up to the time it leaves the cocoon. The young is hatched at a comparatively advanced state of development, and, after escaping from the cocoon, adheres by its suckers to the body of the parent.

In the Gnathobdellida the young are hatched at an early stage of development, and their megameres contain but little yolk: they are nourished up to the time of leaving the cocoon on the albumen with which the latter is filled. One member of this order, Nephelis, is remarkable for undergoing a metamorphosis: the anterior end of the embryo is ciliated, and it possesses a provisional pharynx and several pairs of provisional nephridia. Paired masses of cells, the head-germs, are developed in the head, and from these and the germinal bands the whole body of the adult is produced, the greater part of the larval body being cast off. This process closely resembles the development of the Pilidium larva of certain Nemerteans (p. 273).

Habits, Distribution, &c.—The majority of the Hirudinea are inhabitants of fresh-water and live, like the Medicinal Leech, by sucking the blood of higher animals—Vertebrates or Molluscs. It is doubtless in correlation with this intermittent parasitism—the chance of finding a vertebrate host being an infrequent one—that the crop has attained such vast dimensions, holding, in the case of the medicinal leech, as much blood as takes it a year to digest. The allied species Hirudo sanguisuga has been found in the nasal passages of man, producing serious results, and being, to all intents and purposes, an internal parasite. The same is the case with the horse-leech, Haemopsis vorax, taken in, when young, by
horses and cattle while drinking. It attaches itself to the pharynx, and may even descend the trachea. Others are permanent ecto-parasites: for instance, Branchellion is found on the outer surface of the Skate, Electric Ray, and other Fishes, entire families of the leech, including individuals of all sizes, being sometimes found crowded together on a small area of skin, which is distinctly marked by their powerful posterior suckers. Other fish-parasites are Pontobdella, on Rays, and Piscicola, on fresh-water Fish. Aulostoma, to which, as well as to Haemopsis, the name Horse-leech is applied, is carnivorous, feeding on snails and other Mollusca; so also are Clepsine, Nephelis, and the gigantic Macrobdella. The last-named genus and some others are of subterranean habits, living in moist earth. The Land-leeches (Haemadipsa) live in the forests of many parts of the world, and in spite of their small size, which does not exceed 30 mm. in length and 5 mm. in diameter, are much dreaded for the persistent attacks they make on men and cattle.

Many genera are very widely distributed: for instance, the Land-leeches (Haemadipsa) occur in India, Ceylon, the East Indies, Japan, Australia, and South America, a distribution which seems to indicate that the group is one of great antiquity. Hitherto no member of the class has been found in New Zealand, with the exception of the marine Branchellion.

GENERAL REMARKS ON THE ANNULATA.

A special feature of the Annulata, as distinguished from the phyla previously dealt with, is *metameric segmentation*. In some of the Platyhelminthes, as we have seen, there obtains a condition to which the term pseudo-metamerism is applied. In such cases there is a serial repetition of certain of the organs—gonads, diverticula of the intestine, nerve-commissures, &c.—in such a way as to produce a jointed appearance, though the body is not divided into definite segments. An appearance resembling segmentation is produced also in certain Rhabdocoæles that multiply by budding, chains of zooids remaining connected together for a time. In the strobila of the Cestodes we recognise a condition which might be described as combining pseudo-metamerism with the formation of a chain of zooids. The condition of true metamerism, as we observe it in the Annulata, is capable of being deduced from a condition of pseudo-metamerism as it occurs in Gundra (p. 241), the pseudo-metameres becoming converted into true metameres by the development of inter-segmental constrictions and the completion of internal partitions. On the other hand, it is deducible from the condition of a linear colony of zooids proliferating at the posterior end, the zooids, though
becoming each complete in itself, not, under ordinary circumstances, becoming detached. The establishment of a closer connection between the various organs of such a colony with the special differentiation of the anterior end would result in a condition closely resembling the metamerism of the Annulata. It is conceivable that a condition of pseudo-metamerism was followed by that of a linear series, not of zooids, but of comparatively independent parts capable of readily reproducing the animal when detached by accidental injury, and that a secondary closer connection established between the organs of all the series of parts resulted in the metameric condition.

Metamerism is not universal in the phylum. In some (Archi-annelida) it may be said to be incipient or rudimentary; in others

(Gephyrea) vanishing or vestigial. The Archi-annelida are in this, as in some other respects, the most primitive of the Annulata, and through them it seems possible to connect the higher members of the phylum with such lower forms as Dinophilus (p. 310). The general occurrence of the trochosphere larva may be taken as pointing to descent from an unsegmented ancestor having resemblances to the trochosphere, and a form like Dinophilus would afford us an intermediate link between such a hypothetical ancestor and Polygordius or Protodrilus.

The position of the unarmed Gephyrea in the Annulata is, as already noticed, a matter of doubt; if we dissociate them from the Armata there is little to connect them positively with the other members of the phylum. But, on the whole, perhaps the evidence in favour of regarding them as allied to the Armata, and through them with the Chaetopoda, is sufficiently strong.
In adult structure, particularly in the absence of parapodia and setae and of a coelome, the Hirudinea diverge somewhat widely from the Chaetopoda; but a study of their earlier developmental stages shows unmistakably their close connection with the latter group, more particularly with the Oligochaeta.

The following diagram will serve to illustrate this view of the relationships of the various groups referred to:

![Diagram](image)

Fig. 335 — Diagram illustrating the relationships of the Annulata and the Trochelminthes.
SECTION XI

PHYLUM ARTHROPODA

In this large and important group of animals we meet with a characteristic feature of the Chaetopoda, viz. metameric segmentation, as also with more or less perfect bilateral symmetry, mouth and anus at opposite ends of the elongated body, and a nervous system formed of a dorsal brain, and a double ventral chain of ganglia. There is, however, an important advance on the segmented Worms in the circumstance that each typical segment bears a pair of appendages, distinguished from the simple foot-stumps or parapodia of the Polychaeta in being divisible into distinct limb-segments or pedomeres, separated from one another by movable joints and acted upon by special muscles. Arthropods are also characterised by the almost universal absence of cilia, by their muscles being nearly always of the striped kind, by their sperms being usually non-motile, and by the body-cavity being largely represented by spaces, the blood-sinusæ, in free communication with the circulatory system.

The following are the most important subdivisions of the phylum.

Class 1. CRUSTACEA, including Crayfishes, Crabs, Shrimps, Woodlice, Barnacles, Water-fleas, &c.

Class 2. ONYCHOPHORA, including only a single genus, the curious caterpillar-like Peripatus.

Class 3. MYRIAPODA, including the Centipedes and Millipedes.

Class 4. INSECTA, including the true or six-legged Insects, such as Cockroaches, Locusts, Flies, Beetles, Butterflies, and Bees.

Class 5. ARACHNIDA, including Spiders, Scorpions, Mites, &c.

CLASS I.—CRUSTACEA.

1. EXAMPLES OF THE CLASS.

a. Apus or Lepidurus.

Apus and Lepidurus are two closely allied Crustaceans found in the fresh-waters of most parts of the world, but curiously local in
distribution and by no means common. They are so much alike that, save in minor details, the same description will apply to any species of either genus.

External Characters.—The animal (Fig. 386) is from 20 to 30 mm. in length, and has the anterior two-thirds of the dorsal surface covered by a thin chitinous shell or carapace, beyond the posterior edge of which the hinder part of the body (abd.) projects as a nearly cylindrical structure distinctly divided into segments. The last or anal segment bears a pair of long processes, the caudal styles (a. f.) between which, in Lepidurus, is a flat scale-like post-anal plate (Fig. 387). On the dorsal surface of the carapace, near its anterior border, are the paired eyes (E), closely approximated in front, diverging posteriorly. Immediately in front of them is a small black median eye (c.), and between their diverging posterior ends is a semi-transparent oval area, the dorsal organ (d. o.). Passing transversely across the carapace, a short distance behind the dorsal organ, is a shallow furrow, the cervical fold, immediately posterior to which a pair of coiled tubes (sh. gl.) are seen, one on each side of the carapace: these are the shell-glands or excretory organs.

The carapace is attached only as far back as the cervical fold: behind that level it is free, and, when lifted up or cut away (Fig. 387), shows the greater part of the body of the animal, divided into segments like the posterior portion. From the cervical groove backwards about twenty-eight or thirty segments can be counted: the region in front of the cervical groove shows no sign of segmentation, and is distinguished as the head. The segments have the form of chitinous rings, often produced into small spines: each
Fig. 337 — *Lepidurus kirkii*, side view with half of carapace and most of the appendages removed. *a*, caudal styles; *abd.*, abdominal foot; *ant. 1*, antennule; *br. bract*; *br. p.*, brood-pouch; *op*. carapace; *d. o.*, dorsal organ; *e*, paired eye; *e*, median eye; *f*, flabellum; *mld.*, mandible; *mx. 1, mx. 2*, maxillae; *p.a.p.*, post-anal plate; *pgr*. paragnatha; *th. 1–th. 11*, thoracic feet.
ring slightly overlaps its successor, and is connected with it by a narrow area, the articular membrane, the chitinisation of which is less pronounced than that of the rings themselves. By this arrangement the segments are freely movable upon one another in all directions, the articular membranes acting as joints. The last or anal segment is pierced by the terminal anus (Fig. 390, an.).

The ventral surface of the head is formed by a flattened sub-frontal plate (Fig. 388, sf, pl.), continuous marginally with the carapace. The posterior edge of this plate is convex backwards, and is produced in the middle line into a shield-shaped process, the labrum or upper lip (lbr.), which overhangs the mouth. From the subfrontal plate also arise, on each side, two delicate processes, the innermost, called the antennule (ant. 1), the outermost the antenna (ant. 2): these are the first two pairs of appendages. The third pair consists of two strong toothed bodies of a deep brown colour, placed one on each side of the mouth, and called the mandibles (md.). The remaining appendages form two rows of delicate leaf-like processes, attached to the segmented portion of the body, and overlapping one another from before backwards: their number varies from forty to nearly seventy (th. f., abd. f.).

Appendages.—The antennule (Fig. 389, 1) consists of a bent rod bearing delicate chitinous bristles or setae at its tip, and presenting, at the bend, a joint, due to the presence of an articular membrane. The appendage is thus made up of two podomeres or limb-segments, movably articulated together. Its function is probably tactile.

The antenna (2) is absent in some species both of Apus and Lepidurus; in *A. canciformis* it is a very delicate hook-shaped unjointed structure, probably functionless. As we shall see from the study of development, it is a vestigial organ.

The mandible (3) is also an unjointed appendage. It has the form of a deeply concavo-convex plate, strongly chitinised, and pro-

Figure 388. *Apus glacialis*, ventral aspect. *abd. f.*, abdominal feet; *antl.*, antennule; *ant2.*, antenna; *lbr.*, labrum; *md.*, mandible; *mx.*, first maxilla; *or.*, aperture of oviduct; *sf., pl.*, sub-frontal plate; *sh. gl.*, shell-gland; *th. f.*, thoracic feet; *th. f., 1.*, first thoracic foot. (After Bernard.)
duced along its inner edge into strong teeth. The mandibles lie one on each side of the mouth, and are so articulated that, by means of muscles, their toothed edges can be brought together in the middle line, so as to rend the food.

The fourth and fifth appendages are very small, and are probably functionless or nearly so: they follow one another just behind the mandible, and are called the first and second maxillae. The first maxilla (4) consists of two curved chitinous plates, the second of a basal portion produced into two branches (5). Between the first maxilla and the mandibles are a pair of delicate unjointed processes, the paragnatha (Fig. 387, pgn.): they form together a sort of lower lip, and are not usually reckoned as appendages.

The foregoing appendages all spring from the unsegmented anterior portion of the body or head. As we shall see, however, the succeeding limbs spring each pair from its own segment, so that the presence of five pairs of appendages on the head may be taken provisionally as an indication that this region of the body is composed of five fused segments.

The sixth appendage (6) springs from the ventro-lateral region of the first clearly marked segment, and is the first of the long row of appendages plainly visible in a ventral view. It consists of an axis formed of four podomeres (1–4), and bearing a number of offshoots: six of these, called endites (en. 1—en. 6), spring from
its inner or mesial border; two, called exites (br., fi.), from its outer or lateral border. The proximal endite (en. 1) is small, and bears strong spines: in conjunction with its fellow of the opposite side it is used to seize food-particles and pass them on to the mouth: it is therefore conveniently distinguished as the gnathobase. The distal endite is rudimentary (en. 6); the remaining four (en. 2–5) are long jointed filaments. The proximal exite is nearly triangular, and is called the flabellum (fl.); the distal exite is oval, and is known as the bract (br.); both probably serve a respiratory function.

The seventh appendage (7) has only two podomeres in the axis, and the endites are comparatively short and flat. The next eight, i.e. those borne on the third to the sixteenth free segments, closely resemble one another: each (8) has an unjointed axis and short leaf-like endites, the whole appendage having a distinctly foliaceous character. The sixteenth appendage—that of the eleventh free segment—resembles its predecessors in the male, but in the female (9) is peculiarly modified. The distal portion of the axis forms a hemispherical cup, over which the flabellum (fl.) fits like a lid: in this way a capsule or brood-pouch is produced, which serves for the reception of the eggs, and the appendage is distinguished as the ostegopod or brood-foot. The brood-feet and the adjacent genital apertures allow of a very convenient division of the body: all that region from the first free or postcephalic segment to that bearing the ostegopods, both inclusive, is called the thorax, and its appendages the thoracic feet: it consists of eleven metameres. The remaining segments, from the twelfth to the last inclusive, constitute the abdomen, and their appendages are called the abdominal feet.

The abdominal resemble the thoracic feet in general characters, having the same foliaceous form (10), with unjointed axis, small leaf-like endites, and large flabellum and bract. They gradually diminish in size from before backwards, and, from the third abdominal segment onwards, two or more pairs of appendages spring from each segment, so that while the total number of abdominal segments, in A. euncriformis, is twenty-two, and the five hindermost of these are without appendages, there are altogether fifty-two pairs of abdominal feet. It seems probable that segments bearing more than one pair of appendages represent two or more fused, or, perhaps one should rather say, imperfectly differentiated, metameres.

Body-wall.—The whole body is, as already mentioned, covered by a layer of chitin of varying thickness, which constitutes an exoskeleton or external supporting structure. Immediately underlying it is the deric epithelium or epidermis, from which the chitin is secreted layer by layer. Thus the exoskeleton of Apus is a continuous cuticular structure, exhibiting segmentation in virtue
of the fact that, while comparatively thick and strong in places where no movement is required, it is thin and flexible in the intervening spaces, and thus allows of the movement of the harder parts upon one another.

The setæ, which occur on many parts of the body, and in particular fringe the appendages, are hollow offshoots of the chitinous cuticle, containing a protoplasmic core continuous with the epidermis (Fig. 399). They thus differ fundamentally from the setæ of Chaetopods, which are solid rods sunk in muscular sacs.

The muscular system is well developed (Fig. 390). Underlying the epidermis is a layer of connective tissue, and beneath this is found, in the posterior or limbless part of the abdomen, a layer of longitudinal muscles (Fig. 390) encircling the body, and attached by connective-tissue to each segment. In this way the muscular layer is itself segmented, being divided by the connective-tissue insertions into muscle-segments or myomeres. The action of these muscles is to approximate adjacent segments; according as the fibres on the dorsal, ventral, or lateral regions contract, the abdomen will be raised, lowered, or turned sideways. In the limb-bearing portion of the abdomen and
longer a continuous muscular tube, but paired dorsal (d.m.) and ventral bands, which pass respectively above and below the origins of the limbs: the dorsal bands arise in front from the head-region, the ventral from a strong fibrous plate, the cephalic apodeme (c.ap.), lying just behind the gullet.

Each appendage is moved as a whole by muscles passing into it from the trunk: its various parts are acted upon by delicate muscular slips running to the various podomeres of the axis and to the endites, thus rendering them separately movable. The only example we have yet met with of appendages moved by definite muscular bands is that of the curious rotifer Pedalion (p. 307). The muscles are all striped, a character which applies to the Arthropoda generally, with the exception of the Onychophora.

Digestive Organs.—The mouth (Fig. 390, vth.) is situated on the ventral surface of the head, and is bounded in front by the labrum (lbr.), on each side by the mandibles, and behind by the paragnatha. The food appears to be pushed forwards towards the mouth by the toothed bases of the thoracic feet, and is subdivided by the mandibles, which work laterally. The maxillae are probably functionless, or nearly so.

The mouth leads into a narrow gullet (gul.), which passes upwards and forwards into the head and enters a wide stomach (st.), from which a straight intestine (int.) is continued back to the terminal anus (an.). From each side of the stomach is given off a wide tube (d.gl.) which branches extensively, its ramifications finally ending in delicate cæca. The larger branches of these digestive glands contain food in process of digestion: their ultimate cæca secrete a digestive juice: the walls of the stomach itself are non-glandular. The walls of the enteric canal consist of an inner layer of epithelium and an outer layer of connective-tissue and muscle. In the gullet and in the posterior end of the intestine the epithelium secretes a thin cuticle, which thus comes to form the actual lining of the cavity. It is shown by development that the portion of the canal devoid of a chitinous lining is formed from the archenteron of the embryo: the gullet is developed from the stomodæum, the posterior end of the intestine from the proctodæum.

The **body-cavity** is divided into several parts by membranous partitions (Fig. 391): there is a large median cavity in which the enteric canal (i) lies, called the intestinal sinus: on each side of this are lateral sinuses containing the muscles: and in the dorsal region is a median cavity, the pericardial sinus. All these spaces are devoid of an epithelial lining, and contain blood: there is reason for thinking that they do not correspond with the coelome of the higher worms but this subject will be more conveniently discussed hereafter (p. 547).

The central organ of the **circulatory system** is the heart (Fig.
390 ht, and Fig. 391, h), a narrow tube contained in the pericardial sinus. It is pierced laterally by several pairs of apertures or ostia, provided with valves opening inwards, and is continued in front into a narrow tube, the cephalic artery (c. art.), which extends into the head and gives off near its origin a pair of arteries to the shell-glands. When the heart contracts, the blood is driven through these arteries to the head and carapace: it then travels backwards in the intestinal sinus, passes to the limbs, and is returned to the pericardial sinus, finally re-entering the heart, during its diastole, through the ostia. The plasma of the blood is coloured red by haemoglobin, and contains amœboid corpuscles.

As already mentioned, the function of respiration is discharged by the flabellae and bracts of the foot, which are abundantly sup-

![Fig. 391.—Transverse section of Apus, c. muscles to foot; d. dorso-ventral muscles; e. eggs; dm. dorsal muscles; g. ovary; dv. dorso-ventral muscles; h. heart; i. intestine; m. partition between intestinal and lateral sinus; rm. ventral muscles. (From Bernard.)](image)

plied with blood, and the movements of which ensure a constant renewal of the water in their neighbourhood. The renal organ or shell-gland (Fig. 392) consists of a coiled uriniferous tube (uc.) lying between the two layers of the carapace and lined by gland-cells. At one end the tube is connected with an end-sac (ts.), also lined with glandular epithelium; at the other it dilates into a small bladder (b.) which opens on the second maxilla (m.).

The nervous system (Fig. 393) is constructed on the annulate type. There is a squarish brain (br.) situated in the dorsal region of the head, beneath the eyes. From it a pair of osophageal connectives pass backwards and downwards to join the ventral nerve-cord, which consists of a double chain of ganglia (gn. 1–4) united by longitudinal connectives and transverse commissures so as to have a ladder-like appearance. The first pair of ganglia lies
immediately behind the mouth, and sends off visceral nerves which join to form a ring round the gullet, swollen in front into a small visceral ganglion (v. gn.). Passing backwards, the nerve-chain diminishes in size, and comes to an end at about the level of the last pair of abdominal feet (Fig. 390).

The origin of the nerves given off from the central nervous system presents many points of interest. From the fourth ganglion of the ventral cord backwards each pair of appendages has its own pair of ganglia, the metameric correspondence between the limbs and the nervous system being complete. The mandibles and the first maxillae also receive nerves, each from their own pair of ganglia, their serial homology with the more typical appendages being thus confirmed. But the second maxillae receive their nerves (mn. 2) from the connectives between the third and fourth ganglia: the ganglion belonging to their segment may be assumed to have atrophied. The antenna is supplied by a nerve (ant. 2) which springs from the oesophageal connective, but which can be traced backwards to the first ganglion of the ventral chain: this fact may be taken as an indication that the antennae are serially homologous with the jaws and feet, that they are in fact metameric or post-oral appendages which have shifted forwards, one on each side of the mouth, thus becoming pre-oral. The nerve of the antennule (ant. 1) also springs from the oesophageal connective, but is traceable forwards to the brain, where it is connected

Fig. 392.—Shell-gland of *Apus*, diagrammatic. *ac*, cephalic artery; *h*, bladder; *hb*, heart; *m*, second maxilla; *ts*, end-sac; *uc*, urinary tube. (From Bernard.)
with a special group of nerve-cells. This has been explained by supposing that the antennule is a post-oral appendage the ganglion of which has moved forwards, along the oesophageal connective, and fused with the brain—a process which actually takes place with the ganglia of the antennae in the higher Crustacea. But it is also possible to consider the antennules as pre-oral appendages, belonging, like the pro stomial tentacles of Chaetopods, to the pro stomial region, and therefore receiving their nerves from the brain or pro stomial ganglion. The median and paired eyes are also supplied by nerves from the brain.

Organs of Sense.—The setae which occur on so many parts of the body, and especially as fringes to the limbs, are to be considered as organs of touch: the only other organs of special sense are the eyes. The paired eyes are, as we have seen, situated on the dorsal surface of the head, just over the brain: they are covered by transparent cuticle forming the cornea, beneath which is a narrow space or water-sac, communicating with the exterior by a pore, and therefore filled with water. The eye itself is made up of a large number of radially arranged elements called ommatidia (Fig. 394), each of which consists of an outer and an inner portion. The outer portion is a group of clear glassy cells (ce.) enclosing a transparent homogeneous vitreous body (cr.): the whole of this portion of the eye serves to refract the rays of light: it is the dioptric apparatus, like our own lens and vitreous humour. The inner portion is a group of sensory cells, constituting a retinula (re.), and enclosing a refractive rod, the rhabdome (rh.).: the retinula is the actual percipient part of the ommatidium, its cells being comparable to our own rods and cones. The retinule of adjacent ommatidia are separated from one another by cells full of black pigment (p.), so that each ommatidium is in a state of optical isolation from its fellows, and the whole eye is what is called a compound eye. The optic
nerve springing from the brain dilates into an optic ganglion, from which fibres pass to the retinula.

The **median eye** is an ovoid body, and consists of four groups of large sensory cells enclosing a mass of pigmented tissue: it is in immediate contact with the brain, and receives a narrow canal from the water-sac beneath the cuticle of the paired eyes.

Reproductive Organs.—The large majority of individuals both of Apus and Lepidurus are females; males are of com-

![Diagram of two ommatidia from the paired eyes of Apus.](image)

Fig. 394.—Diagram of two ommatidia from the paired eyes of Apus. *cc*, vitreous cells; *cr*, vitreous body; *cl*, connective-tissue fibre; *hy*, epiderm cells; *p*, pigment cells; *re*, retinula; *rh*, rhabdome. (From Bernard.)

paratively rare occurrence. The **ovary** (Fig. 390, *ovy.*) is a branched tube occupying a considerable portion of the body-cavity in sexually mature individuals. The walls of the tube are lined with epithelium, and give rise to ova, which pass into the lumen of the tube and thence to a duct (*ovd.*) opening on the eleventh or last thoracic segment. As in Leeches (p. 474), there is reason for thinking that the cavity of the ovarian tube represents a shut-off portion of the coelome, and the oviduct a nephridium. One species has been shown to be hermaphrodite; in others males are occasionally found, but reproduction appears to be, as a rule, parthenogenetic.
Development.—The eggs are centrolecithal, i.e., have an accumulation of yolk in the centre surrounded by a superficial layer of protoplasm. The process of segmentation and the formation of the germ-layers, has not been observed.

The embryo is hatched in the form shown in Fig. 395, A. The body is oval, and is divisible into three regions—a large anterior or head-region; an intermediate trunk-region, the hinder part of which already shows signs of segmentation (I–V) and a posterior bilobed anal region. The head-region bears a single median eye, and a pair of small unjointed appendages (I), each with two large setae at its extremity, which become the antennules of the adult. The trunk-region bears two pairs of appendages, the first of which (2) is very large and fringed with setae, but is chiefly remarkable for being biramous or two-branched—being formed of a proximal portion or stem, the protopodite; a small inner branch, the endopodite; and a large outer branch, the exopodite. This second
appendage becomes the antenna of the adult, and may be called the *antennary foot*: it is the chief organ of locomotion of the larva. The second trunk-appendage is the *mandibular foot* (\(J\)), so called because it becomes converted into the mandible of the adult; it is also biramous. The only internal structure to be noted is the straight enteric canal with its dilated anterior end or stomach: the mouth opens between the bases of the antennary and mandibular feet, and is bounded in front by a large labrum: the anus lies at the extremity of the anal region. This very peculiar and characteristic larval form is called a *Nauplius.*

The Nauplius swims freely, chiefly by vigorous strokes of the great antennary feet, and after a time undergoes a series of moults or *ecdyses*, the cuticle being cast off and the animal emerging in the form shown in Fig. 395, B. The trunk-region has elongated, new segments having been added, as in Cephalopods, between those previously present and the anal region. The antennules have become shifted backwards, and rudiments of a fourth pair of appendages, the first maxille (\(4\)), have appeared. The carapace has grown out from the dorsal region of the head, and a peculiar paired sense-organ (\(fs\)) has appeared on the head.

After two more ecdyses the larva has assumed the form shown in Fig. 395, C. Several new segments have been added, and the anterior of these all bear leaf-like thoracic feet. The antennary feet are still very large, and the bases of the mandibular feet have become enlarged and toothed so as to form biting jaws. The carapace (\(s\)) has increased greatly, and the caudal styles have attained a considerable size. Further moults occur; new segments are added with their appendages, the antennules and antennae degenerate,—the latter sometimes disappearing altogether,—the mandibles become reduced to the enlarged basal segment, and the larva passes by almost insensible gradations into the adult form.

It will be seen that the development of Apus proves clearly that the antennae and mandibles are ordinary trunk-appendages, homologous with the thoracic and abdominal feet: a comparison of the antennary and thoracic feet of the larva supports the view that the endopodite of the former corresponds with the fifth endite of the latter, and the exopodite with the sixth endite. The antennules are from the first unbranched or uniramous, and are originally situated quite at the anterior region of the body: they do not, therefore, show a complete correspondence with the remaining appendages, and, as was inferred from their nerve supply, may perhaps be considered as prostomial and not metameric appendages.

1 More strictly *Metanauplius*: the typical Nauplius exhibits no segmentation of the trunk region.
b. The Fresh-water Crayfish (*Astacus fluviatilis*).

Astacus fluviatilis is common in streams and rivers in England and the continent of Europe; allied species occur in Asia and North America; and fresh-water Crayfishes belonging to other genera, but agreeing with *Astacus* in all essential features, are found in America, Australia, and New Zealand.

External Characters.—The body of the Crayfish (Fig. 396) is divided into two regions—an anterior, the *cephalothorax* (*cith.*), which is unjointed, and is covered by a *carapace* resembling that of *Apus*, but of smaller proportional size; and a posterior, the *abdomen* (*ab*), which is divided into distinct segments, movable upon one another in a vertical plane. The cephalothorax is again divided into two regions—an anterior, the *head*; and a posterior, the *thorax*—by a transverse depression, the *cervical groove*. The divisions of the body are thus the same as in *Apus*, but the abdomen alone is movably segmented, owing to the fact that the carapace, instead of being a purely cephalic structure continued backwards as a loose fold over the thorax, is developed from the dorsal and lateral regions of both head and thorax, and is free only at the sides of the thorax, where it forms a flap or *gill-cover* (*kd*) on each side, separated from the actual body-wall by a narrow space in which the gills are contained (Fig. 404). The carapace is made of chitin, strongly impregnated with carbonate of lime so as to be hard and but slightly elastic.

The *abdomen* is made up of seven segments: the first six (XIV–XIX) of these are metameres in the strict sense of the word, and have a ring-like form, presenting a broad dorsal region or *tergum*, a narrow ventral region or *sternum*, and downwardly directed lateral processes, the *pleura*—the latter quite unrepresented in *Apus*. The seventh division of the abdomen is the *telson*; it is flattened horizontally, and divided by a transverse groove into anterior and posterior portions. All seven segments are calcified, and are united to one another by chitinous articular membranes: the first segment is similarly joined to the thorax. Thus the exoskeleton of *Astacus* resembles that of *Apus* in being a continuous cuticular structure, but differs from it in being discontinuously calcified, so as to have the character of a hard jointed armour.

It has been stated that the abdominal segments are movable upon one another in a vertical plane—i.e., the whole abdomen can be *extended* or straightened, and *flexed* or bent under the cephalothorax: the segments are incapable of movement from side to side. This is due to the fact that, while adjacent segments are connected dorsally and ventrally by flexible articular membranes, they present at each side a *hinge* (Fig. 400, *h*), placed at the
junction of the tergum and pleuron, and formed by a little peg-like process of one segment fitting into a depression or socket in the other. A line drawn between the right and left hinges constitutes the *axis of articulation*, and the only possible movement is in a plane at right angles to this axis.

Owing to the presence of the carapace, the **thoracic region** is immovable, and shows no distinction into segments either on its dorsal (tergal) or lateral (pleural) aspect. But on the ventral surface the sterna of the thoracic segments are clearly marked off by transverse grooves, and the hindmost of them is slightly movable. Altogether eight thoracic segments can be counted.

The ventral and lateral regions of the thoracic exoskeleton are produced into the interior of the body in the form of a segmental series of calcified plates, so arranged as to form a row of lateral chambers in which the muscles of the limbs lie, and a median tunnel-like passage or *sternal canal*, containing the thoracic portion of the nervous system. The entire *endophragmal system*, as it is called, constitutes a kind of internal skeleton: its anterior end is formed by a plate, the *cephalic apodeme*, having the same anatomical relations as the similarly named structure in Apus.

The **head** exhibits no segmentation: its sternal region is formed largely by a shield-shaped plate, the *epistoma*, nearly vertical in position. The ventral surface of the head is, in fact, bent so as to face forwards instead of downwards. The epistoma is bounded laterally by the free edge of the carapace instead of passing insensibly into it like the sub-frontal area of Apus, with which however it agrees in having the *labrum* attached to the

Fig. 396.—Astacus fluviatilus, side view of male. *al*, antennule; *a2*, antenna; *ab*, abdomen; *eth*, cephalothorax; *bl*, gill-cover; *rostrum*; *s*, third maxillipede; *b*, first leg; 10—13, remaining legs; *19*, uropod; *XIV*, first abdominal segment; *XIX*, sixth abdominal segment.

(From Lang’s *Comparative Anatomy.*)
middle of its posterior border. The cephalic region of the carapace is produced in front into a large median spine, the rostrum (Fig. 396, r): immediately below it is a plate from which spring two movably articulated cylindrical bodies, the eye-stalks, bearing the eyes at their ends.

The appendages are seen at a glance to differ from those of Apus in their vastly greater degree of differentiation: obvious at a glance are the long feelers (Fig. 396, a. 1, a. 2) attached to the head, the five pairs of legs (9-15) springing from the thorax, and the little fin-like bodies arising from the sterna of the abdomen. It will be convenient to begin with the last-named region.

The third, fourth, and fifth segments of the abdomen bear each a pair of small appendages, the swimming feet or pleopods (Fig. 397, 10), the resemblance of which to the biramous limbs of the larval Apus is obvious. There is an axis or protopodite consisting of a very short proximal (pr. 1) and a long distal (pr. 2) podomere, and bearing at its free end two jointed plates, fringed with setae, the endopodite (en) and exopodite (ex). These appendages act as fins, moving backwards and forwards with a regular swing, and probably aiding in the animal’s forward movements.

In the female a similar appendage is borne on the second segment, while that of the first is more or less rudimentary. In the male the first and second pleopods (9) are modified into incomplete tubes which act as copulatory organs, serving to transfer the spermatophores to the body of the female. The sixth pair of abdominal limbs (11) are alike in the two sexes: they are very large, both endo- and exopodite having the form of broad flat plates: in the natural position of the parts they lie one on each side of the telson, forming with it a large five-lobed tail fin: they are therefore conveniently called uropods or tail-feet. The telson itself bears no appendages.

The thoracic appendages are very different. The four posterior segments bear long slender, jointed legs (8), upon which the animal walks: in front of these is a pair of very large legs terminating in huge claws or chelae, and hence called chelipeds (Fig. 396, 9). The three anterior segments bear much smaller appendages, more or less leg-like in form, but having their bases toothed to serve as jaws: they are distinguished as maxillipeds or foot-jaws (Fig. 397, 5-7).

The structure of these appendages is best understood by a consideration of the third maxilliped (7). The main portion of the limb is formed of seven podomeres arranged in a single series, strongly calcified, and, with the exception of the second and third, which are fused, movably articulated with one another. The second podomere, counting from the proximal end, bears a many-jointed feeler-like organ (ex), and from the first springs a thin folded
plate (ep) having a plume-like gill (g) attached to it. Obviously such an appendage is biramous, but with one of its branches greatly in excess of the other: the first two segments of the axis (pr. 1, pr. 2) form the protopodite, its remaining five segments (en. 1–6) the endopodite, and the feeler, which is directed outwards, or away from the median plane, the exopodite (ex). The folded plate (ep) is called the epipodite: in the natural position of the parts it is directed upwards, and lies in the gill-cavity between the proper wall of the thorax and the gill-cover (Fig. 404). Its position is thus very similar to that of the flapellum of Apus, while the gill attached to it is comparable to the bract.

The five legs (8) differ from the third maxillipede in their greater size, and in having no exopodite: in the fifth or last the epipodite also is absent. The first three of them have undergone a curious...
modification, by which their ends are converted into pincers or claws: the fourth segment (en. 4) of the endopodite (sixth of the entire limb) is produced distally so as to form a claw-like projection (en. \(j \)), against which the terminal segment (en. 5) bites. The first leg is much stouter than any of the others, and its chela is of immense size and forms an important weapon of offence and defence. The second maxillipede resembles the third, but is considerably smaller: the first (6) has its endopodite greatly reduced, the two segments of its protopodite large and leaf-like, and no gill is connected with the epipodite.

As in Apus, the head bears a pair of mandibles and two pairs of maxillæ in relation with the mouth, and in front of that aperture a pair of antennæ and one of antennæ. The hindmost appendage of the head is the second maxilla (5), a markedly foliaceous appendage: its protopodite (pr. 1, pr. 2) is cut up into lobes comparable with the four proximal endites in the thoracic feet of Apus: its endopodite (en) corresponds with the fifth endite, while the sixth endite is represented by the exopodite (ex), modified into a boomerang-shaped plate, which, as we shall see, is an important accessory organ of respiration. The first maxilla (4) is a very small organ, having neither exo- nor epipodite. The mandible (3) is a large strongly calcified body, toothed along its inner edge, and bearing on its anterior border a little three-jointed feeler-like body, the palp, the two distal segments (en. 1, en. 2) of which represent the endopodite, its proximal segment (pr. 2), together with the mandible proper (pr. 1), the protopodite.

The antenna (2) is of great size, being nearly as long as the whole body. It consists of an axis of five podomeres, the fifth or last of which bears a long flexible, many-jointed structure, or flagellum (fl), while from the second segment springs a scale-like body or squama (ex). It is fairly obvious that the two proximal segments represent the protopodite, the remaining three, with the flagellum, the endopodite, and the squama the exopodite.

The antennule (1) has an axis of three podomeres (1-3) ending in two many-jointed flagella (fl. 1. and 2), which are sometimes considered as endo- and exopodite. But in all the other limbs, as we have seen, the exopodite springs from the second segment of the axis, and the probabilities are that there is no exact correspondence between the parts of the antennule and those of the remaining appendages.

The eye-stalks, already noticed, arise just above the antennules, and are formed each of a small proximal and a large distal segment. They are sometimes counted as appendages serially homologous with the antennæ, legs, &c. But, as we have seen in the case of Apus, the appendages of Crustacea are always formed in regular order from before backwards; the eye-stalks, on the other hand, always appear later, both in individual development and in the
Crustacean series, than the normal anterior appendages. They are therefore more properly to be looked upon as articulated processes of the prostomium, developed in connection with the need for an increased range of vision. The probability of the antennules being also prostomial structures has already been referred to; assuming this to be the case, it will be seen that the body of the Crayfish consists of a prostomium, eighteen metameres, and a telson which is probably composed of an anal segment, plus a post-anal plate. The prostomium bears eye-stalks and antennules: the first four metameres are fused with the prostomium to form the head, and bear the antennæ, mandibles, first maxilla, and second maxillæ: the next eight metameres (5th–12th) constitute the thorax, and bear the three pairs of maxillipeds and the five pairs of legs: the remaining six metameres (13th–18th), together with the telson, constitute the abdomen, and bear five pairs of pleopods and one of uropods.

The articulation of the various podomeres of the appendages is on the same plan as that of the abdominal segments (p. 498). The podomeres are, it must be remembered, rigid tubes: they are connected with one another by flexible articular membranes (Fig.398, art. m.), but at two points the adjacent ends of the tubes come into contact with one another and are articulated by peg and-socket joints (h.), the two joints being at opposite ends of a diameter which forms the axis of articulation. The two podomeres can, therefore, be moved upon one another in a plane at right angles to the axis of articulation and in no other direction, the joints being pure hinge-joints. As a rule, the range of movement is from the perpendicular to a tolerably extensive flexion on
one side—the articulations are single-jointed, like our own elbows and knees. The whole limb is, however, capable of universal movement, owing to the fact that the axes of articulation vary in direction in successive joints: the first joint of a limb bending, for instance, up and down, the next backwards and forwards, the next obliquely, and so on. In some cases, e.g. the pleopods, peg-and-socket joints are absent, the articulation being formed merely by an annular articular membrane and movement being therefore possible in any plane.

Body-wall.—The exoskeleton is produced into spines of varying form and size, and many parts of it bear tufts or fringes of setae, which also exhibit a wide variation in size and form. It is composed of a thick laminated chitinous membrane (Fig. 399, *cu*.), more or less impregnated with lime-salts, and is shed periodically—once a year during adult life. Beneath it is the epidermis (*ep.*), composed of a single layer of cells, from which the chitin is secreted, and underlaid by a layer of connective-tissue (*c. t.*) to which the muscles are attached.

The **muscular system**, like the exoskeleton, shows a great advance in complexity over that of Apus. In the abdomen (Fig. 400) the muscles are of great size, and are divisible into a smaller dorsal and a larger ventral set. The **dorsal muscles** (*d. m.*) are paired longitudinal bands, divided into myomeres, and inserted by connective tissue into the anterior border of each segment: anteriorly they are traceable into the thorax, where they arise from the side-walls of that region. When these muscles contract, they draw the anterior edge of each tergum under the posterior edge of its predecessor, and thus extend or straighten the abdomen.

The **central muscles** are extraordinarily complex. Omitting details, there is on each side a wavy longitudinal band of muscle (*c. m.*), nearly circular in section, which sends off a slip (*ca.*) to be inserted into each segment above the hinge (*h.*): the contraction of this muscle must obviously tend to approximate the terga, and so aid the dorsal muscles in extending the abdomen. Around this **central muscle** is wrapped, in each segment, a band of muscle (*cnvr. m.*) in the form of a loop, the outer limb of which turns forwards and is inserted into a sternum, while the inner limb turns backwards and is inserted into another and more posterior sternum. The contraction of this **enveloping muscle** produces an approximation of
the sterna, and thus flexes the abdomen, the central muscle always keeping the middle of the loop in place. The ventral muscles are, like the dorsal, traceable into the thorax, where they arise from the endophragmal system: their various parts are connected by a complex system of fibres extending between the central and enveloping muscles, and connecting both with their fellows of the opposite side. The flexor muscles are immensely powerful, and produce, when acting together, a sudden and violent bending of

Fig. 400.—Four segments of abdomen of *Crayfish* in sagittal section, with muscles (diagrammatic). A, extension; B, flexion; art. m., art. m', articular membranes; c. m., central muscles; d. m., dorsal muscle; ex. m., extensor slip of central muscle; env. m., enveloping muscle; fl., fl., flexor slips; h. hinge; st. sternum; tg. tergum.

the abdomen upon the cephalothorax, causing the Crayfish to dart backwards with great rapidity.

It will be seen that the body-muscles of the Crayfish cannot be said to form a layer of the body-wall, as in Chaetopods, the abdomen of Apus, &c., but constitute an immense fleshy mass, filling up the greater part of the body-cavity, and leaving a very small space around the enteric canal.

In the limbs (Fig. 398), each podomere is acted upon by two muscles situated in the next proximal podomere. These muscles are inserted, by chitinous and often calcified tendons, into the
proximal edge of the segment to be moved, the smaller on the extensor (ext.), the larger on the flexor (fl.) side, in each case half-way between the two hinges, so that a line joining the two muscular insertions is at right angles to the axis of articulation.

The digestive organs are constructed on the same general plan as those of Apus, but present many striking differences (Fig. 401). The mouth lies in the middle ventral line of the head, and is bounded in front by the labrum, at the sides by the mandibles, and behind by a pair of delicate lobes, the paragnatha. It leads by a short wide gullet (oc) into a capacious stomach, which occupies a great part of the interior of the head, and is divided into a large anterior or cardiac division (cs), and a small posterior or pyloric division (ps); the latter passes into a narrow and very short small intestine (md), from which a somewhat wider large intestine (hd) extends to the anus (an.), situated on the ventral surface of the telson.

The outer layer of the enteric canal consists of connective tissue containing striped muscular fibres: within this is a single layer of columnar epithelial cells. In the gullet and stomach, and in the large intestine, the epithelium secretes a layer of chitin, which thus constitutes the innermost lining of those cavities. It is proved by development that the small intestine, which has no chitinous lining, is the only part of the enteric canal developed from the mesenteron: the gullet and stomach arise from the stomodæum, the large intestine from the proctodæum. Thus a very small portion of the enteric epithelium is endodermal.
In the cardiac division of the stomach the chitinous lining is thickened and calcified in certain parts, so as to form a complex articulated framework, the *gastric mill*, on which are borne a median and two lateral *teeth*, strongly calcified and projecting into the cavity of the stomach. Two pairs of strong muscles arise from the carapace, and are inserted into the stomach: when they contract they move the mill in such a way that the three teeth meet in the middle and complete the comminution of the food begun by the jaws. The separation of the teeth is effected partly by the elasticity of the mill, partly by delicate muscles in the walls of the stomach. The pyloric division of the stomach forms a strainer: its walls are thickened and produced into numerous setae, which extend quite across the narrow lumen and prevent the passage of any but finely divided particles into the intestine. Thus the stomach has no digestive function, but is merely a masticating and straining apparatus. On each side of the cardiac division is found at certain seasons of the year a plano-convex mass of calcareous matter, the *gastrolith*.

The digestion of the food and to some extent the absorption of the digested products are performed by a pair of large glands (*br*.), lying one on each side of the stomach and anterior end of the intestine. They are formed of finger-like saes or *cecm*, which discharge into wide ducts opening into the small intestine, and are lined with glandular epithelium derived from the endoderm of the embryo. The glands are often called livers, but as the yellow fluid they secrete digests proteids as well as fat, the name *hepato-pancreas* is often applied to them, or they may be called simply *digestive glands*. The Crayfish is carnivorous, its food consisting largely of decaying animal matter. Microscopic glands occur in the wall of the gullet.

The digestive organs and other viscera are surrounded by a *body-cavity*, which is in free communication with the blood-vessels and itself contains blood. As will be pointed out more particularly hereafter, this cavity is to be looked upon as an immense blood-sinus, and not as a true celome.

There are well-developed *respiratory organs*, in the form of *gills*, contained in a narrow branchial chamber, bounded internally by the proper wall of the thorax (Fig. 404, *cp*), externally by the gill-cover or pleural region of the carapace (*br*). Each gill consists of a stem giving off numerous branchial filaments, so that the whole organ is plume-like. The filaments are hollow, and communicate with two parallel canals in the stem—an external, the *aferent branchial vein*, and an internal, the *effeent branchial vein*. The gill is to be considered as an out-pushing of the body-wall, and contains the same layers—a thin layer of chitin externally, then a single layer of epithelial cells, and beneath this connective tissue, hollowed out for the blood
channels and containing gland-cells, which will be referred to presently.

According to their point of origin, the gills are divisible into three sets—first, **podobranchiae** or foot-gills, springing from the epipodites of the thoracic appendages, from which they are only partially separable; secondly, **arthrobranchiae** or joint-gills, springing from the articular membranes connecting the thoracic appendages with the trunk; and thirdly, **pleurobranchiae**, or wall-gills, springing from the lateral walls of the thorax, above the attachment of the appendages. It is inferred from the study of other Crayfishes, that a typical thoracic segment bears four gills, one podo-, two arthro-, and one pleurobranchia. But in Potamobia
one or more of the gills in every segment are absent or vestigial, and the following table, or "branchial formula," shows the actual number and arrangement of these organs, *ep* standing for epipodite, and *r* for the vestige of a gill.

<table>
<thead>
<tr>
<th>THORACIC SEGMENTS</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
<th>VI</th>
<th>VII</th>
<th>VIII</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>odobranchiæ</td>
<td>0+ep</td>
<td>1+ep</td>
<td>1+ep</td>
<td>1+ep</td>
<td>1+ep</td>
<td>1+ep</td>
<td>0</td>
<td></td>
<td>6+7ep</td>
</tr>
<tr>
<td>arthrobranchiæ</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>pleurobranchiæ</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1+2r</td>
</tr>
<tr>
<td>Total</td>
<td>0+ep</td>
<td>2+ep</td>
<td>3+ep</td>
<td>3+ep</td>
<td>3+ep</td>
<td>3+ep</td>
<td>3+ep</td>
<td>1</td>
<td>18+2r+7ep</td>
</tr>
</tbody>
</table>

By adding up the columns vertically we get the number of gills in each segment; by adding them horizontally, the number of each kind of gill; and by adding together the results obtained by either method, the total number of gills, viz., eighteen complete gills with two vestiges and seven epipodites.

The *excretory organs* differ both in position and in form from those of Apus. There are no shell-glands, but at the base of each antenna is an organ of a greenish colour, the *antennary or green gland*, by which the function of renal excretion is performed. The gland (Fig. 403) is cushion-shaped, and consists of three parts—(1) a central *saccule* (*s.*) of a yellowish colour, occupying the mid-dorsal region, and consisting of a sac divided into numerous compartments by partitions, and communicating with (2) the outer or *cortical portion* (*c. p.*), of a green colour, consisting of a glandular network formed of anastomosing canals, and communicating in its turn with (3) a *white portion* (*w. p.*), formed of a single tube partly converted into a sponge-work by ingrowths of its walls. The whole organ is lined by glandular epithelium, and the white portion discharges into a thin-walled sac or *urinary bladder* (*bl.*) which opens by a *duct* (*d.*) on the proximal segment of the antenna. The glands already referred to as occurring in the gills are also supposed to have an excretory function.

The *circulatory organs* are in a high state of development. The *heart* (Figs. 401, 404, *h.*) is situated in the dorsal region of the thorax, and is a roughly polygonal muscular organ pierced by three pairs of apertures or *ostia* (*o.*), guarded by valves which open inwards. It is enclosed in a spacious *pericardial sinus* (Fig. 404, *pc.*), which contains blood. From the heart spring a number of narrow tubes, called *arteries*, which serve to convey the blood to various parts of the body. At the origin of each artery from the
heart are valves which allow of the flow of blood in one direction only, viz. from the heart to the artery. From the anterior end of the heart arise five vessels—the median **ophthalmic artery** (Fig. 401, *oa.*), which passes forwards to the eyes; paired **antennary arteries** (*aa.*), going to the antennules, antennæ, green glands, &c., and sending off branches to the stomach; and paired **hepatic arteries**, going to the digestive glands. The posterior end of the heart gives off two unpaired arteries practically united at their origin, the **dorsal abdominal artery** (*oaa.*), which passes backwards above the intestine, sending branches to it and to the dorsal muscles; and the large **sternal artery** (*sa.*), which passes directly downwards, indifferently to right or left of the intestine, passing between the connectives uniting the third and fourth...
PHYLUM ARTHROPODA

thoracic ganglia, and then turns forwards and runs in the sternal canal, immediately beneath the nerve-cord, and sends off branches to the legs, jaws, &c. At the point where the sternal artery turns forwards it gives off the median ventral abdominal artery (v.a.a.), which passes backwards beneath the nerve-cord, and supplies the ventral muscles, pleopods, &c.

All these arteries branch extensively in the various organs they supply, becoming divided into smaller and smaller offshoots, which finally end in microscopic vessels called capillaries. These latter end by open mouths which communicate with the blood-sinususes (Fig. 405, s.), spacious cavities lying among the muscles and visceræ, and all communicating, medially or immediately, with the sternal sinus (st.s.), a great median canal running longitudinally along the thorax and abdomen, and containing the ventral nerve-cord and the sternal and ventral abdominal arteries. In the thorax the sternal sinus sends an offshoot to each gill in the form of a well-defined vessel, which passes up the outer side of the gill and is called the afferent branchial vein (af.br.v.; see also Fig. 404). Spaces in the gill-filaments place the afferent in communication with the efferent branchial vein (ef.br.v.), which occupies the inner side of the gill-stem. The eighteen efferent branchial veins open into six branchio-cardiac veins (br.c.v.), which pass dorsally in close contact with the lateral wall of the thorax and open into the pericardial sinus (per.s.).

The whole of this system of cavities is full of blood, and the heart is rhythmically contractile. When it contracts, the blood contained in it is prevented from entering the pericardial sinus by the closure of the valves of the ostia, and therefore takes the only other course open to it, viz., into the arteries. When the heart relaxes, the blood in the arteries is prevented from regurgitating.

Fig. 404.—Transverse section of thorax of Crayfish, diagrammatic. st.a., ventral abdominal muscles; l.f., leg; br., ventral nerve cord; d., intestine; d.a.b., dorsal muscles of abdomen; ep., wall of thorax; h., heart; k., gills; l.d., gill-cover; l., liver; o., ovary; p.e., pericardial sinus; s.t., s.t., sternal artery; vs., ventral sinus. The arrow shows the direction of the blood-current. (From Lang's Comparative Anatomy.)
by the valves at their origins, and the pressure of blood in the pericardial sinus forces open the valves of the ostia and so fills the heart. Thus in virtue of the successive contractions of the heart, and of the disposition of the valves, the blood is kept constantly moving in one direction—viz., from the heart by the arteries to the various organs of the body, where it receives carbonic acid and other waste matters; thence by sinuses into the great sternal sinus; from the sternal sinus by afferent branchial veins to the gills, where it exchanges carbonic acid for oxygen; from the gills by efferent branchial veins to the branchiocardiaco-vascular veins, thence into the pericardial sinus, and so to the heart once more.

It will be seen that the circulatory system of the Crayfish consists of three sections—(1) the heart or organ of propulsion; (2) a system of out-going channels, the arteries, which carry the blood from the heart to the body generally; and (3) a system of returning channels, some of them, the sinuses, mere irregular cavities; others, the veins, with definite walls, which return it from the various organs back to the heart. The respiratory organs, it should be observed, are interposed in the returning current, so that blood is taken both to and from the gills by veins.

Comparing the blood-vessels of Astacus with those of a Chaetopod, it would seem that the ophthalmic artery, heart, and dorsal abdominal artery together answer to a dorsal vessel, part of which has become enlarged and muscular, and discharges the whole function of propelling the blood. The horizontal portion of the sternal artery, together with the ventral abdominal, represent a ventral vessel, while the vertical portion of the sternal artery is
a commissure, developed sometimes on the right, sometimes on
the left side, its fellow being suppressed.

The blood when first drawn is colourless, but after exposure to
the air takes on a bluish-gray tint. This is owing to the presence
of a colouring matter called haemocyanin,
which becomes blue when combined with
oxygen; it is a respiratory pigment, and
serves, like haemoglobin, as a carrier of
oxygen from the external medium to the
tissues. The haemocyanin is contained in
the plasma of the blood: the corpuscles
are all colourless leucocytes.

The nervous system (Fig. 406) consists, like that of Apus, of a brain (g) and
a ventral nerve-cord, united by oesophageal
connectives (sc). But the right and left
halves of the ventral cord have undergone
partial fusion, so that the ganglia, and in
the abdomen the connectives also, appear
single instead of double. Moreover, the
brain supplies not only the eyes and antennae,
but the antennae as well, and it is
found by development that the two pairs
of ganglia belonging to the antennulary
and antennary segments have fused with
the brain proper. Hence we have to dis-

tinguish between a primary brain or archi-
cerebrum, the ganglion of the prostomium,
and a secondary brain or syn-cerebrum
formed by the union of one or more pairs
of ganglia of the ventral cord with the
archi-cerebrum. A further case of con-
crescence of ganglia is seen in the ventral
nerve-cord, where the ganglia of the last
three cephalic and first three thoracic seg-
ments have united to form a large com-

pound sub-oesophageal ganglion (bg). All
the remaining segments have their own
ganglia, with the exception of the telson,
which is supplied from the ganglion of the
preceding segment. There is a visceral
system of nerves (s) supplying the stomach,
originating in part from the brain and in part from the oeso-
phageal connectives.

Sensory Organs.—The eyes have the same essential structure
as the compound eye of Apus. The chitinous cuticle covering
the distal end of the eye-stalk is transparent, divided by delicate
lines into square areas or facets, and constitutes the cornea. Beneath each facet of the cornea is an ommatidium, optically separated from its neighbours by black pigment, and consisting of an outer segment or vitreous body, and an inner segment or retinula formed of sensory cells enclosing a rhabdome.

The antennules contain two sensory organs, to which are assigned the functions of smell and hearing respectively. The olfactory organ is constituted by a number of extremely delicate olfactory setae, borne on the external flagellum, and supplied by branches of the antennulary nerve. The auditory organ is a sac formed by invagination of the dorsal surface of the proximal segment, and is in free communication with the surrounding water by a small aperture. The chitinous lining of the sac is produced into delicate feathered auditory setae, supplied by branches of the antennulary nerve, and in the water which fills the sac are minute sand-grains, which take the place of otoliths, but, instead of being formed by the animal itself, are taken in after each ecdysis, when the lining of the sac is shed. Many of the setae on the body generally have a definite nerve-supply, and are probably tactile organs.

Reproduction.—The Crayfish is dioecious, and presents a very obvious sexual dimorphism. The abdomen of the female is much broader than that of the male: the first and second pleopods of the male are modified into tubular or rather spout-like copulatory organs (Fig. 297, B); and the reproductive aperture is situated in the male on the proximal podomere of the fifth leg, in the female on that of the third.

The testis (Fig. 407, B, t, u) lies in the thorax, just beneath the floor of the pericardial sinus, and consists of paired anterior lobes (t) and an unpaired posterior lobe (u). From each side goes off a convoluted vas deferens (vd), which opens on the proximal segment of the last leg. The sperms are curious non-motile bodies produced into a number of stiff processes (Fig. 20, f): they are aggregated into vermicelli-like spermatophores by a secretion of the vas deferens.

The ovary (A, ov. u) is also a three-lobed body, and is similarly situated to the testis: from each side proceeds a thin-walled oviduct (od), which passes downwards, without convolutions, to open on the proximal segment of the third or antepenultimate leg. The eggs are of considerable size and are centrolecithal.

As in Apus, both ovary and testis are hollow organs, discharging their products internally. The ova, when laid, are fastened to the setae on the pleopods of the female by the sticky secretion of glands occurring both on those appendages and on the segments themselves: they are fertilised immediately after laying, the male depositing spermatophores on the ventral surface of the female’s body just before oviposition.
Development.—The process of segmentation of the oosperm presents certain striking peculiarities. The nucleus (Fig. 408, A, nu) divides repeatedly, but no corresponding division of the protoplasm takes place, with the result that the morula-stage, instead of being a heap of cells, is multinucleate but non-cellular. Soon the nuclei thus formed retreat from the centre of the embryo, and arrange themselves in a single layer close to the surface (B): around each of these protoplasm accumulates, the central part of the embryo consisting entirely of yolk-material. We thus get a superficial segmentation, characterised by a central mass of yolk and a superficial layer of cells collectively known as the blastoderm (C). Subsequently the yolk itself undergoes a process of segmentation, becoming divided into radiating yolk-pyramids (y. p.), each with its base in contact with one of the cells of the blastoderm and its...
apex pointing to the centre of the egg: before long, however, these pyramids fuse into an undivided mass of yolk.

The first indications of the future Crayfish take the form of thickenings on what will become the ventral surface. There are at first five of these thickenings—two anterior, the head-lobes (Fig. 409, K), on which the eyes subsequently appear: two somewhat further back, the thoracico-abdominal rudiments (TA); and one, posterior and unpaired, the endoderm-disc (ES). On the latter an invagination of the blastoderm takes place, giving rise to a small sac, the archenteron, which communicates with the exterior by an aperture, the blastopore. By this process the embryo passes into the gastrula-stage, which, however, differs from the corresponding stage in the types previously studied in the immense quantity of food-yolk filling up the space (blastocoele) between ectoderm and endoderm. Very soon the embryo becomes tri-ploblastic, or three-layered, by the budding off of cells from the endoderm in the neighbourhood of the blastopore: these accumulate between the ectoderm and endoderm, and constitute the mesoderm.

Before long the blastopore closes, converting the archenteron into a shut sac (Fig. 411, A): the thoracico-abdominal rudiments unite with one another, forming a well-marked oval elevation (Fig. 410, TA), and three pairs of elevations appear between it and the head-lobes. These are the rudiments of the first three pairs of appendages, the antennules (a₁), antennæ (a₂), and mandibles (m.): by their appearance the embryo passes into the

Fig. 409.—Early embryo of Astacus. BM mesoderm; ES, endoderm disc; K', head-lobes; TA, thoracico-abdominal rudiments. (From Lang's Comparative Anatomy, after Reichenbach.)
which in this case is passed through in the egg, instead of being active and free-swimming as in Apus.

Between the bases of the antennules and antennae a pit appears, which soon deepens and widens: it is the stomodæum (Fig. 411, stdm.), and its aperture the mouth. A similar but narrower and more cylindrical pit appears on the thoracico-abdominal rudiment: it is the proctodæum (pdm.), and its aperture the anus. For a considerable time both stomodæum and proctodæum remain in the condition of blind sacs, but after a time they open into the archenteron, a complete enteric canal being thus constituted. In the meantime the endodermic cells lining the archenteron grow outwards in a radial direction, ingesting the yolk as they do so, until they take the form of long columns, in contact by their outer ends with the ectoderm (Fig. 411, B).

The thoracico-abdominal rudiment soon begins to increase rapidly in length, but, being enclosed in the egg-membranes, it grows not backwards but forwards, being in fact folded upon the anterior part of the body in much the same way as the abdomen of the adult during extreme flexion. Thus in Fig. 412 the ventral surface of the head and anterior thoracic region faces the observer, but the dorsal surface of the posterior thoracic and abdominal regions: in order to bring the parts into their adult position, the abdomen must be supposed to be lifted up and turned backwards.
In the meantime the post-mandibular appendages are formed in regular order from before backwards: the eye-stalks appear (Fig. 412, A), as well as the labrum (l.) and a fold on each side of the thorax, which is the rudiment of the carapace (ts), and gradually extends dorsally until it meets with its fellow of the opposite side and covers in the cephalothorax. The embryo now consists of a nearly globular cephalothorax with a small abdomen and a nearly complete set of appendages, all tucked in under the cephalothorax and closely packed together within the egg-membranes. In this condition the embryo is hatched, and for some

Fig. 411.—Sections of embryos of Astacus. A, Nauplius-stage (cf. Fig. 410); B, after development of thoracic appendages (cf. Fig. 412). _abd._ abdomen; _an._ anus; _br._ brain; _ect._ ectoderm; _end._ endoderm; _ent._ enteron; _ht._ heart; _mes._ mesoderm; _mes.'_ splanchnic layer of mesoderm; _mth._ mouth; _pcdm._ proctodeum; _stdm._ stomodeum; _th._ thoraco-abdominal rudiment; _v._ _nr._ _cd._ ventral nerve cord. (From Korschelt and Heider, after Reichenbach.)
time clings to the pleopods of the mother by means of the peculiarly hooked chela of its first pair of legs.

The development of the principal internal organs must be referred to very briefly. From the ectoderm arise, not only the epidermis of the adult, but the epithelium of the gullet and stomach and of the large intestine, the epithelium of the gills, the nervous system, the vitreous cells and retinule of the eyes, and the epithelium of the auditory sac. From the endoderm arises the epithelium of the small intestine and of the digestive glands, the latter being formed as tubular branching outgrowths of the archenteron. The connective-tissues, the muscles, the vascular system, the gonads, and perhaps the kidneys, are all of mesodermal origin.

2. DISTINCTIVE CHARACTERS AND CLASSIFICATION.

The Crustacea are Arthropods in which the five anterior segments are fused with the prostomium to form the head, while the rest are usually divisible into two regions, the thorax and the abdomen. More or fewer of the thoracic segments may be fused with the head to form a cephalothorax. The head may bear a

1 Or four if the antennulary region is counted as part of the prostomium.
median eye, which frequently disappears in the adult, and a pair of compound eyes, both belonging to the pro stomial region: the latter frequently become elevated on jointed eye-stalks. The appendages of the head are (1) the antennules, which are usually considered as belonging to the first metamere, but are perhaps more correctly to be looked upon as pro stomial; (2) the antennae, which are certainly post-oral or metameric appendages shifted forwards to a pre-oral position; (3) the mandibles or crushing jaws; (4) the first maxillae; and (5) the second maxillae. The thoracic and abdominal appendages are variously modified as jaws, legs, fins, or accessory reproductive organs. With the exception of the antennules, the appendages are typically biramous, consisting of a stem or protopodite bearing two branches, the endopodite and exopodite.

The body is covered externally by a chitinous cuticle, which becomes thickened and sometimes calcified in regions where no movement is required, forming a series of hard parts or sclerites, separated by flexible chitin: the whole chitinous cuticle thus constitutes an exoskeleton. Typically there is one sclerite to each metamere behind the head, and to each podomere in the appendages, but concrescence of sclerites frequently takes place. The exoskeleton is produced into setae, which are hollow processes of the cuticle, containing prolongations of the underlying epidermis.

Respiration takes place either by the general surface of the body or by gills, which are hollow offshoots of the thoracic wall or of the thoracic or abdominal limbs. The stomodeum and proctodaeum form a considerable portion of the enteric canal, and are lined with chitin: the mesenteron gives rise to digestive glands. The body-cavity is divided into compartments, most of which contain blood and are portions of the vascular system: the true coelome may be represented by compartments of the body-cavity not containing blood and by the cavities of the reproductive organs. There is a vascular system consisting of a contractile heart, formed as a muscular dilatation of a dorsal vessel, and communicating by valvular ostia with an enclosing pericardial sinus. The blood is taken from the heart to the various organs by arteries, and is returned to the pericardial sinus by sinuses and veins: the respiratory organs are interposed in the returning current. The renal organs are peculiarly modified nephridia, which may take the form either of shell-glands opening on the second maxilla, or of antennary (green) glands opening on the antenna.

The nervous system consists of a brain united by cesophageal connectives with a ventral nerve-cord, formed of a double chain of ganglia joined together by commissures and connectives. The first three pairs of embryonic ganglia commonly unite to form the brain, which is therefore a syn-cerebrum. The sexes are separate or united: sexual dimorphism is common: parthenogenesis frequently occurs. The sperms are usually non-motile:
the eggs are usually centrolecithal but may be telolecithal, or almost alecithal. The muscles are striped, and there are no cilia.

Segmentation of the oosperm is usually superficial, but may be complete or discoid. The embryo passes though a nauplius stage, which may be a free-swimming larva or may be passed through before hatching, and is characterised by the presence of three pairs of appendages which become the antennules, antennæ, and mandibles of the adult.

The Crustacea are classified as follows:—

Sub-Class I.—Entomostraca.

Crustacea of comparatively simple organisation, and usually of small, often almost microscopic size. The number of post-cephalic segments is variable, and the appendages show comparatively little differentiation. A large cephalic carapace is often present. A considerable portion of the enteric canal is derived from the mesenteron, and there is no gastric mill. The excretory organs are shell-glands. There is a metamorphosis, and the larva usually leaves the egg as a free-swimming nauplius.

Order 1.—Phyllopoda.

Entomostraca in which the body is distinctly segmented and is covered by a cephalic carapace. The post-cephalic appendages are leaf-like.

Sub-Order a.—Euphyllopoda.

Phyllopoda of considerable size, with 10–60 pairs of leaf-like swimming-feet.

This group includes Apus and allied genera, such as Branchipus, Artemia, and Estheria (Fig. 413).

Sub-Order b.—Cladocera.

Small Phyllopoda with compressed body inclosed in a bivalved carapace, and with four or five pairs of swimming-feet. The chief organs of locomotion are the large biramous antennæ.

Including Daphnia, Leptodora, &c. (Fig. 414).

Order 2.—Ostracoda.

Small Entomostraca having the body inclosed in a carapace or shell formed of articulated right and left valves. The body is unsegmented and the abdomen rudimentary. There are only seven pairs of appendages. The sperms exhibit motility after reaching the female ducts.

Including Cypris, Cythere, &c. (Fig. 415).
Order 3.—Copepoda.

Entomostraca, mostly of small size, having an elongated body distinctly segmented except in certain parasitic forms. The carapace may extend over the first thoracic segment. The thorax bears, in the free forms, four or five pairs of biramous appendages: the abdomen is limbless. Many species are parasitic, and show various stages of degeneration of structure.

Sub-Order a.—Eucopepoda.

Free or ectoparasitic Copepoda having biramous swimming-feet and biting jaws, or, in the case of parasitic forms, a more or less degenerate structure, and jaws often adapted for sucking. The eggs undergo development in paired brood-pouches attached at the base of the abdomen.

In this group are included (a) free-swimming forms, such as Cyclops (Water-flea), and (β) parasitic forms, or Fish-lice—e.g. Ergasilus, Chondracanthus, Lernca (Figs. 416 and 417).

Sub-order b.—Branchiura.

Ectoparasitic Copepoda having compound eyes and a suctorial mouth. The second maxillae form sucking-discs for attachment to the host. The whole body is strongly depressed, and there are no brood-sacs.

Including the carp-lice, Argulus (Fig. 418).

Order 4.—Cirripedia.

Imperfectly segmented marine Entomostraca, often of considerable size, and either fixed during adult life or parasitic. The sexes are united, and the sperms are motile.

Sub-order a.—Eucirripedia.

Fixed or parasitic Cirripedia in which the body is usually enclosed in a fold of skin, strengthened by calcareous plates. The abdomen is rudimentary. There are usually six pairs of biramous appendages.

This group includes (a) fixed forms, such as Lepas (Barnacle) and Balanus (Acorn-shell), and (β) parasites—e.g. Petrarca, Alcipppe, Protelepas (Figs. 419 and 420).

Sub-order b.—Rhizocephala.

Parasitic Cirripedia in which the body has undergone extreme degeneration, having no trace of segmentation or of appendages in the adult condition. The juices of the host are absorbed through long root-like processes.

Including Sacculina and Peltogaster (Fig. 421).
Sub-Class II.—Malacostraca.

Highly-organised Crustacea, usually of considerable size, and having, except in one order, a thorax of eight, and an abdomen of seven segments. The appendages are usually highly differentiated. As a rule the mesenteron forms only a small portion of the adult enteric canal, and there is a gastric mill. The renal organs are antennary glands. The nauplius stage is usually passed through in the egg, but there is a more or less complex metamorphosis.

Order 1.—Phyllocarida.

Small Malacostraca approaching the Entomostraca in structure. The body is enclosed in a large bivalved cephalic carapace. The thoracic feet are leaf-like, the abdominal feet biramous. The abdomen has eight segments and a pair of caudal styles. The principal genus is Nchalia (Fig. 422).

Order 2.—Schizopoda.

Small shrimp-like Malacostraca having the thorax more or less completely covered by a soft carapace. The thoracic appendages are all biramous. The eyes are stalked. Including Mysis (Opossum-shrimp), Euphausia, &c. (Fig. 423).

Order 3.—Decapoda.

Malacostraca in which all the thoracic segments are united with the head to form a cephalothorax usually covered by a carapace. The three anterior pairs of thoracic limbs are biramous foot-jaws, the posterior five pairs are walking legs devoid of exopodites. The third maxillipeds are leg-like. The eyes are stalked, the gills thoracic.

Sub-order a.—Maerura.

The abdomen is usually larger than the cephalothorax, and is commonly held in an extended position. There is usually a distinct rostrum. The eyes are not enclosed in orbits. The antennules and antennæ are large, the antennules are not sunk in pits, and the antennæ have an exopodite or squame.

Including (a) swimming forms—Penaeus and Palinurus (Prawns), Crangon (Shrimp), Lucifer, &c.; (β) creeping forms—Homarus (Lobster), Astacus, Astacoides, Paramphipods (Fresh-water Crayfishes), Palinurus (Rock-lobster), Scyllurus, &c.; (γ) anomalous forms, approaching the Brachyura—Pagurus (Hermit-crab), Birgus (Cocoa-nut crab) Hippa, &c. (Figs. 424—426).

Sub-order b.—Brachyura.

The abdomen is shorter than the cephalothorax and is permanently flexed under it. The eyes are enclosed in orbits or tubular cavities of the carapace. The antennules and antennæ are
small: the bases of the antennules are sunk in pits of the carapace, and the antenna has no exopodite. The third maxillipedes are flattened and valve-like.

Including the true crabs, such as Cancer, Maia, Dromia, &c. (Figs. 427 and 428).

Order 4.—Stomatopoda.

Thoracostraca of considerable size in which the three posterior thoracic segments are not covered by the carapace. The abdomen is very large. The five anterior thoracic limbs are maxillipedes, and the second of them is very large and forms a defensive weapon: the last three are small biramous legs. The gills are borne on the abdominal segments. The eyes are stalked.

Including Squilla and Gonodactylus (Fig. 429).

Order 5.—Cumacea.

Small shrimp-like Malacostraca having the first three or four thoracic segments fused with the head, the rest free. The two first pairs of thoracic appendages are maxillipedes, the remaining six legs: some of the latter are biramous. The eyes are sessile.

Including Cumna, Diastylis, &c. (Fig. 430).

Order 6.—Arthrostraca.

Malacostraca in which the first, sometimes also the second, thoracic segment is fused with the head and bears maxillipedes: the remaining seven are free and bear legs. The eyes are usually sessile.

Sub-order a.—Amphipoda.

Arthrostraca in which the body is usually compressed or flattened from side to side. The gills are borne on the thoracic appendages.

Including Gammarus (Fresh-water shrimp), Orchestia (Sand-hopper), Phronima, Caprella, Cyamus (Whale-louse), &c. (Figs. 431 and 433).

Sub-order b.—Isopoda.

Arthrostraca in which the body is usually depressed or flattened from above downwards. The gills are borne on the abdominal appendages.

Including (a) free forms—Asellus, Oniscus (Wood-louse), Armadillo (Pill-bug); (b) parasitic forms—Cymothoe, Bopyrus, &c. (Figs. 432 and 434).

Systematic Position of the Examples.

The genera Apus and Lepidurus belong to the family Apodiidae, sub-order Euphollopoda, order Phyllopoda, and sub-class Entomostraca.
The indefinite number of segments, varying considerably in the species of both genera, and the presence of a shell-gland place them among the Entomostraca.

The leaf-like character of the swimming-feet is alone sufficient to assign them to the Phyllopoda, and the large number (considerably more than ten) of segments and swimming-feet decides their position among the Euphyllopoda.

They are placed in the family Apodidae in virtue of the elongated body with 40–60 pairs of swimming-feet, diminishing in size from before backwards, and showing considerable differentiation: and of the elongated heart reaching to the twelfth post-cephalic segment.

Apus is distinguished by the absence of a post-anal plate, and by elongated flagella (endites) to the first pair of thoracic feet: in Lepidurus the post-anal plate is present, and the flagella of the first thoracic feet are short.

Astacus fluviatilis is one of several species of the genus Astacus, belonging to the family Potamobiidae, tribe Astacidea, sub-order Macrura, order Decapoda, and sub-class Malacostraca.

The possession of twenty-one segments—i.e. a prostomium, nineteen metameres, and a telson—places it among the Malacostraca: the presence of five pairs of thoracic legs without exopodites, and of thoracic gills, among the Decapoda.

The possession of a squame to the antenna, and of legs having all seven podomeres distinct—the first three pairs chelate, and the first pair greatly enlarged—determine its position in the tribe Astacoidea, which includes all the fresh-water Crayfishes and the true Lobsters. The family Potamobiidae is distinguished by having the podobranchiae partly united to the epipodites, and by having appendages on the first abdominal segment of the male, and usually on that of the female.

There is no class in the animal kingdom which presents so wide a range of organisation as the Crustacea, or in which the deviations in structure from the "type-form" are so striking and so interesting from their obvious adaptation to the mode of life.

The most interesting modifications are those connected with the external characters and the structure of the appendages. As we have seen, the body consists of a prostomium, a variable number of metameres, and an anal segment. The first five metameres—or four if the antennulary region is not reckoned as a metamere—fuse with the prostomium to form a head, which, as well as the anal segment, is homologous throughout the class. On the other hand, there is no strict homology between the various post-cephalic metameres in different forms until we come to the Malacostraca, in which their number is constant.
There is considerable diversity of form among the *Euphyllopoda*. Apus has already been described. Branchipus (Fig. 413, 1) and Artemia (the Brine-shrimp), are small shrimp-like forms, the former living in fresh-water lakes, the latter in brine-pools; they have no carapace, and the eyes are raised on unjointed stalks. In Limnetis (2), on the other hand, the carapace is large enough to cover the whole body, and in Estheria (3) it takes the form of a shell, formed of two parts or *valves*, united by a hinge, and resembling the shell of a cockle or other bivalved mollusc. The limbs have the same general structure as those of Apus, but the antennae are often of considerable size, and are sometimes modified into prehensile organs.

In the *Cladocera*, of which the common fresh-water Daphnia (Fig. 414, 1) is a good example, there is a great reduction in size (1-2 mm.), and a corresponding shortening of the body, by a reduction in the number of metameres. Segmentation is very imperfect, and the whole body is covered by a large folded carapace. The abdomen is turned downwards and is in constant movement, sweeping out any foreign particles which may have made their way among the feet. Between the abdomen of the

Fig. 413.—Three *Euphyllopoda*. In 3, *a* is the shell, *b* the animal with one valve of the shell removed; *ant*, antennule; *ant*, antenna; *ht*, heart; *md*, adductor muscle; *md*, mandible; *ov*, ovary; *a*, unpaired process from head; *p*, copulatory appendages; *sh.gl.*, shell-gland; *t.*, testis. (After Gerstaecker.)
female and the posterior part of the carapace is a large brood-pouch (br.p), in which the eggs are stored. The paired eyes (E) have fused into a single organ, which exhibits a constant trembling movement. The antennules (ant.1) are small, the antennae (ant.2) very large, biramous, and constitute the chief organs of locomotion. The mandibles are large, the second maxillae absent in the adult, and there are five pairs of leaf-like swimming-feet (f) on the thorax. The abdomen is devoid of appendages. Many of the Cladocera have an extraordinarily grotesque form (2, 3), owing to the peculiar shape of the head, the immense antennae, and the great hump-like brood-pouch.

The Ostracoda are usually not more than 1-2 mm. in length, and are found both in fresh and sea-water. One of the commonest genera is Cypris, which occurs in immense numbers in stagnant pools. Cythere is a common marine form.

The body (Fig. 415) is unsegmented, and is completely enclosed in a carapace (A), the right and left halves of which are articulated together along the dorsal edge so as to form a bivalved shell (C), which may be variously ornamented or sculptured. The
valves are opened by the elasticity of a ligament, which passes from one to another at the hinge, and are closed by a large adductor muscle (m.), which passes transversely from valve to valve, its insertions giving rise to markings on the shell (A, m.), often of systematic value.

At the anterior end is a median eye (e), and in some forms compound eyes are present as well. There are only seven pairs of appendages. The antennules (ant.1) and antennae (ant.2) are large and uniramous. The mandible (md.) has a large leg-like palp and a flabellum-like offshoot. The first maxilla (mx.1) also bears a large plate resembling a flabellum of Apus. The last cephalic appendage (second maxilla, mx.2) is jaw-like in some forms (Cypris) leg-like in others (Cythere). The only thoracic appendages are two pairs of slender legs (f.1, f.2). The abdomen (abd.) is devoid of appendages, and is terminated by strong setæ.

The diversity of form among the Copepoda is so great that it will be advisable to consider separately the free-swimming Eucopepoda, the parasitic Eucopepoda, and the Branchiura.

The free-swimming Eucopepoda are well represented by the common water-flea (Cyclops), found everywhere in fresh and brackish water, and easily recognisable, in spite of its minute size, by its elongated form, its rapid, jerky movements, and by the egg-sacs of the female.
Cyclops (Fig. 416, I) has been compared in form to a split pear, the broad end being anterior, and the convex surface dorsal. The first thoracic segment is fused with the head, and the cephalo-thorax (c.th.) thus formed is covered with a carapace produced in front into a short spine or rostrum (r), near the base of which, on the dorsal surface, is the median eye (e). There are five free thoracic segments: the last (th. 6) bears the genital

![Diagram of Cyclops and Calocalanus](image-url)
aperture, and is fused in the female with the first abdominal (abd. 1). There are four abdominal segments: the last bears the dorsal anus (an), and a pair of caudal styles produced into plumed setæ.

The antennules (ant. 1) are very large, and are the principal organs of locomotion. In the male they are modified (C.), by a peculiar form of joint and long setæ, as clasping organs, used for holding the female during copulation. The antennæ (ant. 2) are comparatively short and uniramous. Mandibles and maxillæ are present, and the first four thoracic appendages bear biramous swimming-feet (sf, a), those of the right and left sides being connected by transverse plates or couplers. The fifth thoracic segment bears a pair of vestigial limbs: the abdominal segments are limbless.

Some of the pelagic marine Eucopépoda (Fig. 416, 2) are remarkable for their brilliant colours, and for the extraordinary development of their setæ, especially those of the caudal styles.

The parasitic Eucopépoda, or Fish-lice, present a very interesting series of modifications, illustrating the degeneration of structure which so often accompanies parasitism. Ergasîlus (Fig. 417, 1) is found on the gills of the Bass (Morone labrax); it is readily recognisable as a Copepod, but the appendages are greatly reduced, the antennæ modified into hooks for holding on to the host, and the eyes absent. Anthosoma (?), found in the mouth of the Porbeagle Shark (Lamna cornubica), has recognisable appendages, but the form of the body is much modified by the development of curious overlapping lobes. Nicolhœ (?), found on the gills of the Lobster, has antennæ and mouth-parts modified for suction: the abdomen is normal, but the thorax is produced into huge lobes, which give it a curiously deformed appearance. In Chondraceanthus (4), the various species of which are parasites on the gills of Bony Fishes, there is, at the first glance, nothing to suggest that the animal is a Crustacean, except the characteristic copepod egg-sacs: the body is depressed, unsegmented, and produced into wrinkled lobes, and it requires careful examination to discover that antennules, hooked antennæ (ant.2)—used for attachment—mandibles, maxillæ, and two pairs of legs (f.1, f.2) are present. The male (b) is of higher organisation than the female, but of minute size—about \(\frac{1}{2} \) the length of its mate—and is permanently attached to her body, close to the genital aperture (a, M). In Lernæa (7) and its allies the body is vermiciform with a curiously lobed anterior end: the maxillæ are adapted for piercing the skin of the host and sucking its juices, and there are minute vestiges of feet. In Lesteira (5) the degradation is even more marked: the female reaches a large size—70 mm. in length, excluding the egg-sacs—and is found with the swollen head between the skin and flesh of a fish
(Genypterus bluodes), and the rest of the body hanging freely into the water. Lastly, in Tracheliastes (6) the second maxillae

Fig. 417. Various forms of parasitic Eucopepoda. a, female; b, male. ant. 1, antennule; ant. 2, antenna; c, median eye; e.s., egg-sac; f.1, f.2, thoracic feet; M, male; mx.2, second maxilla. (After Gerstaecker, Claus, Cuvier, and G. M. Thompson.)

(mx. 2) are greatly enlarged, and form a characteristic organ of attachment.

Argulus (Fig. 418) is the most familiar example of the Branchiura, or Carp-llice. It is an external parasite on fresh-water Fishes (Carp, Stickleback, &c.), not
permanently attached like the degenerate forms just described, but crawling freely over the surface of the host. The body consists of an oval flattened cephalo-thorax, and a small bilobed abdomen (ab.). The mandibles and maxillae are piercing organs enclosed in a sucking-tube or proboscis (r.), in front of which is a median tube ending in a spine (st). The second maxillae are divided into two portions, the anterior of which (kf.1) are modified into sucking-discs, by which the parasite clings to the surface of its host, and there are four pairs of swimming-feet (b1—b4). Alone among the Copepoda the Branchiura have no egg-sacs.

The most familiar examples of the Eucirripedia are the Barnacles found on ships' bottoms, piles, &c., and the Acorn-shells or Sessile Barnacles which occur in immense numbers on rocks between tide-marks in all parts of the world.

The common Barnacle (*Lepas anatifera*) is attached by a long stalk or peduncle (Fig. 419, A, p), covered with a wrinkled skin, and bearing at its distal end the body proper enclosed in a sort of
bivalved carapace, formed by a fold of the skin, and strengthened by five calcareous plates. Of these one is median and dorsal, and is called the carina \(c \); two are lateral and proximal, the scuta \(s \); and two lateral and distal, the terga \(t \). During life the carapace is partly open, and from the ventrally placed aperture delicate setose filaments are protruded and keep up a constant grasping movement: these are the endo- and exopodites of the biramous thoracic feet, of which there are six pairs. Removal of the carapace shows the feet to be attached to a vermiciform unsegmented body

(B), attached on the ventral aspect to the stalk and carapace by its anterior end, while its posterior end is free and terminates in a long filament, the penis \(p \), immediately dorsal to which is the anus. The mouth is ventral and anterior, and is provided with a pair of mandibles and two pairs of maxillae. There are no antennae: at first sight the antennules appear to be absent, but a careful examination shows the presence of a pair of minute structures \(a' \) on the proximal or attached surface of the stalk, and embedded in the cement by which the animal is fixed to its support; these are the antennules, and their position relatively to the mandibles shows that the stalk is formed by an elongation of the anterior region of the head.
The Sessile Barnacles or Acorn-shells (*Balanus*) have no stalk (Fig. 420), the head-region being short and broad. The scuta (*s*) and terga (*t*) support a valvular carapace, through the opening of which the feet are protruded, and the whole animal is surrounded by a sort of parapet (*sk*) formed of six calcareous pieces. One of these, dorsal in position, is the carina, the others appear to be represented by small ossicles developed on the peduncle of certain stalked forms such as *Pollioepides*.

Many of the Eucirripedia are parasitic. Some of these (*Petrarca*, &c.), parasitic in Actinozoa, resemble the attached forms in essential respects; others (*Aleippe*), parasitic in the shells of Molluscs and Cirripedes, have abdominal but no thoracic feet.

Proteolepas, also parasitic on other Cirripedes, has a maggot-like, segmented, limbless body, and a sectorial mouth.

The *Rhizocephala* are represented by *Sacculina* (Fig. 421), parasitic on Crabs, and *Peltopogaster* on Hermit-Crabs. Both genera have the appearance of an immense tumour (*ks*) on the abdomen of the host, showing no sign of segmentation, no appendages, no mouth or anus. From the attached end go off a number of delicate root-like filaments, which extend through the body of the host and absorb nutriment. Obviously degeneration is here as complete as it can well be, and nothing but the developmental history of the parasite (p. 553) would justify its inclusion among the Crustacea.

The most striking general character in the external features of the *Malacostraca* is the limitation in the number of segments. The
head has the same composition as in the Entomostraca, but the thorax is invariably formed of eight segments, and, except in the Phyllocarida, the abdomen of six ordinary segments and a telson.

The limbs are strikingly modified for the performance of various functions.

The Phyllocarida are interesting from the fact that they are annexent or linking forms between the Phyllopoda and the Copepoda on the one hand, and the higher Crustacea, particularly the Schizopoda and Decapoda, on the other. The order contains only three genera, the commonest of which, Nebulia (Fig. 422), is a little shrimp-like marine Crustacean about 6-8 mm. in length. The body is divisible into head, thorax, and abdomen, all having the normal malacostracan number of segments, except the abdomen, which is formed of eight segments, the last bearing caudal styles—structures not found elsewhere in the sub-class. There is a bivalved cephalic carapace (s), closed by an adductor muscle (sm), and extending backwards to the fourth abdominal segment: it is terminated in front by a movable rostrum (r).
The eyes (a) are large, compound, and raised on movably articulated stalks. The antennules (a₁) and antennæ (a₂) are large, the mandibles (md.) have palps (mt), and the exopodite of the second maxilla (mxt) has the form of a slender filament which acts as a "cleaning-foot" to keep the cavity of the carapace free from foreign bodies. There are eight thoracic appendages (brf.), all of them leaf-like, and recalling those of Apus. The first four abdominal appendages (p₁—p₄) are large biramous swimming-feet, like those of Copepods; the fifth and sixth (p₅, p₆) are small and uniramous.

The Schizopoda (Fig. 423) are small transparent, shrimp-like forms, mostly from 2-6 mm. in length. They agree with the Crayfish in the general form of the body, in the union of the head-thorax, in the presence (except in Ano-spides) of a carapace—which may, however, leave some of the posterior thoracic segments uncovered—and in the number both of segments and appendages, but present several interesting characters indicating a lower grade of organisation. One of the most notable of these is the absence of differentiation in the thoracic appendages, which have a leg-like and not a leaf-like form, but which are all alike, none of them being modified into maxillipedes, except to a very slight degree in some forms. Moreover the legs all possess exopodites
PHYLUM ARTHROPODA (ex), thus retaining the primitive biramous or "split-footed" form which is lost in the Decapoda. The first five pleopods are large in the male, small in the female; the sixth is a uropod, i.e., assists the telson in the formation of the characteristic malacostracan tail-fin: there is no trace of the entomostracan caudal styles.

Amongst the Decapoda are included nearly all the largest and most familiar Crustacea—the Prawns and Shrimps, Lobsters, Crayfishes, and Crabs. The cephalo-thorax is always completely covered by the carapace. The three anterior pairs of thoracic appendages are modified into maxillipeds, which retain the original biramous character, but the five posterior pairs are enlarged, and form legs, which are always—except as an individual variation—devoid of exopodites in the adult.

In the Prawns (Fig. 424, l) the body is compressed, and the exoskeleton is not calcified. The abdomen is very large in proportion to the cephalo-thorax, and has a peculiar bend close to its junction with the thorax. The legs are very slender, used for swimming, not walking; and sometimes one pair, sometimes another, is enlarged to form the chelipeds. The rostrum is large—sometimes longer than the rest of the carapace—and both eye-stalks, antennae, and legs may attain extraordinary dimensions.

The Lobsters and fresh-water Crayfishes agree with Astacus in all essential details, but the sea Crayfishes (Palinurus) present some striking modifications. There are no chelae, the legs all ending in simple claws; the antennae are of immense size, and their proximal segments are fused with one another and with the carapace, quite crowding out the epistoma; the rostrum is reduced, or even vestigial, and the pleopods are very broad and fin-like. In Scyllarus...
(Fig. 425) and its allies the body is broad and depressed, the bases of the legs widely separated from one another by the broad sterna, the antennae (ant. 2) short and plate-like, and the eye-stalks (E) enclosed in socket-like grooves of the carapace. Most of these characters show an approximation to what is found in the Crabs.
The Hermit-crabs (Pagurus, &c., Fig. 426) are very strangely modified in relation with their peculiar mode of life. They are always found inhabiting the empty shells of Gastropods (Whelks, Periwinkles, &c.), the abdomen completely enclosed within the shell and only the cephalothorax protruding. In correspondence with this mode of protection, the abdomen is soft, having only vestiges of terga (t) on the dorsal side, and its appendages are more or less atrophied, except the sixth pair (up), which take the form of pincers, and are used to hold on to the columella of the shell. The fifth pair of legs (l.5) are much reduced, and in some species one of the chelipeds is greatly enlarged and its chela (ch) acts as an operculum, completely closing the mouth of the shell when the animal is retracted. As the Hermit-Crab grows it takes up its abode in larger and larger shells, sometimes killing and removing piecemeal the original inhabitant.

Other Macrura, such as the Cocoa-nut Crab (Birgus), Hippa, &c., approach the Brachyura in the short, more or less permanently flexed abdomen, but are clearly separated from them by the structure of the head and its appendages.
In the Brachyura, or true Crabs, we reach the highest degree of specialisation known among the Crustacea. The cephalothorax (Fig. 427) is always of great proportional breadth, and is frequently much broader than long. The abdomen, on the other hand is greatly reduced, its sternal region is uncalcified, and it lies permanently flexed in a groove on the very broad thoracic sterna, so as to be often quite hidden in a view from above. In correspondence with this the pleopods are much reduced, the male retaining only two pairs as copulatory organs, the female four pairs for the attachment
of the eggs. The uropods are absent, so that there is no tail-fin.
The eye-stalks (E) are contained in orbits or sockets of the carapace,
which are so prolonged that the eyes appear to arise behind the

antennules and antennae. Both pairs of feelers are small, and the
bases of the antennules are contained in sockets or fossettes. The
third maxillipedes (mxp.) are broad, flat, and valve-like, not leg-
like as in the Macrura. The first legs (l, l) form chelipeds often of great size: the remaining legs generally end in simple claws, but in the Swimming-crabs the distal segment (Fig. 428, I) in the fifth pair is flattened and forms a fin. The range of variation in form, proportions, colour, markings, &c., among crabs is very great (Fig. 428).

Unlike the Decapoda, the Stomatopoda form a very small order, comprising a few genera varying from the size of a Shrimp to that of a Lobster. *Squilla* (Fig. 429) is the best known genus. The abdomen ($a1—a7$) is very large in proportion to the cephalothorax, and the carapace ($c.th.$), which is thin and uncalcified, leaves the last three thoracic segments ($V—I—VIII$) uncovered. The rostrum is movably articulated, and covers the prostomial region, which is divided into two distinct segments, the first bearing the large stalked eyes, the second the antennules. This arrangement appears to support the view that the antennular region is a metamere distinct from the prostomium, but the division in question is absent in the larva, and does not appear till the proper segmentation of the body is established: probably it has a physiological meaning, and is connected with the necessity of extreme mobility of the eyes and olfactory organs in an animal which lives in a burrow with only the anterior end of the head exposed.

The antennule ($a1$) has three flagella; the antenna ($a2$) a single flagellum and a very large exopodite. The first five pairs of thoracic limbs ($I—5$) are turned forwards towards the mouth, and act as maxillipeds; the second of these—corresponding with the second maxillipede of Astacus—is very large (2), and its distal segment is turned back and articulated to the penultimate segment like the blade of a pocket-knife to the handle. In this way a very efficient weapon called a *sub-chela* is produced, both of the segments of which are produced into strong spines. The remaining three thoracic appendages ($6—8$) are slender legs provided with exopodites: the last of them has a styliform copulatory organ (p) developed from its proximal segment. The pleopods are large and biramous: the first five ($p1, p5$) have gill-filaments (br) attached to their plate-like exopodites; the sixth ($p6$) form large uropods or lateral tail-lobes, as in Astacus.
The Cumacea are also a very small group: *Diastylis* (Fig. 430) is a good example. They are little shrimp-like animals, differing from all the Malacostraca previously considered in having poorly developed, sessile eyes, sometimes fused together, and in some genera altogether absent. The carapace (cth) is so small as to leave the five posterior segments (th IV—VIII) uncovered. The first two pairs of thoracic limbs are maxillipeds, the last six legs: of these two or three pairs have exopodites (ex).

In the Arthrostraca we come once more to a very large and important order, containing a great number of genera and species, many of them strangely modified in correspondence with special habits of life. The best known examples of the Amphipoda are the little Fresh-water Shrimp (*Gammarus*, Fig. 431) and the Sandhoppers (*Talitrus, Orchestia*) so common on the sea-shore. Of the Isopoda very convenient examples are *Asellus* (Fig. 432), common in fresh-water, and the well-known Wood-llice or Slaters (*Oniscus*, Fig. 434, 1), found under any piece of wood, stone, &c., which has lain undisturbed on the ground for a few weeks.

The body is usually compressed or flattened from side to side in Amphipods (Fig. 431), depressed or flattened from above downwards in Isopods (Fig. 432). The normal malacostracan number of segments is present, but the first thoracic segment is always united with the head, so that the apparent head is really an incomplete or partial cephalothorax (cth). In some genera (*Tanais*, &c.), the second segment of the thorax also unites with the head, and such forms—sometimes included under a distinct sub-order, *Anisopoda*—form a transition to
the other Malacostraca, and especially the Cumacea. The posterior seven thoracic segments (th.2—th.8) are free, and those of the short abdomen are usually free in Amphipods (Fig. 431, abd. 1–6), often more or less fused in Isopods (Fig. 432, abd). In some Isopoda the thoracic segments are produced laterally into large and prominent pleura.

The eyes (E) are compound and usually sessile: they are, however, stalked in some of the less specialised members of the order, a circumstance which lends support to the view that the sessile eyes have, in this particular group, arisen by the atrophy of eyesstalks. The antennae (ant.2) as well as the antennules (ant.1) are uniramous. The first pair of thoracic appendages (map) are modified to form maxillipeds, which are sometimes united together in the middle line so as to form a sort of lower lip. The remaining seven thoracic appendages take the form of legs (l.1–l.7)

Fig. 431.—Gammarus neglectus. abd.1—abd.6, abdominal segments; ant.1, antennule; ant. 2, antenna; cth. cephalothorax; E. eye; j. f. 1, first jumping foot; l. 1–l. 7, legs; map. maxilliped; os. oostegite; ot. ova; s.f.1, first swimming foot; th.3—th.8, free thoracic segments. (After Gerstaecker.)

which are usually arranged in two groups, four of them directed forwards and three backwards, or vice versa. The legs end either in simple claws or in large sub-chelae: vestigial exopodites are present in some of the Anisopoda. In the female, certain of the legs bear flat plates, the oostegites (Fig. 431, os), probably modified epipodites, which enclose a brood-pouch for the reception of the eggs. In Amphipods the gills are also borne on the legs.
The abdominal appendages are very different in the two orders. In Amphipoda the first three are biramous swimming-feet (Fig. 431, 3), the last three peculiar stiff processes used for jumping (j, f). In Isopods more or fewer of the pleopods have broad plate-like endo- and exopodites (Fig. 432, pl.3), the former thin and vascular and acting as gills; the sixth pair (pl.6) are either leg-like or aid in the formation of a tail-fin.

Interesting modifications occur in both sub-orders. Among the Amphipoda, *Phronimus* (Fig. 433, 1) is a marine form of glassy transparency, the female of which inhabits a transparent barrel-like structure—the test of a pelagic Tunicate—in which she brings up her young. *Caprella* (3) is a singular creature in which the abdomen is quite vestigial, and the rest of the body, as well as the appendages, extremely slender. It creeps about on colonies of Hydrozoa and Polyzoa, to the branches of which its own form and colour are so closely assimilated as to render it difficult of detection. The allied *Cymamus* (Whale-louse, 2) is parasitic on the skin of whales: it also has a vestigial abdomen, but the body
—exceptionally among Amphipods—is broad and depressed and the legs curiously swollen.

Among the Isopoda, one of the most interesting forms is the common Wood-louse (Fig. 434, 1), which is almost unique among Crustacea for its perfect adaptation to terrestrial life. The allied

"Pill-bugs" (Armadillidium, 2) have the habit of rolling themselves up into a ball when disturbed. Cymothoa and its allies are
large species (6–8 cm. in length) parasitic in the mouths of Fishes, where they hold on to the mucous membrane with their short clawed legs: their mouth-parts are often modified for sucking. In the *Bopyrini*, found in the gill-cavities of various Crustacea, parasitism is accompanied by great degeneration and asymmetry (\(\beta \)), as well as by a notable degree of sexual dimorphism, the males (\(\beta, b, m \)) being very small and permanently attached to the bodies of the females. Lastly, in *Cryptoniscus*, parasitic on Crabs, the adult female (\(\psi, b \)) has no trace of crustacean organisation, and it is only by the study of development that its true systematic position can be guessed.

With regard to the **texture of the exoskeleton**, there is every gradation from the delicate polished cuticle of most Entomostraca, Schizopods, &c., through the calcified but still flexible cuticle of *Astacus*, to the thick, tuberculated, stony armour of many Crabs (Fig. 428, \(\beta \)) or the shelly pieces of Cirripedes. The exoskeleton is secreted from a single-layered ectoderm, and undergoes periodical moult or ecdyses. There is no transverse layer of **muscle**, and the longitudinal layer is broken up into paired dorsal and ventral bands. As a rule, each limb-segment is acted upon by two muscles: the joints are nearly always hinge-joints.

The **body-cavity** consists of several chambers separated from one another by partitions. In *Palamonetes*, one of the Prawns, there is a median dorsal chamber enclosing the ophthalmic artery, and not containing blood: it is probably a portion of the celome in the strict sense of the word. The cavities of the gonads are also celomic, and the ducts by which they communicate with the exterior are probably modified nephridia. In addition to these cavities, there is a large central space, in which the enteric canal, digestive glands, gonads, &c., lie; paired lateral spaces containing portions of the shell-gland; spaces in the limbs; and the pericardial sinus, in which the heart lies. All these cavities contain blood, and constitute a kind of secondary body-cavity, formed by the enlargement of blood-vessels, which have largely replaced the true celome. Such a secondary or blood-containing body-cavity is called a **hemocoele**.

The **enteric canal** consists of a vertical gullet, an expanded stomach, and a nearly straight horizontal intestine. In some of the Cladocera the intestine is coiled, but this is quite exceptional. In the Entomostraca, part or the whole of the stomach is formed from the mesenteron, but in Malacostraca both gullet and stomach are developed from the stomodeum. A gastric mill is present in Malacostraca, and a rudiment of such an apparatus occurs in *Ostracoda*. The digestive glands are usually branched ceca formed as offshoots of the mesenteron; in Arthrostraca (Fig. 435, \(l \)) they are unbranched ceca extending into the abdomen; in Stomatopoda they consist of ten metamERICALLY arranged organs opening into the intestine. In Amphipods there are intestinal ceca (\(\alpha, \beta, \delta \)) which

\[N \times 2 \]
may have an excretory function. So-called salivary glands, opening on the labrum, have been found in several genera.

In most of the Entomostraca respiration takes place by the general surface of the body, and the only respiratory organs are the bracts and flabella of the appendages. In the stalked Barnacles, however, there are delicate processes attached to the feet, which are supposed to be rudimentary gills. Amongst the Malacostraca, also, the Phyllocarida and many Schizopoda have no specialised
respiratory organs, but other Schizopods possess tufted podobranchiae (Fig. 436) quite uncovered by the carapace. In the Decapoda the gills may be either phylme-like, as in Astacus and its allies, or the delicate cylindrical gill-filaments may be replaced by flat plates, as in Crabs and many Prawns. It is in this order only that we find the three types of gill described in Astacus and the examination of numerous forms leads to the conclusion that the typical or theoretical branchial formula for the group is as follows:—

<table>
<thead>
<tr>
<th>Thoracic Segments</th>
<th>I.</th>
<th>II.</th>
<th>III.</th>
<th>IV.</th>
<th>V.</th>
<th>VI.</th>
<th>VII.</th>
<th>VIII.</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Podobranchiae...</td>
<td>1+cp</td>
<td>1+cp</td>
<td>1+cp</td>
<td>1+cp</td>
<td>1+cp</td>
<td>1+cp</td>
<td>1+cp</td>
<td>1+cp</td>
<td>8+8cp</td>
</tr>
<tr>
<td>Artrobranchiae...</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>16</td>
</tr>
<tr>
<td>Pleurobranchiae...</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>Total</td>
<td>4+cp</td>
<td>4+cp</td>
<td>4+cp</td>
<td>4+cp</td>
<td>4+cp</td>
<td>4+cp</td>
<td>4+cp</td>
<td>4+cp</td>
<td>32+8cp</td>
</tr>
</tbody>
</table>

Actually, however, this formula never occurs, as there is always more or less reduction in the number of gills. Palinurn has the highest number known, viz., twenty-one, and in the Common Crab the total number is nine.

Many Crabs live on land, and their gills are enabled to discharge their function in virtue of the moisture retained in the nearly closed gill-chamber. In the Cocoa-nut Crab (Birgus) the upper...
part of the gill-chamber is separated from the rest, and forms an almost closed cavity into which vascular tufts project; it thus functions as a true lung. Probably the inner surface of the gill-cover or branchiostegite performs a respiratory function in the Crayfishes.

In Amphipoda, also, the gills (Fig. 435, br) are outgrowths of the thoracic limbs; in Isopods they are the modified endopodites of the second to the fifth pleopods; in Stomatopoda, gill-filaments (Fig. 429, br) spring from the exopodites of the first to the fifth pleopods. Moreover many Crustacea perform rythmical contractions of the intestine, taking in and expelling water; such anal respiration is common among Entomostraca, and is especially noticeable in Cyclops.

The heart is absent in many Copepods (including Cyclops), in some Ostracoda (including Cypris), and in Cirripedia: it is an elongated tube with several pairs of ostia in Euphyllopoda, Leptostraca, Stomatopoda, and Arthrostraca (Fig. 435, h); in Cladocera and Decapoda it is shortened to an ovoid sac with one or more pairs of ostia.

Excretory Organs.—In many larval Crustacea two pairs of modified meso-nephridia are present, the antennary glands opening on the bases of the antennae, and the shell-glands opening on the bases of the second maxillae. But as development proceeds one pair always atrophies, the shell-gland alone being usually retained in the Entomostraca, the antennary gland in the Malacostraca. In the Stomatopoda, however, there is no antennary gland, and the function of renal excretion may be discharged by a pair of glandular tubes opening into the rectum; and in Amphipoda a similar function is assigned to ceca opening into the posterior end of the mesenteron. In some of the Cirripedia the shell-gland is described as opening into one of the compartments of the body-cavity like a typical nephridium.

The nervous system is always formed on the ordinary arthropod type, as described in Apus and Astacus, and the chief variations it presents are connected with the greater or less amount of crescence of ganglia. In the sessile Barnacles and in the Crabs (Fig. 437) this process reaches its limit, the whole ventral nerve-cord being represented by a single immense thoracic ganglion (bg).
The sense-organs are mostly of the same character as those of the two examples. The median or nauplius-eye always occurs in the larva, and can frequently be shown to exist in the adult of even the higher groups (Decapoda). The Cirripedia and many parasitic Copepods are eyeless in the adult, as also are certain subterranean Malacostraca. Olfactory setæ occur, as a rule, on the antennules, and the auditory organs of Decapoda are open sacs in the basal segment of the same appendages, but in Schizopoda occur as closed otocysts (Fig. 423, ot) in the endopodites of the uropods.

Reproduction.—In most Crustacea the sexes are separate, but hermaphroditism occurs in some Phyllopods, in nearly all Cirripedes, and in certain parasitic Isopods (Cymothoa). In the latter case the animals are protandrous, male organs being developed at first, and female organs at a later stage. In many Cirripedia minute complemental males are found attached, like parasites, to the body of the ordinary or hermaphrodite individual, the male organs of which appear to be inadequate for the full discharge of the fertilising function. Sexual dimorphism is almost universal, and reaches its maximum in the parasitic Copepods and Isopods already referred to.

The gonads are always a single pair of hollow organs discharging their products into a central cavity or lumen, whence they pass directly into the gonoducts, and so to the exterior. The gonads may be single or branched, and frequently there is more or less concrescence between the glands of the right and left sides, as in Astacus and Cyclops. The sperms vary greatly in form, and are usually motionless; in Cirripedia, however, they are motile, and in Ostracoda perform movements after reaching the female ducts. In some Ostracoda they are about three times as long as the animal itself (Fig. 415, D). In many Entomostraca reproduction is parthenogenetic. In Daphnia, for instance, the animal reproduces throughout the summer by parthenogenetic summer eggs, which develop rapidly in the brood-pouch (Fig. 314, 1, br.p). In the autumn winter eggs are produced, which are fertilised by the males: they pass into the brood-pouch, a portion of which becomes specially modified and forms the ephippium or saddle. At the next moult the ephippium is detached and forms a sort of bivalved capsule, in which the eggs remain in an inactive state during the winter, developing in the following spring.

Development.—In some Crustacea segmentation is complete, and a hollow blastula is formed: in others complete segmentation is followed by an accumulation of yolk in the interior, resulting in the formation of a superficial blastoderm as in Astacus: in others, again, the egg is telolecithal, and the protoplasm, accumulated at one pole, divides so as to form a disc of cells which afterwards spreads over the whole yolk. But in most
cases the egg is centrolecithal and segmentation superficial as in Astacus.

Development is always accompanied by more or less metamorphosis. In Euphylllopoda the young is hatched in the form of a nauplius (Fig. 395, A), and further changes are of the same character as in Apus. In Cladocera development is direct, the nauplius-stage being passed through in the egg, and the young hatched in a form closely resembling the adult. In one of the Cladocera, however, Leptodora (Fig. 414, J), while development of the summer eggs is indirect, the winter eggs give rise to free nauplii. In the Ostracoda the nauplius is peculiar in having a bivalved shell, and all three pairs of appendages uniramous. In all the Copepoda there is a free nauplius, which, in the parasitic forms, leads a free existence for a time, and then attaches itself to its particular host and undergoes retrograde metamorphosis.

In the Cirripedia, also, there is a free nauplius, the body of which is often produced into long spines. After several moults, the

![Diagram](image_url)

Fig. 438.—Cypris-stage of *Lepas fascicularis*. *ab*, abdomen; *pa*, paired eye; *rf*, thoracic feet; *va*, unpaired eye; *l*, antennule. (From Lang's *Comparative Anatomy*, after Claus.)
into a peduncle. The pupal integument is then thrown off, the paired eyes disappear, and the adult form is assumed.

In Sacculina a still more extraordinary metamorphosis takes place. The young is hatched as a nauplius, and passes into a Cypris-stage. In this condition, after a brief free existence, it attaches itself to the body of a young Crab, near the base of a seta. The thorax with its appendages is thrown off, and the rest of the body is converted into a rounded mass, from the anterior end of which an arrow-like process is developed. This perforates the cuticle of the host, and, through the communication thus formed, the whole body of the parasite passes into the interior of the crab and becomes surrounded by a new cuticle, the old cuticle being left empty on the outside of the Crab's body. The Sacculina now sends out root-like processes, grows immensely, and, pressing upon the body-wall of the crab, causes atrophy of the tissues: this allows the now greatly-swollen parasite to project on the exterior as the tumour-like adult described above (p. 535).

Amongst the Schizopoda the embryo of Euphausia leaves the egg as a typical free-swimming nauplius: this passes into what is called the protozoa-stage, distinguished by the possession of an elongated, unsegmented abdomen without appendages. After successive moults, the rest of the appendages appear, and the adult form is assumed. In Mysis (Fig. 423) the nauplius is maggot-like, and undergoes development in the brood-pouch, emerging in a condition closely resembling the adult.

The development of the Decapoda presents a very interesting series of modifications. In two genera of prawns (Penaeus and Lucifer) the embryo leaves the egg as a nauplius, and passes by successive moults through a protozoa stage, a zoa-stage, with segmented but limbless abdomen, and a Mysis or Schizopod-stage, in which it resembles an adult Schizopod, having exopodites to all the thoracic limbs.

In the Crabs the nauplius stage is passed through in the egg, and the young is hatched in the form of a peculiarly modified zoa (Fig. 439, A), with an immense cephalothorax produced into spines, large stalked eyes, and a slender abdomen. This passes by successive moults into the megalopa-stage (B), which resembles an adult Macruran, having an extended abdomen with well-developed pleopods. The megalopa passes by successive moults into the adult form.

In the Lobster (Homarus) both nauplius- and zoa-stage are passed through in the egg, and the embryo is hatched in the mysis-stage with exopodites to all the thoracic limbs. In the Rock-lobster (Palinurus) and its allies, the newly hatched young is a strangely modified Mysis-form called a Glass-Crab or Phyllosoma: it has broad, depressed cephalic and thoracic shields of
glassy transparency: the abdomen is very small and the legs extremely long and biramous. Lastly, in the Fresh-water Crayfish the young resemble the adult in all but proportions and certain unimportant details of structure. Thus in the series of Decapoda we get a gradual abbreviation in development, stages which are free larval forms in the lower types being hurried through before hatching in the higher.

The larvae of Stomatopoda are grotesque little creatures with a very large spiny carapace. In Amphipoda there is no free larval form, but in Isopoda the young leave the egg in the form of a curious maggot-like modification of the nauplius, which remains in the brood-pouch until it has attained the adult form.

Ethology.—The Crustacea are remarkable for their very perfect adaptation to the most various conditions of life: they occur in fresh-water, in the sea, in brine-pools, in subterranean caves, and on land: of the marine forms some are littoral, some pelagic, some abyssal, descending to over 3,000 fathoms. One species of Copepod, *Pontellina mediterranea*, may almost be considered as aerial: it is described as taking long flying leaps out of the water, after the
solitary; others, like Shrimps, are gregarious, occurring in immense shoals. Most of them either prey on living animals or devour carrion, but, as we have seen, the barnacles are fixed, and feed on minute particles after the fashion of many of the lower animals, and the members of more than one order are parasites remarkable for their deviation from the typical structure of the class and their adaptation to their peculiar mode of life. In size they present almost every gradation from microscopic Water-fleas to Crabs two feet across the carapace, or four feet from tip to tip of legs.

As to geographical distribution, all the chief groups are cosmopolitan, and it is only among the families, genera, and species that matters of interest from this point of view are met with. Fossil remains are known from very ancient periods. The oldest forms are usually referred to the Phyllocarida, and occur from the Cambrian to the Trias. The shells of Ostracoda are also known from the Cambrian upwards, and those of Cirripedia from the Silurian. Arthrostraca are known from palaeozoic times, but are rare as fossils; the earliest Macruran is a shrimp-like form from the Devonian, while the highly differentiated Brachyura are not known with absolute certainty until the Cretaceous period.

It was in the Crustacea that the recapitulation theory so often alluded to was first worked out in detail. Embryology shows that all Crustacea may be traced back in individual development to the nauplii, upon which follows some kind of zoea-stage, many of the Entomostraca progressing no further. But in Malacostraca the zoea is followed by the mysis-stage, which is permanent in Schizopods, transient in Decapods. It was certainly a tempting hypothesis that this series of forms represented as many ancestral stages in the evolution of the class. But we have to remember that all such free larvae are subject to the action of the struggle for existence, and have no doubt been modified in accordance with their own special needs and without reference either to their ancestors or to the adult species into which they finally change.

Many Crustacea present instances of protective and aggressive characters, i.e., modifications in form, colour, &c., which serve to conceal them from their enemies or from their prey. Probably the most striking example is that of certain crabs (Parasithocarids), which deliberately plant Sea-weeds, Sponges, Alevonarians, Zoophytes, &c., all over the carapace, and are thus perfectly concealed except when in motion. Another Crab, a species of Dromia, carries a relatively immense Ascidian or Sea-squirt on its back, and in another species of the same genus the hinder legs are used to hold umbrella-wise over the back a single valve of a bivalve shell.

Several instances of commensalism occur in the class. The
association of Hermit-crabs with sea-anemones has already been referred to (p. 196): another interesting example is the occurrence of the little Pea-crab *Pinnotheres* in the mantle-cavity of Mussels. Other Decapods are found in the intestines of Sea-urchins and Holothurians, and one genus of Crab lives in a cavity in a Coral, the aperture being only just sufficient to allow of a due supply of food and water.

It is in Crustacea that we find the first indication of characters the purpose of which appears to be their attractiveness to the opposite sex. The immensely enlarged and highly coloured chelae of some male crabs (*Gelasimus*, Fig. 428, 2) are said to be used for attracting the female as well as for fighting. The sound-producing organs of some Decapoda have probably also a sexual significance. The Rock-lobster (*Palinurus vulgaris*) has a soft chitinous pad on the antenna, which it rubs against a projecting keel on the sternal region of the head, producing a peculiar creaking sound, and *Alpheus*, another Macruran, makes noises by clapping together the fixed and movable fingers of its large chela. The fact that these sounds can be produced at the will of the animals seems to show that they undoubtedly possess a sense of hearing, and that the auditory sac is not merely an organ of the sense of direction.

Affinities and Mutual Relationships.—That the Crustacea belong to the same general type of organisation as the articulated worms is clear enough. The advance in structure is shown in the reduction in number and in the differentiation of the segments, and in the concrescence of those at the anterior end to form a head; in the hardening of the cuticle into sclerites so as to form a jointed armour; in the jointing and mobility of the limbs; and in the differentiation of the dorsal vessel into a heart by which the propulsion of the blood is alone performed. The resemblance of the foliaceous limbs of Phyllopods to the parapodia of the higher worms is so striking that one can hardly believe it to be without significance. On the other hand, the absence of transverse muscles and of cilia, the non-motile sperms, and the replacement of the coelome by blood-spaces are fundamental points of difference from any known Chaetopod.

As to the mutual relations of the various orders, the Phyllopoda, with their very generalised structure and parapod-like limbs, may be taken as the base of the series. By a differentiation of the post-cephalic limbs, and a reduction in the number of segments, the phyllopod-type easily passes into that of the Phyllocarida. These again lead to the Schizopoda, in which the segments are fixed at the number occurring in all the higher Malacostraca, the caudal styles are no longer present, and the first thoracic legs show
pods the Macrura are derivable by the differentiation of three pairs of foot-jaws and the disappearance of the exopodites of the legs. In the series of the Macrura we find, on passing from the Prawns through such forms as Astacus, Palinurus, and Scyllarus, a gradual shortening of the abdomen, accompanied by a broadening and flattening of the whole body. In Birgus, Hippa, &c., this process goes a step further, and the abdomen becomes permanently flexed under the cephalothorax, thus leading to the high degree of specialisation found in the Crabs.

The Arthrostraca, Cumacea, and Stomatopoda may perhaps be looked upon as derivatives of the Schizopod-type along distinct lines of descent, the Arthrostraca showing the greatest amount of specialisation, in virtue of the absence of carapace and of exopodites (both present as vestiges in Anisopoda), and in the eyes being sessile. The Ostracoda, Copepoda, and Cirripedia are best conceived as derivatives, along separate lines, of an ancestral form common to them and the Phyllopoda.

These relationships are expressed in the following diagram:

![Diagram illustrating the mutual relationships of the orders of Crustacea.](image-url)
APPENDIX TO CRUSTACEA

Class Trilobita.

The Trilobita are extinct Arthropods peculiar to and characteristic of the Palaeozoic rocks; they are specially abundant from the Upper Cambrian to the Carboniferous. They are often found in a wonderfully good state of preservation, owing to the hard exoskeleton covering the dorsal surface: the greater part of the ventral region and the appendages were, however, very delicate, and are preserved only in exceptionally favourable cases.

The body is depressed, more or less oval in outline, and divided into three regions, the head (c.sh), the thorax (th), and the abdomen (p), all of which usually present an elevated median ridge and depressed lateral portions, whence the trilobation generally characteristic of the group. The head is covered by a carapace or cephalic shield (c.sh), the elevated median region of which, known as the glabella (gl), usually presents three or four transverse grooves, probably indicating the presence of four or five segments. The lateral regions of the carapace are divided by an oblique line of separation, the facial suture (f.s), into an inner or mesial portion. the fixed cheek (f.c), continuous with the glabella, and an outer free portion, the movable cheek (m.c): the latter bears the large paired compound eye (e). In some cases there is an indication of a dorsal organ, like

Fig. 441.—Dalmanites socialis, dorsal aspect; B, the same rolled up; C, under-side of head of Phacops fecundus. c.sh, cephalic shield; e, eye; f.c, fixed cheek; f.s, frontal suture; gl, glabella; lbv, labrum; m.c, movable cheek; p, pygidium; pl, pleura; s.c.p, sub-frontal plate; th, thorax. (After Gerstaecker.)
that of Apus, on the last cephalic segment. Ventrally the carapace is continued, as in Apus, into a sub-frontal plate (B, s.f.p), to the posterior edge of which is attached a large labrum (nbr).
The posterior angles of the carapace are often produced into spines.

The thorax (th) is composed of a variable number (2–29) of movable articulated segments, which are commonly trilobed, consisting of a median region or axis, and of lateral pleura (pI) often produced backwards and downwards into spines. The abdomen is covered by a caudal shield or pygidium (p), formed of a variable number of fused segments. Owing to the mobility of the thorax, the Trilobites were able to roll themselves up like Wood-lice (B).

The appendages are very imperfectly known. Quite recently a single pair of antennae (Fig. 442) has been shown to exist in one species, probably attached to the sub-frontal plate. Four pairs of leg-like cephalic appendages have been demonstrated, and the thorax bears slender biramous legs consisting of endo- and expodite, and bearing spiral gills. Similar limbs are present on the abdomen.

The larvae of several species of Trilobites have been found in the fossil state. In some of these the body consists only of carapace and pygidium in the youngest stages, and the thoracic segments are subsequently intercalated in regular order. In other species the earliest stage has the form of a rounded plate, the posterior portion of which elongates and segments to form the thorax and abdomen. Nothing is known of the larval appendages, and none of the stages hitherto discovered can be considered as nauplii.

The precise systematic position of the Trilobites is uncertain, but their nearest affinities seem to be, on the whole, with the Phyllopoda.

CLASS II. ONYCHOPHORA.

The class Onychophora comprises only the aberrant arthropod genus *Peripatus*, which differs very widely in certain important features of its organisation from all the rest of the Arthropoda, and in some respects enables us to bridge over the interval between the latter and some of the lower phyla, more particularly the Annelida.

General external features. —*Peripatus* (Fig. 442) is a caterpillar-like animal of approximately cylindrical form, and not divided into segments; it has a fairly well-marked head, and a series (14–42
according to the species) of pairs of short stumpy appendages. The integument is thrown into a number of fine transverse wrinkles, and is beset with numerous conical papillae, each capped with a little chitinous spine. The head (Fig. 443) bears a pair of antennae, a pair of eyes, a pair of jaws, and a pair of short processes known as the oral papillae. The antennae are made up of a number of short rings. The eyes are constructed somewhat after the model of the Chaetopod eye as described on p. 439. On the surface of the oral papillae are situated the apertures of a pair of glands—the slime glands. Each jaw is composed of two curved, falciform, chitinous plates; they lie at the sides of the mouth enclosed by a circular lip. The jaws, as well as the oral papillae, are developed as modified limbs.

The legs are not jointed, but rows of papillae give them a ringed appearance; each consists of a proximal part and a small distal part or foot, the latter terminating in a pair of horny claws.
The surface presents an elaborate pattern, which varies greatly in different individuals, produced by minute mottlings of various colours and tints, green, red, brown, and the arrangement of these in stripes and bands.

Body wall and body cavity.—The wall of the body consists of a cuticle, a layer of deric epithelium with an underlying layer of fine fibres, a layer of circularly arranged muscular fibres, a double layer of diagonal fibres, and a layer of longitudinal fibres divided into a series of bundles. A layer of ccelomic epithelium lines the wall of the ccelome and invests the contained organs. Incomplete muscular partitions divide the cavity into a median and two lateral compartments. As in the Arthropoda in general, the body-cavity is a haemocoele, and is filled with blood.

The **enteric canal** (Fig. 444) begins with a small buccal cavity enclosed by the circular lip, and having on its floor a slight prominence, the *tongue*. This is followed by a thick-walled *pharynx* (*phar.*) leading to a narrow *oesophagus*. The part which follows, the *mesenteron* or stomach-intestine, a wide, somewhat thin-walled tube, extends nearly to the posterior end of the body. The narrower *cecum* leads to an anal aperture situated on the last segment of the body. A diverticulum leading backwards from the buccal cavity, receives the secretion of two long narrow tubular *salivary glands* (*sal. gld.*).

Circulatory system.—The *heart* is an elongated tube running through nearly the entire length of the body. It presents a number of pairs of ostia arranged segmentally—*i.e.* one opposite

![Diagram of internal organs of Peripatus](https://example.com/diagram.png)

(Combined from Balfour.)
each pair of legs. It is enclosed in a pericardial sinus imperfectly
cut off from the general body cavity by a longitudinal partition.
There are no other vessels with the exception of a median ventral
vessel.

The organs of respiration are delicate, unbranched or rarely
branched, tracheal tubes lined with a thin chitinous layer exhibiting
fine transverse striations. Groups of these open in little depres-
sions of the integument, the external openings of which are
known as the stigmata. The stigmata in some of the species are
distributed irregularly over the surface; in others are arranged
in longitudinal rows. By means of these tubes air is conveyed to
all parts of the body.

A series of pairs of glands, the coxal glands (Fig. 444,
cox. gld.), lie in the lateral compartments of the body cavity, and
their ducts open on the lower surfaces of the legs. Their distri-
bution varies in the two sexes and in the different species: in
one species—P. edwardsii—they are only developed in the male.
A pair of larger glands—the slime glands (sl. gld.)—opening at
the extremities of the oral papillae, may be modified coxal glands:
the secretion of these is discharged in the form of a number of
fine viscid threads when the animal is irritated, and appears to
serve a defensive purpose.

The nervous system consists of a brain (brn.) situated in the
head, and of two longitudinal nerve cords (ne. co.) which run parallel
with one another throughout the body to the posterior end, where
they join together behind the anal aperture. A number of very
fine transverse commissures, more numerous than the segments,
(i.e. than the pairs of limbs) connect the two cords together to
form a ladder-like nervous system comparable to that of some of
the Flat Worms. The cords are very slightly swollen opposite
each pair of limbs: nerve cells cover them uniformly throughout
their entire length. The brain gives off nerves to the antenna.
The nerves to the jaws are given off just where the brain passes
into the longitudinal nerve cords.

The excretory organs are nephridia (Fig. 445) of the type of
those of the Annulata, situated in pairs in the lateral compartments
of the body cavity, and opening on the lower surfaces of the legs at
their bases. Each nephridium consists of a wide funnel (tr.) with
fringed margins opening into the coelome or into a closed sac; a
looped tube (sg.); and a dilated terminal vesicle (tv.), situated close
to the external opening. The salivary glands and the reproductive
ducts are, as shown by the study of their development, specially
modified nephridia, as appear also to be a pair of glands—the anal
glands—opening close to the anus.

Reproductive organs.—Peripatus has the sexes distinct. In
the female there are two ovaries and two uteri, the latter in the
form of long curved tubes which unite behind in a median vagina
opening on the exterior between the second last pair of legs. Connected with each uterus where it leaves the ovary are two diverticula—the receptaculum seminis and receptaculum ovarum. In some species one or other of these may be absent.

In the male there are two tubular testes, each with a narrow vas efferens opening by a funnel-like aperture into a vesicula seminalis; this is followed by a long, narrow, coiled vas deferens. The two vasa deferentia unite together to form a median tube—the ductus ejaculatorius—opening on the exterior, like the vagina of the female, between the second last pair of legs. The wall of the proximal part of the ejaculatory duct is glandular and secretes a substance forming complicated cases which enclose masses of sperms to form spermatophores.

Development. — The differences between the different species of Peripatus as regards the segmentation and the formation of the germinal layers, as described by various observers, are very considerable. All the species are viviparous, but in some the egg, before the completion of embryonic development, is enclosed in a well-formed shell, and in certain cases the eggs may pass out to the exterior before the emergence of the embryo. In some species the egg encloses a considerable amount of food-yolk, in others the quantity of food-yolk is small, and nutrient is obtained from the parent.

In *P. novo-zealandiae* there is a superficial segmentation. The first segmentation-nucleus is itself superficial, and segmentation results in the development of a number of nuclei, each with its island of protoplasm, which arrange themselves on what is destined to become the dorsal side (Fig. 446 A), opposite the site of the future blastopore, while some pass inwards to the central part of the ovum. The peripheral nuclei multiply rapidly and grow round the yolk so as to completely enclose it except on a small space (blastopore) in the middle of the ventral side (B). There a thickenings takes place, and an involution of the lips of the blastopore results in a sort of invagination, the floor of the invagination cavity being formed of yolk with scattered nuclei.

In another species—*P. capensis*—the segmentation has the appearance of being total; but the cells, though separated by fissures externally, are fused internally.
In accordance with the smaller size of the ova and the relationship of the embryo with the wall of the uterus the American species show a totally different mode of development. The eggs, which are almost entirely devoid of yolk, undergo a total and tolerably equal process of segmentation. Even at this stage the embryo, which increases considerably in size, appears to receive nutrient lymph from the uterine wall. When it has reached the 32-cell stage the embryo, according to one observer, consists of a solid mass closely invested by the epithelium of the wall of the uterus. It then becomes reduced in size and owing to exosmosis, assumes the form of a disk placed in close apposition to one side of the wall of the uterus. The embryo subsequently loses its flattened form and becomes somewhat vesicular, the cavity of the vesicle opening into the cavity of the uterus. From its surface are given off isolated cells which become applied in part to the wall of the uterus, and finally unite to form a complete envelope (amnion) enclosing the embryo. The vesicle then becomes closed, the embryo becomes raised from the surface of the uterine wall, the part applied to the latter becoming narrowed so as to form a sort of stalk, at the base of which is a growth of cells termed the placenta. Into close relation with this placenta comes a ring-shaped thickening of the uterine wall, the uterine placenta.

In *P. capensis* behind the elongated blastopore proliferation of cells gives rise to an oval thickening. The mesoderm takes its origin at this point and extends forwards in the form of two

Fig. 446.—Two early stages in the development of *Peripatus novoe-zealandiae*. A, transverse section of an ovum in which the yolk is nearly covered by the blastoderm (bl.); B, transverse section of an ovum in which the blastopore (bp.) is formed. (After Sheldon.)
segments—the division beginning in front. The lips of the blastopore meanwhile become approximated, and fuse throughout the greater part of their length, leaving only an anterior and a posterior opening; these go to form the mouth and the anus respectively. The division into segments soon becomes well marked. At the anterior end the head lobes become distinguishable. The body elongates, and the head and trunk become differentiated. The limbs now arise as ventro-lateral outgrowths which are developed from before backwards.
Distribution.—The various species of Peripatus are all terrestrial, and are found in damp localities, under bark, or dead timber, or stones. Four species occur in South Africa, one in South America and one of the West Indies, one in New Zealand, and two in Australia.

Relationships.—Peripatus is the most primitive of existing Arthropods, and presents some striking points of resemblance to the Chaetopoda. The development is in the main arthropodan, especially as regards the mode of segmentation (at least in the forms with much food-yolk, which are probably the more primitive), the mode of closure of the blastopore, and the mode of development of the mesodermal strands. Arthropodan also are the relatively large size of the brain and the presence of tracheae, the character of the heart with its pairs of ostia, together with the clawed appendages, and the jaws in the form of modified limbs. The nephridia on the other hand, and their modification in certain segments to form the gonducts, which are ciliated internally, are annulate in character, and in all probability the slime glands and coxal glands correspond to the setigerous glands of the Chaetopoda. The nervous system is peculiar, and is most nearly paralleled among the Platyhelminthes and the Mollusca. Also peculiar, and serving to distinguish Peripatus from the rest of the Arthropoda, are the large number of stigmata with their irregular arrangement, the presence of only a single pair of jaws, and the nature of the cuticle.

CLASS III.—MYRIAPODA

The class Myriapoda, including the Centipedes and the Millipedes, consists of tracheate Arthropoda, which bear many features of resemblance to the Insects. There is a distinct head, bearing many-jointed antennae, a pair of eyes, and two or three pairs of jaws; and a body, not distinguishable into regions, but consisting of a number of similar segments, each bearing either one pair of legs or two. A system of air-tubes or tracheae, similar to those of Peripatus and the Insects, open by a series of stigmata, usually in considerable numbers, on the sides or lower surfaces of the segments.

A.—Distinctive Characters and Classification.

The Myriapoda are tracheate Arthropoda in which there is a head, bearing antennae and jaws, and a trunk made up of a number of similar segments, provided, except the last, with leg-like appendages. Groups of ocelli take the place of the compound eyes of Insects.
Order 1.—Symphyla.

Myriapoda in which there are not more than twelve leg-bearing trunk segments; a single pair of branching tracheae, the external apertures of which are situated in the head; and an unpaired genital aperture on the fourth segment.

This order includes only a single genus, Scolopendrella (Fig. 448.)

Order 2.—Chilopoda.

Myriapoda with a dorso-ventrally compressed body; consisting of a considerable number (15 to 173) of trunk segments, each with a single pair of legs, the first pair of legs forming poison jaws (maxillipeds). The unpaired genital aperture is on the second last segment.

This order includes the Centipedes (Fig. 449) and Scutigera.

Order 3.—Diplopoda.

Myriapoda with a dorsally convex body composed of a considerable number of segments, all of which, with the exception of the first four, bear each two pairs of legs. There are no maxillipeds. The paired genital apertures are situated between the third and fourth segments.

This order includes the Millipedes.

Order 4.—Pauropoda.

Myriapoda with ten trunk segments and nine pairs of legs. Antennae with several flagella. Tracheae not known. Paired genital apertures situated at the bases of the second pair of legs.

The order includes only a single genus, Pauropus (Fig. 451).

General Organisation.

External features.—The head in the Myriapoda is as well marked off as in an Insect; it appears to be composed of about four fused segments. The antennae consist sometimes of many, sometimes of comparatively few segments. A pair of eyes, situated on the dorsal surface of the head, consist of aggregations of ocelli except in Scutigera, in which there are compound eyes, differing, however, in their structure from those of Insects.¹ There is a movable labrum, a pair of mandibles, and

¹ See p. 596.
two pairs of maxillae. The mandibles have no palps; one or both pairs of maxillae usually possess palps; the second pair of maxillae are in some groups more or less united together.

The number of segments in the body varies from 12 to 173. In the Millipedes the dorsal walls of the segments are very strongly arched; in the Centipedes the segments are all dorso-ventrally compressed, with distinct tergal and sternal shields separated laterally by intervals of comparatively soft skin on which the stigmata open. In the Chilopoda each segment bears a pair of jointed legs; of these the most anterior pair is extended forwards

Fig. 440. *Scolopendra* (From Cuvier's *Animal Kingdom*).

Fig. 450. *Lithobius forficatus* seen from the ventral side. *ant.* antennae; *brn.* brain; *cox. ap.* coxae of appendages; *fl. 15.* fifteenth pair of legs; *int.* intestine; *mal.* Malpighian tubes; *mxp.* maxillipodes; *ne. co.* nerve cord; *oes.* oesophagus; *sten.* stomach. (From Leuckart.)
to form a pair of poison jaws (maxillipeds), at the extremity of the pointed terminal joint of which opens the duct of a poison gland. In the Diplopoda each segment behind the fourth or fifth bears two pairs of legs, the four or five most anterior having only one pair each. In most of the Diplopoda the appendages of the seventh segment are modified in the male to form copulatory organs.

The integument and body wall do not differ widely from those of Insects. Odoriferous glands are present on some of the body segments in the Diplopoda, and open on the dorsal surface. Scolopendra possesses spinning glands.

The alimentary canal is straight, and is much simpler in character than that of the Insecta. Connected with the mesenteron are a number of short hepatic coeca, and one or two pairs of Malpighian tubes, having a renal function, open into the beginning of the hind gut.

The heart is greatly elongated, and consists of as many chambers as there are segments in the body.

The respiratory system resembles that of Insects to be fully dealt with later (p. 578, Fig. 459), consisting of air-tubes or tracheae. There is one pair of stigmata in each segment in the Diplopoda, and the tracheae are unbranched. In the Chilopoda the tracheae are branched, and the number of stigmata is in most cases less than the number of segments. In Stenigera, one of the stigmata is unpaired and dorsal. In the Symphyla there are only two stigmata, and these are situated on the head.

The nervous system is, in accordance with the form of the body, much less concentrated than in the Insecta (see below, p. 594). In the Chilopoda there is a double ganglion in each segment of the trunk; in the Diplopoda there are two. The longitudinal commissures between the ganglia are usually distinct. The ganglia of the first two segments unite to form an infra-esophageal ganglion from which the nerves to the jaws are given off. A sympathetic or visceral nervous system is present as in Insects.

The sexes are always separate. The reproductive organs—ovaries or testes—are usually paired, with paired ducts, having a common terminal portion; but in the Diplopoda there is an unpaired ovary or testis with paired ducts, which remain distinct throughout, and open by separate apertures. In the Chilopoda the external aperture is situated on the penultimate segment; in
the Diplopoda and Pauropoda the two apertures are usually between the second and third segments of the body; in the Symphyyla the single aperture is situated between the legs of the fourth segment.

The ovum, as in most Arthropods, contains a large quantity of food-yolk. The centrally-placed segmentation-nucleus divides so as to give rise to a number of nuclei, this division being accompanied by a division of the yolk into a number of masses, which, however, are more numerous than the nuclei. The nuclei then, for the most part, migrate to the surface, some being left behind in the yolk. Those that reach the surface, surrounded each by its little clump of protoplasm, become arranged into a continuous superficial layer of cells—the blastoderm. On the surface of this appears a thickening, and along the thickening is formed a groove which may perhaps represent the blastopore, though the endoderm is formed by direct modification of the cells in the interior of the yolk. Stomodeum and proctodeum are developed as invaginations of the surface layer. The thickening of the blastoderm gives rise to a germinal band in which rudiments of the segments soon become recognisable. Larval membranes do not occur.

In some of the Diplopoda there is a metamorphosis, such as has shortly to be described in the embryo Insect, and the larva (Fig. 452, B) has a singular superficial resemblance to an Insect, owing to the presence at first of only three pairs of appendages on the anterior trunk region.

Fossil remains of Myriapoda have been found in strata as far back as the Devonian. The more ancient fossil forms are not
capable of being grouped in the same orders as the living representatives of the class, and are looked upon as constituting at least two orders, the members of which are all extinct.

CLASS IV.—INSECTA.

The class of Insects, comprising the Cockroaches, Grass-hoppers, Dragon-flies, House-flies, Butterflies, Beetles, and Bees, with their many allies, though it is a very extensive one, including as it does a larger number of species than any of the other classes of the Arthropoda, is yet characterised by a remarkable degree of uniformity, no such extremes of modification occurring as are observable within the class Crustacea.

Characteristic of all the members of the class is the presence of three clearly-defined regions—the head, thorax, and abdomen. There are present on the head, antennae, mandibles, and two pairs of maxillae, the jaws being variously modified in the different orders. All Insects have three pairs of thoracic legs, and most have either one or two pairs of wings likewise borne on the thorax; the abdomen is not provided with paired appendages.

The organs of respiration are tracheae similar to those of the Myriapoda.

The various systems of internal organs attain in all the higher groups of Insects a very high grade of development. In most the development is complicated by the occurrence of a strongly-marked metamorphosis. Insects are terrestrial or aerial, only a few groups living on the surface of fresh or salt water; but many are aquatic throughout their larval condition.

Many groups of Insects are remarkable for the high grade of their intelligence as compared with the members of most classes of the animal kingdom. This manifests itself mainly in a number of instincts, often of a remarkable character, having to do with the protection and rearing of the young—in some cases leading to the formation of communities consisting of individuals of various different kinds (workers, soldiers, sexual individuals) for mutual support and protection.

1. Example of the Class—The Cockroach (Periplaneta americana).

The Cockroach, familiarly known by the misleading title of "Black Beetle," is a common pest of kitchens, bakeries, and store-rooms. It is nocturnal in its habits, rarely coming out of its lurking-places in the day-time, and is almost omnivorous in its diet. It is a good example of the Insecta, not only on account of its large size rendering it convenient for dissection, but also because
of its generalised structure, which makes it a fairly central member of the class, devoid of any extreme modifications.

Three regions are very distinctly recognisable in the body of the Cockroach. In front is the head, elongated vertically, bearing the very long slender feelers and the large eyes, and contracted behind to form a narrow neck. In the middle is the thorax, consisting of three segments bearing the three pairs of legs and the two pairs of wings. Behind is the abdomen, consisting of ten segments covered over above by the wings. The entire surface is covered by a chitinous cuticle, which is specially thickened on the head, on certain parts of the thorax, and in the anterior pair of wings.

The head consists of four parts—the epicranium behind, comprising the region between and behind the eyes, and the clypeus,
are a pair of stout mandibles (Fig. 454, md., and 455, man.), which work horizontally like those of the Crayfish; their inner edges are divided into a number of teeth. Behind the mandibles are a more flexible pair of jaws—the first pair of maxillae (mx.1, mx.2). Each maxilla exhibits a structure comparable to the fundamental type of the appendages of the Crayfish: a basal part or protopodite, consisting of two segments (podomeres), supporting an internal ramus or endopodite, and an external ramus or exopodite. The former consists of two parts: an inner, pointed, hard blade—the lacinia (mi.), and an outer, softer, more elongated—the galea (me.). The exopodite forms a palp, the maxillary palp (pm.), consisting of five podomeres. Behind these are the second maxilla, which are reducible to the same type, but which have their two basal segments (those of the protopodites) united together in the middle line, to form two median sclerites, known respectively as mentum (m.) and submentum (sm.), so that the two appendages form a sort of lower lip called the labium. The endopodites taken together constitute what is termed the ligula; each is divided into two parts like the endopodite of the first maxilla. The exopodites form three-jointed palps, the labial palps (pl.).

The neck, or narrow region
between the head proper and the thorax, is covered for the most part by a thin flexible cuticle, but there are supporting it eight thickened and hardened patches—the cervical sclerites (cerv.).

Each of the three segments of the thorax—known respectively as prothorax, mesothorax, and metathorax—is covered over dorsally by a chitinous plate—the tergum, and ventrally by another—the sternum. The tergum and sternum of each segment are distinct from one another, not united into a continuous sclerite as in the Crayfish. The tergum of the prothorax is larger than that of the other two segments, and overlaps the neck above. Attached to the anterior border of the tergum of the mesothorax are the anterior wings or elytra—a pair of thick opaque plates, which, in their ordinary position, extend backwards over the abdomen to some little distance beyond its extremity. Attached to the tergum of the metathorax are the posterior wings—a pair of extremely delicate membranous expansions, which, when at rest, are folded up longitudinally, like a fan, under the elytra. Attached to the sternum of each segment of the thorax is a pair of legs. Each leg consists of a stout flattened proximal podomere or coxa; a small second, or trochanter; a third, the femur, similar to the coxa but narrower; a fourth slender and spinose, the tibia; and finally the tarsus or foot, composed of six very short segments provided ventrally with patches of setae to give adhesive power; the last segment (pulvillus) is armed in addition with a pair of claws.

Of the segments of the abdomen the most posterior are overlapped by those just in front. Each is enclosed in a dorsal tergum and a ventral sternum, both of which are thin and flexible—the terga and sternae of successive segments overlapping one another from before backwards. The eighth and ninth terga are hidden from view by being overlapped by the seventh. The tenth is produced backwards into a thin flexible plate, the posterior border of which presents a deep notch: below this is the opening of the anus, at the sides of which are a pair of small hard plates—the pedicle plates: at the sides of the tergum are a pair of many-jointed palp-like bodies—the cerci. The sternum of the first abdominal segment is rudimentary. In the male that of the ninth bears a pair of short styles. In the female the sternum of the seventh is very much more prominent than in the male. The genital aperture is placed on the ventral aspect of the posterior extremity of the abdomen beneath the anal opening.

When compared with the Crayfish, as regards the external anatomy, the Cockroach is found to differ (1) in the arrangement of the segments into regions; (2) in the form and position of the appendages. The head and thorax together correspond to the cephalothorax of the Crayfish, but comprise fewer segments; the abdomen contains a larger number of segments. The single pair of antennae probably correspond to the antennules of the Crayfish.
— the antennæ of the latter not being represented. On this view the homologies of the anterior appendages in the two animals may be expressed in the following table:

Crayfish. Cockroach.
Antennules. Antennæ.
Antennæ. Absent.
Mandibles. Mandibles.
First maxillæ.
Second maxillæ.
First maxillipedes.
Second maxillipedes.
Third maxillipedes.

Representatives of the five pairs of thoracic legs of the Crayfish would thus appear to be absent in the Cockroach, and evanescent rudiments, no traces of which remain in the adult, alone represent in the latter the well-developed abdominal appendages of the former.

In the living Cockroach respiratory movements are to be observed, in which the abdomen becomes alternately expanded and contracted; these movements bring about the alternate inhalation and exhalation of air through certain apertures—the stigmata—at the sides of the body. Two of these are situated on each side of the thorax, one between the prothorax and mesothorax, and the other between the mesothorax and the metathorax. Eight occur on each side in the abdomen between the terga and sterna of the segments. Just internal to each spiracle the main trachea into which it leads presents an elastic ring or spiral, acting as a valve for closing the passage.

The principal sets of muscles of the trunk of the cockroach are (1) the longitudinal sternal muscles (Fig. 456, long. stern.), which form a transversely segmented sheet, extending between adjoining sterna of the thorax and abdomen; (2) oblique sternal
muscles (obl. stern.), confined to the abdomen; (3) and longitudinal tergal muscles, best developed in the abdomen. The various segments of the limbs are capable of being flexed or extended on one another, as in the Crayfish, by the contractions of special muscles. The wings are little used, the female cockroach being incapable of flight, and the male not a strong flier, and accordingly the wing muscles are not very strongly developed.

Between the body wall and the alimentary canal is a cavity taking the place of the coelome, but in reality forming a specially

devolved part of the blood-vascular system (haemocoele). This is bounded externally by an irregular wall, formed of a mass of polygonal cells constituting the fat body.

Digestive system.—The mouth opens into a buccal cavity, which receives the ducts of the salivary glands (Fig. 457, sal. gld.). Each gland is divided into two lobes, each made up of numerous ramifications. In close relation to each gland is an elongated thin-walled sac—the salivary receptacle (sal. rec.). The duct given off from the salivary receptacle joins that of the opposite side, and the median duct thus formed is joined by a single duct (sal.)

To convert this to plain text, I would need to transcribe the text from the image. However, due to the nature of the content, which includes diagrams, tables, and specific anatomical terms, I cannot accurately transcribe it into plain text without visual aids. If you need a transcription of the text, please let me know, and I can assist with that.
du.), formed by the union of the two ducts of the salivary glands; the common duct thus formed opens into the buccal cavity (Fig. 458). A chitinous fold of the floor of the mouth forms the lingua or tongue.

From the buccal cavity there proceeds backwards a narrow esophagus (es.), which leads to an elongated saccular dilatable sac—the crop (cr.). On this there follows the proventriculus or gizzard (gizz.)—a pear-shaped chamber with the broad end directed forwards, its chitinous internal lining raised up into a number of horny teeth. A narrow passage leads from this to the chylific ventricle—a wide tube with glandular walls; from its anterior end are given off eight tubular hepatic cæca (hep. cœ.)—blind tubes somewhat narrower than the chylific ventricle. The point of junction of the chylific ventricle with the intestine is marked by the presence of very numerous thread-like yellow appendages—the Malpighian tubes (malp.)—which are the renal organs of the animal. The intestine (int.) terminates in a dilated portion—the rectum (rel.)—the walls of which are longitudinally folded. Of the entire alimentary canal only a small part—the chylific ventricle—with the appended hepatic cæca, is of the nature of a mesenteron, the region in front being a stomodeum, and that behind a proctodeum.

The heart is an elongated tube, closed behind, open in front, running along the middle line of the abdomen and thorax, immediately beneath the terga. Internally the tube is divided into a number of chambers: its walls are perforated by a series of pairs of valvular apertures or ostia. Running from the wall of the heart to the terga are a

Fig. 458.—Portion of a trachea of a Caterpillar. B, C, D, branches; a, cellular layer; b, nuclei. (From Gegenbaur.)
series of segmentally-arranged fan-shaped bundles of muscles—the alary muscles (Fig. 484, m.).

Respiration takes place through the instrumentality of a system of air-tubes or tracheae (Figs. 459 and 460), opening on the surface at the stigmata, to which reference has already been made. These tracheae form a richly ramifying system extending to all parts of the body. They possess a chitinous internal lining, supported by means of a spirally-wound, fibre-like thickening. By means of this system of air-tubes air is conveyed throughout the body to all parts, and there is thus ensured the rapid and complete oxygenation which the functional activity of the Insect requires.

The nervous system consists of a brain (Fig. 457, brn., and 461, br.), a sub-oesophageal pair of ganglia (infr. gang.), three thoracic (Fig. 461, thor. 1, 2, and 3), and six abdominal pairs of a ganglia, a system of connectives uniting the ganglia together, and a series of nerves given off to the various parts of the body. The brain consists of a bilobed mass of nerve-matter situated in the...
head, and divisible into two parts, anterior and posterior. From the anterior part is given off on each side the optic nerve passing to the eye to become expanded into an optic ganglion, and from the posterior part the nerve to the antennae. It is supported by a chitinous framework—the tentorium. From the brain there run backwards a pair of oesophageal connectives (conn.), passing, one on each side of the oesophagus, downwards and backwards to the sub-oesophageal ganglia. The latter, which are situated between the submentum and oesophagus, give off a pair of connectives, passing backwards to the first thoracic ganglia. From the sub-oesophageal ganglia are given off the nerves to the labrum, the mandibles, and both pairs of maxillae. The three paired thoracic and six abdominal ganglia are connected together into a chain by a series of double connectives; the last pair of abdominal ganglia, situated in the sixth segment of the abdomen, are larger than the others, and supply the segments behind. A visceral nervous system, ramifications on the anterior part of the alimentary canal, is connected with the two oesophageal connectives by two nerves, which join above the oesophagus to form a median frontal ganglion.

The organs of special sense are the eyes, the antennae, and the palpi. The eyes are compound—each being made up of a large number of simple elements similar to those that go to make up the eye of the Crayfish (see p. 513). The antennae and palpi, together with the anal cerci, act as organs of touch. In addition, certain setae on the antennae appear to have an olfactory function.

Reproductive organs.—In the male the testes (Fig. 462, tst.), are a pair of small bodies which lie in the fourth and fifth segments of the abdomen immediately below the terga. From these a pair of delicate tubes, the vasa deferentia, lead to the vesiculae seminales, two tufts of whitish cea, which together constitute what is known as the "mushroom-shaped gland"; these open
into the anterior end of the ejaculatory duct (duct, c.), an unpaired tube with muscular walls opening on the exterior immediately below the anus. Around the genital aperture are a series of chitinous processes, the gonapophyses, which subserve copulation.

In the female there are two groups of ovarian tubes or ovarioles, each group or ovary (Fig. 463, ov.) consisting of eight. The tubules of each group are united together anteriorly, where they are connected by a ligament to the dorsal body-wall. Posteriorly each group is connected with a lateral oviduct (od.). Each ovarian tube has a beaded appearance, owing to its containing a row of ova, which increase in size posteriorly. The two oviducts unite to open by a median aperture on the sternal surface of the eighth segment of the abdomen. A pair of unsymmetrical sacs opening together in the middle of the sternum of the ninth segment constitute the spermatheca or receptaculum seminis. A pair of ramifying glandular tubules, the collarial glands (coll. gld.), open behind the spermatheca. A series of chitinous gonapophyses, which aid in depositing the eggs, are situated between the female genital aperture and the anus.

Development.—The eggs are enclosed sixteen together in horny capsules, the substance of which is secreted by the collarial glands. They are laterally compressed, concave on one side (the future ventral side), convex on the other (the future dorsal side). Each egg is enclosed in a thin egg-shell, or chorion, with several small openings. The nucleus, originally plainly distinguishable in the ovarian ovum, is no longer visible in the egg when laid, owing to the accumulation of food-yolk. It is to be
inferred from what is known of other Insects that the nucleus with a small quantity of protoplasm lies enclosed within the food-yolk. It undergoes division (Fig. 464), and some of the resulting cells travel to the surface, where they form an investing layer—the blastoderm (blast.),—while others—the yolk: cells (yolk: e.),—remain scattered in the interior of the yolk.

On the ventral side there is soon formed a thickening of the blastoderm, owing to the cells in this situation becoming columnar; this forms what is termed the ventral plate (Fig. 465). In front this is wider (in the position of the future head) than it is behind. It becomes divided by a number of narrow transverse lines which indicate the boundaries of the future segments.

Rudiments of appendages appear on the head and thorax, and a series also appear on the abdomen, which, however, subsequently disappear. The segment on which the rudiments of the antennae appear is at first post-oral in position, but subsequently becomes fused with a pre-oral segment (prostomial), so that the antennae acquire their permanent pre-oral position only secondarily. The prostomial segment, the antennary segment, a segment devoid of appendages, the segment bearing the rudimentary mandibles, and those bearing the two pairs of maxillae, all unite to form the head of the adult. The ventral plate, which was superficially situated when first developed, becomes gradually sunk within the substance of the yolk, and thus becomes separated from the chorion by a layer of yolk. On this follows the appearance of the larval membranes. On either side arises a fold of the blastoderm (Fig. 466, amn. f.); and the two folds grow inwards, and eventually unite over the body of the embryo, forming a complete two-layered covering for it. The outer layer is termed serosa (ser.), the inner amnion 1 (amn.).

Along the middle of the ventral plate there soon appears a groove—the germinal groove. This grows downwards, and forms a tube, which becomes completely detached from the ectoderm. The lumen of the tube becomes filled up with cells, and the solid strand thus formed divides longitudinally into two parts—the mesoderm bands. There is some doubt as to whether the endoderm is also formed in the course of this invagination, or by modification of the yolk-cells. Infoldings of the ectoderm at the anterior and

1 This term is derived from the Vertebrata, in which there is an analogous membrane, occupying, however, a dorsal instead of a ventral position as regards the body of the embryo.
posterior ends of the embryo give rise to the stomodeum and proctodeum.

Each of the two mesoderm bands becomes divided transversely into a series of segments, which become hollow, and then become closely applied to one another, eventually coalescing, so that the cavities of all of them unite to form the body cavity of the adult, the outer walls becoming applied to the ectoderm to form a somatopleure, or lamina consisting of somatic layer of mesoderm and of ectoderm; the inner becoming applied to the endoderm to form a splanchnopleure, or lamina consisting of splanchnic layer of mesoderm and of endoderm.

The ventral plate gradually grows upwards at the sides, and eventually its borders meet and unite along the dorsal middle line, the entire yolk thus becoming enclosed by it.

The ventral nerve-chain is developed from a groove of the ectoderm, bounded by thickenings which become detached from the surface ectoderm, and form the chain of ganglia. The brain is developed from a pair of ectodermal thickenings. That part which is developed in the prostomial region—the archi-cerebrum—becomes united with that developed in the following two segments to form the completed brain or syn-cerebrum.

It can hardly be said that the Cockroach undergoes a metamorphosis, the young Insect when
it escapes from the egg differing from the adult only in its smaller size, and in the absence of wings, which grow out subsequently from the terga of the meso- and meta-thorax. Between its hatching and its complete development the young Cockroach undergoes no fewer than seven "moults" or changes of skin, in which all the chitinous parts become thrown off and renewed.

2. Distinctive Characters and Classification.

The Insecta are air-breathing Arthropoda, in which the body consists of three well-marked regions—head, thorax, and abdomen: the head devoid of external segmentation, bearing compound eyes, a pair of antennae situated on the prothorium, but post-oral in origin, mandibles, and two pairs of maxillae; the thorax of three segments each bearing a pair of legs, and the second and third usually wings; the abdomen composed of a varying number of segments (7—11), which are devoid of appendages in the adult condition. A liver is absent, but salivary glands are always present. There is an elongated tubular heart, divided into eight chambers, situated in the abdomen; the vessels themselves are not highly developed. The Insecta are, almost without exception, air-breatheers, and the organs of respiration take the form of branching tubes, the tracheae, by means of which air is conveyed to all parts of the body. The nervous system and sense-organs are highly developed. The excretory organs are a number of blind tubes, the Malpighian tubes, appended to the intestine. The sexes are separate; development is sometimes direct, more usually complicated by a metamorphosis.

Order 1.—Aptera (Collembola and Thysanura).

Insecta in which the wings are absent, and the surface is covered either with scales or hairs. Eyes are sometimes absent; sometimes there are groups of ocelli; sometimes compound eyes. The segments of the thorax are not fused together. Some progress by running.
others by springing movements effected by a special springing apparatus on the abdomen. Some have elongated, many-jointed filaments or cerci at the extremity of the abdomen. Development is direct.

This order includes the Spring-tails (Podura, Fig. 468), and Silver-fish (Lepisma, Fig. 467).

Order 2.—Orthoptera.

Insects in which there are two pairs of wings, of which, in most cases, the anterior pair are hard and tough, and the posterior pair delicate and transparent. The parts of the mouth are masticatory. The prothorax is not united with the other segments of the thorax. Development is direct, or there is a gradual and incomplete metamorphosis.

This order includes Earwigs, Cockroaches, Stick- and Leaf-insects, Grasshoppers and Locusts (Fig. 469).

Order 3.—Neuroptera.

Insects with two pairs of netted membranous wings. The parts of the mouth are adapted for biting. The prothorax is free from
the other segments of the thorax. The metamorphosis is sometimes complete, sometimes incomplete.

This order includes Termites ("White Ants"), May-flies (Fig. 470), Dragon-flies, Ant-lions, Caddis-flies.

Order 4. — Hemiptera.

Insects in which wings are usually present, sometimes similar, sometimes dissimilar, and in which there is a jointed suctorial rostrum formed from the labium, enclosing the jaws in the form of piercing organs. The prothorax is free from the other segments of the thorax. The metamorphosis is incomplete.

![Aphis rose](image1)

Fig. 471. — Aphis rose and larva. (From Cuvier's Animal Kingdom.)

This order includes Bugs, Water-bugs, Lice, Scale-insects, Plant-lice (Fig. 471), Cicadas (Fig. 472).

Order 5. — Diptera.

Insects provided (except in the Fleas) with a single pair of transparent membranous wings, representing the anterior pair of other orders. The mouth parts are adapted for piercing and sucking. The prothorax is fused with the other segments of the thorax. There is a complete metamorphosis.

This order includes Fleas, Gnats and Mosquitoes (Fig. 473),
House-flies and Blow-flies, Bot-flies (Fig. 474), Crane-flies, and "Daddy-long-legs."

Order 6.—Lepidoptera.

Insects with both pairs of wings well developed and covered with scales (modified hairs). The maxillae are modified to form...
an elongated sucking tube, which is rolled up spirally; the other parts of the mouth are rudimentary, with the exception of the labial palpi. The prothorax is fused with the mesothorax. The metamorphosis is complete.

This order includes Butterflies (Fig. 475) and Moths.

Order 7.—Coleoptera.

Insects in which the anterior pair of wings take the form of hard horny wing-cases, or elytra, which, when at rest, are folded up along the back and cover over the folded-up membranous posterior wings. The prothorax is movable on the other segments. The jaws are fully developed, and adapted for biting and chewing. The metamorphosis is complete.

This order includes the true Beetles (Fig. 476).

Order 8.—Hymenoptera.

Insects in which both pairs of wings are present and membranous. The mouth parts are adapted both for biting and licking. The prothorax is united with the other segments of the thorax. There is a complete metamorphosis.

Included in this order are Bees (Fig. 493) and Wasps, Ants (Fig. 494), Gall-flies, Ichneumons.

Systematic Position of the Example.

The Cockroach is a member of the order Orthoptera and of the sub-order Orthoptera geminata, which comprises all the members of the order with the exception of the aberrant group of the Ear-wigs (sub-order Dermaptera). Of the Orthoptera geminata there are three divisions, the Cursoria, to which the Cockroaches belong; the Gressoria, comprising the Mantidae and Phasmatidae, or Stick- and Leaf-insects and their allies; and the Saltatoria, including the Grasshoppers, Locusts, and Crickets. The division Cursoria comprises the single family of the Cockroaches (Blattidae), characterised by the deflexed head, the flat oval body, the large prothoracic tergum, the long antennae, the three pairs of legs similar, with large coxae entirely covering the sternal surface of the thorax, the five-jointed tarsi, and the presence of anal cerci. Periplaneta belongs to a section of the family distinguished from the rest by the femora being spiny underneath, and by the valvular character of the last sternum in the female.

The exoskeleton of the Insecta (Fig. 477) consists of a chitinous cuticle (cut.), which varies in hardness and thickness in different Insects, and in different parts of the body of the same Insect, but is very rarely calcified. Frequently it presents hexagonal markings; sometimes it is perforated by numerous pores; sometimes it is covered with thin scales; in many cases it is developed into tactile hairs or setae, which may be scattered over the body, or may be located only on certain of the appendages—the antennae, the maxillary and labial palpi, and the tarsi of the legs. In some glands are present in the integument—odoriferous, honey-secreting, or wax-forming glands; poison glands are present in connection with an abdominal sting in certain insects; spinning glands, forming a silky material, are confined to the larvae.

The head presents no trace of segmentation, but the history of its development indicates that it may be looked upon as composed of a prostomium and about five segments, intimately united together. It varies a good deal in shape, but always presents the regions that have already been described in the case of the Cockroach. Sometimes the head is sunk within the anterior part of the thorax; sometimes it is free from the latter; and there may be, as in the Cockroach, a short narrow region or neck, covered with soft skin, supported only by isolated cervical sclerites, intervening between the two on the ventral aspect.

The three segments of the thorax—pro-, meso-, and meta-thorax—are usually firmly united together; but in some Insects the pro-thorax is movable upon the other segments: it is usually the smallest of the three segments. In each the exoskeleton consists of dorsal or tergal and ventral or sternal elements, sometimes separate from one another laterally, sometimes united together in such a way as to form complete rings round the segments. Laterally projecting processes or pleura are sometimes developed.

The abdomen contains from seven to eleven segments, enclosed in tergal and sternal shields. In some Insects the first abdominal segment is united with the thorax so as to appear to belong to the latter region.

The appendages of the head are four pairs, as in the Cockroach; but a considerable variation is observable in the different orders, especially as regards the jaws. In a few eyes are absent. Most have large compound or faceted eyes, and many have simple eyes or ocelli as well; in a few groups the latter are alone present.
The antennæ vary in shape in different groups, and sometimes even in the sexes of the same species. They are sometimes tapering, sometimes moniliform, sometimes club-shaped, sometimes pectinate, sometimes plume-like. In addition to functioning as tactile appendages they bear the olfactory setæ. The mandibles are always one-jointed, and differ from those of the Crustacea in never being provided with a palp. An arrangement of the mouth-parts adapted for biting or chewing has already been described in the case of the Cockroach. This type is characteristic of the order Orthoptera, to which the Cockroach belongs, and a very similar type characterises the Coleoptera. In the Hymenoptera (Fig. 478) the mouth parts are adapted both for biting and for licking and sucking: the mandibles (md.) and maxillae (mx.1.) are sharp and lancet-like, the middle part of the labium is produced into a long median tongue (ligula, li.) at the sides of which are a pair of accessory tongues or paraglossæ (p.1.). In the Hemiptera there is a proboscis formed from the labium enclosing the stylet-like mandibles and maxillæ. In the Diptera (Fig. 479) the mandibles (md.), usually not developed in the males, are biting or piercing organs, while the basal parts of the labium form a proboscis (mx.2.) enclosing a spine or seta (hp.), which is a process from the hypopharynx—a chitinous process on the roof of the mouth, and sometimes stylet-like maxillæ (mx.1.). In the Lepidoptera (Fig. 480) the mandibles are aborted in the adult, and the maxillae are developed into elongated half-tubes, which when applied together form a greatly elongated tube (sr.) capable of being coiled up in a spiral manner under the head, the extremity
provided with hooks or spines for rupturing the nectaries of flowers.

Appendages of the thorax.—Each of the segments of the thorax bears a pair of five-jointed legs; the terminal section or tarsus being made up of a number of short segments and ending in a pair of claws, often with an adhesive pad or sucking disc between them. In accordance with differences in the uses to which they are put, considerable differences are observable in the form of the legs in different groups of Insects. In most they are adapted for walking, and are long and slender; in some they are expanded to enable them to act as swimming paddles; in some the first pair are prehensile, and develop a sub-chelate extremity; in others again the legs, or the first pair of them, are stout and adapted for burrowing. In addition to the legs the meso- and meta-thorax may each bear a pair of wings. The wings are thin transparent expansions of the integument of the body, supported by a system of branching ribs or nerves consisting of chitinous material with branches of the tracheae, nerves, and tubular diverticula of the body cavity. In most Lepidoptera the wings are opaque, owing to their being covered with numerous overlapping microscopic scales, to which the various colours of the wing are

![Fig. 479.—Mouth parts of the Diptera. A, of Tabanus; B, of Culex. Lettering as in preceding figure; oc. ocellus. (From Lang.)](image-url)
due. In some Insects—e.g. Beetles and Orthoptera—the posterior wings alone are delicate and membranous, the anterior pair being converted into hard or tough cases—the elytra—which, when folded up cover over and protect the delicate posterior wings. In some Beetles the elytra are permanently united together along the back of the Insect. In some Insects (Bugs) the anterior wings are chitinous at the bases only. In the Diptera the anterior wings alone are developed, the posterior being represented by vestiges—the halteres or balancers. In the Strepsiptera, or Bee-parasites, an aberrant group of Neuroptera, on the other hand, it is the anterior pair that are rudimentary. In some Insects (Spring-tails, Lice, Fleas) wings are entirely absent in all stages. In others again they are present in one sex—usually the male—and absent in the other. In the Aptera there is no vestige whatever of wings at any stage, and this, taken in connection with the simplicity of the structure in other respects, seems to indicate that in these Insects we have to do with the descendants of a primitive group in which wings had not yet become developed.

The segments of the abdomen are entirely devoid of paired appendages in the adult condition (except in the Thysanura), though vestiges of them may be present in the young at an early stage. Each segment is enclosed in dorsal tergal and ventral sternal plates, which usually remain separate laterally, but may be united. At the extremity of the abdomen there are frequently appendages which are perhaps of the nature of limbs, having the function of stings, ovipositors, and genital processes.

Hæmocœle.—The cavity intervening in an Insect between the body wall and the various internal organs does not correspond as already explained (p. 576) to the celome of other groups; but is
found when we study its mode of development, to be a **haemocoele**—an extended part of the blood-vascular system. The coelome is apparently represented only by the lumen of the reproductive organs.

A **fat body** is always present, either in the larval condition or throughout life. It consists of a mass of polygonal cells bounding the haemocoele externally. When young the cells are nucleated and possess a protoplasmic body. At a later stage a fluid loaded with minute granules takes the place of the protoplasm, and crystals containing uric acid are formed; these crystals afterwards become absorbed; their appearance and subsequent absorption would seem to point to the probability that the fat body is concerned in the separating out of nitrogenous waste matters, subsequently to reach the exterior through the Malpighian tubes.

Digestive system.—Some Insects do not feed in the adult condition, and when this is the case the mouth may be absent, as for example is the case in the Day-flies (*Ephemerae*). When a mouth is developed, as it is in the vast majority of Insects, it is situated on the lower aspect of the head, bounded in front by the labrum, and behind by the labium. It leads into the buccal cavity, into which open the ducts of a pair of **salivary glands**, each of which often has associated with it a thin-walled sac or **salivary receptacle**. Also in the neighbourhood of the mouth open, in such larval Insects as spin a cocoon, the ducts of a pair of **spinning glands**. A projection of the roof of the mouth cavity (**epipharynx**) is present in some Insects; in others it is replaced by a projection from the floor, the *hypopharynx* or *lingua*.

The alimentary canal is nearly always considerably longer than the body; it is longer in vegetable-feeding than in carnivorous forms. The mouth leads into a long, narrow passage—the *oesophagus* (ce) (Figs. 481 and 482)—which dilates behind into a **crop** (in.) for the storage of food. The place of this in sucking Insects is taken by a stalked sac, usually termed the **sucking stomach**. The essential
processes of digestion are carried on in an elongated chamber with glandular walls—the *chyle stomach* or *chylific ventricle* (cd)—which may be divided into several parts. Sometimes between the crop and chyle stomach is intercalated a muscular-walled chamber, frequently containing chitinous teeth, the *procventriculus* or *gizzard* (pr.). Appended to the chylific ventricle at its anterior end are, in many Insects, a number of tubular blind pouches, the *hepatic caeca*. At its junction with the small intestine, or further back, there open a number (from 2 to over 100) of narrow tubular appendages, the *Malpighian tubes* (cm.), which are the organs of renal excretion. In the cases in which the development of the alimentary canal has been traced, it has been found that the Malpighian tubes mark the point where the mesenteron passes into the proctodaeum, and it is assumed that this holds good generally. The lumen of the tubes is sometimes filled up with cells. In some insects, the Malpighian tubes open into a paired or unpaired sac—the *urinary bladder*. The intestine is usually elongated, its posterior portion (cd.) is dilated to form a wide *rectum* (r.), which opens on the exterior by an anal aperture situated on the ventral side of the last segment of the abdomen. *Anal glands* (ad.), producing an odoriferous secretion, often open into the rectum.

The *tracheal system* (Fig. 482) communicates with the exterior through a number of apertures—the *stigmata* (st.)—which vary in the details of their arrangement in the different orders.
They are always protected against the entry of foreign particles by some means—either by being surrounded by special bundles of hairs, or by being closed in by a special sieve-like membrane. In all cases they are capable of being closed by muscular action. In some Insects, mainly those adapted for active flight, such as the Hymenoptera, the tracheal system is dilated in certain parts of the body to form comparatively large air sacs or air reservoirs (tb.). In the aquatic larvae of some Insects there is a series of soft external, simple or divided, processes—the tracheal gills (Figs. 483)—attached to the abdominal segments, and richly supplied with trachea, which have no communication with the exterior.

The blood-vascular system is, in comparison with the other systems of organs, not very highly developed, the need of an elaborate system of vessels being greatly diminished by the way in which all the tissues and organs are supplied with oxygen through the system of tracheae. The blood is colourless or faintly yellowish or greenish, and contains colourless corpuscles. A contractile dorsal vessel or heart (Fig. 484) extends through the abdomen, immediately below the terga. Its cavity is divided internally into a series usually of eight chambers by a system of valves. In its walls are a series of slits or ostia, by which a communication is effected between the internal cavity and a surrounding pericardial sinus. In front the heart gives origin to a main vessel, or aorta (a), by means of which the blood is conveyed throughout the body to enter a system of sinuses in free communication with the general body cavity, from the various parts of which it finds its way back to the pericardial sinus.

The nervous system (Figs. 482 and 485) is on the same general plan as in the Crustacea. There is a double supra-esophageal...
ganglion or brain, a sub-oesophageal ganglion, also double, and a series of thoracic and abdominal pairs of ganglia, which are closely united together in the middle line. The brain is relatively large in the higher Insects, and is divided into several lobes. It gives off nerves to the antennae and ocelli and the labrum, and on each side it gives off a large lobe—the optic ganglion—on which the compound eye rests. A pair of oesophageal connectives pass backwards on either side of the mouth from the brain to the sub-oesophageal ganglia. These connectives are very short, and, as a consequence, the brain and sub-oesophageal ganglia are closely approximated. From the

Fig. 485.—Nervous systems of four species of Diptera to illustrate various degrees of concentration. A, non-concentrated nervous system of Chironomus plumosus with three thoracic, and six abdominal ganglia; B, nervous system of Empis stercorea with two thoracic and five abdominal; C, nervous system of Tabanus bovinus, with one thoracic ganglion and with the abdominal ganglia closely approximated; D, nervous system of Sarcophaga carnaria, with all the ganglia of the ventral chain united together with the exception of the sub-oesophageal. (From Lang’s Comparative Anatomy.)

latter there originate nerves to the appendages of the mouth—the mandibles and two pairs of maxilla. There are sometimes three pairs of thoracic, and as many as eight of abdominal ganglia in the adult insect; but in many cases there is a greater or less degree of concentration of the ventral ganglionic chain (Fig. 485), and in some of the Diptera this reaches such an extreme that all the ventral ganglia, with the exception of the sub-oesophageal, are united into one continuous elongate mass. The Insects, like the higher Crustacea, possess a visceral or sympathetic nervous system, connected with the oesophageal connectives and passing backwards on the oesophagus and crop.

The most highly-developed organs of special sense are the
large compound eyes. The surface of the compound eye is marked out, as in the case of the Crayfish, into a great number of minute hexagonal facets, each of which represents one of the elements (ommatidia) of the eye. Of these there may be as many as 28,000 (dragon-fly). When the eye is examined in section, each ommatidium is found to consist of a cornea-lens, the outer surface of which forms the facet, a crystalline cone, and a rhabdome. The crystalline cone is not always developed, its place being taken in the eyes of some Insects by four crystal cells. The rhabdome is an elongated rod. Beneath the rhabdomes is a fenestrated membrane, beneath which again is a dense plexus of nerve-fibres. Nerve-fibres pass through the fenestrated membrane and terminate in a delicate sheath which incloses each rhabdome, the sheath, together with the nerves that end in it, constituting the retinula. Pigment surrounds the crystalline cones and retinulae.

The ocelli, or simple eyes (Fig. 486), consist of a bi-convex transparent thickening of the cuticle—the lens—and beneath it of a group of specially modified epidermal cells. Of these, some, situated beneath the lens, form a transparent mass, the vitreous body; another set of elongated cells being arranged to form the retina.

The antennae and palpi are the organs of touch, and these appendages seem to be also the seat of the olfactory sense. A number of minute processes sometimes sunk in pits, and each having a special nerve-plate connected with it, are regarded as being specially concerned with this sense, and similar processes or pits on the maxillae and the epipharynx, are perhaps connected with the sense of taste.

Peculiar nerve-endings, supposed to be auditory, have been found in the most various parts of the body. Each consists of a ganglion-cell (Fig. 487, gz.) giving off a process which is inclosed in an elongated tube, and which ends externally in a slender rod (se.). Groups of these are associated together to form the auditory organ.

In certain Insects—the Fireflies and Glowworms—belonging to the order Coleoptera, there occur organs—the luminous organs—for the production of light.
Sounds are emitted by many Insects, and are produced by a variety of different means. Often the sound is the result of the rubbing together of opposed rough surfaces of the integument. The chirp of the Grasshopper, for example, is produced by the rubbing of the femur of the last pair of legs over a series of ridges in the anterior wing, and that of the Locust by the rubbing against one another of the roughened basal parts of the first pair of wings. In other cases the sound results from the rapid vibratory movement of the wings; this is the case with the buzzing of many Diptera and Hymenoptera. Again, the humming sounds characteristic of many of the last-named order are produced partly by the vibrations of the wings in flight, partly by the vibration of leaf-like appendages in the tracheae, set in motion by strong expiratory currents of air. The loud shrill note of the Cicada is produced by the rapidly recurring contractions of the fibres of a muscle inserted into a stiff chitinous membrane, the result being a series of crackling sounds, which follow one another so rapidly as to give rise to a continuous note.

Reproductive organs.—The sexes are always separate in Insects, as in Arthropoda in general; and the males and females are very commonly distinguishable from one another by various modifications of form and of coloration. There are two ovaries each of which consists of a greater or smaller number of narrow tubes or ovarioles; in each of these the ova are arranged in a single row: the early stages in their formation being situated at the anterior end, the more mature ova towards the posterior extremity. Each group of ovarian tubes opens into a lateral oviduct, and the two lateral oviducts, right and left (Fig. 488. A, ed.), unite behind to form a median oviduct or vagina (eg.), which opens on the second last segment of the abdomen. Connected with this median oviduct, or opening close to it, are receptacula seminis (rs.) and collateral or cement glands (sd.). Usually there is a copulatory sac, or bursa copulatrix (vva.). In the male the paired testes (B, t.) consists each of one or more long narrow tubes, which, when more than one are present, unite into a vas deferens (B, ed.), the two
vasa deferentia uniting to form a median ejaculatory duct. A vesicula seminalis is appended to each vas deferens or to the ejaculatory duct. Accessory glands, opening into the vas deferens or the ejaculatory duct, secrete cementing material for uniting the sperms into masses, the *spermatophores*. In most instances the eggs are laid shortly after their fertilisation, only a few forms, such as the *Aphides* or Plant-lice, many Diptera, and some Coleoptera, being viviparous. Some Insects, such as the Aphides and Bees and Wasps, as well as some Lepidoptera and Neuroptera, present us with the unusual phenomenon of parthenogenesis; *i.e.* ova are formed, as in ordinary female insects, in organs corresponding to the ovary of the latter, and these are developed without fertilisation. In the case of the Aphides, an autumn generation of completely developed males and females is followed by a spring generation consisting entirely of females; these are both parthenogenetic and viviparous. In the Bees, the workers (imperfectly developed females) occasionally produce ova which, without fertilisation, develop into drones (males). In one or two groups, including the Scale-Insects (*Coccidae*) and Gall-Insects (*Cynipidae*), males are never developed, so that reproduction is exclusively parthenogenetic. *Parthenogenesis* accompanies parthenogenesis in certain Diptera; *i.e.* the larvae produce ova and embryos without impregnation.

The *eggs* when laid are protected from injury by a number of methods; they may be firmly fixed to the substratum, buried in

Fig. 488.—*A*, female sexual apparatus of the *Honey-bee*; *od*, accessory glands; *vd*, common ejaculatory duct; *pl*, poison glands; *gb*, poison vesicle; *ks*, bulb of the stinging apparatus; *ad*, rectum, twisted back and cut off; *nva*, accessory sac of the vagina (bursa copulatrix); *ov*, ovotestis; *p*, penis; *rs*, receptaculum seminis; *ml*, colleterial gland; *t*, testes; *vg*, vagina; *vd*, sperm ducts. (From Lang's *Comparative Anatomy*.)
the earth, or laid in the interior of certain plants or even of animals. The deposition of the eggs, by means of ovipositors, in the leaves or other parts of plants gives rise to swellings—the so-called galls, in the interior of which the young Insects live. In the case of many Insects the eggs are enclosed in a cocoon; in others they are enclosed in gelatinous or waxy material. The eggs are, for the most part, of relatively considerable size. In form they vary, but the long oval prevails in most instances. The ripe egg is enclosed in two egg-membranes—an inner, the vitelline membrane, produced by the egg itself, and an outer, the chorion, formed from the follicle cells. The chorion, which usually exhibits a more or less elaborate pattern, has one or more apertures or micropyles for the entry of the sperm. The contents are distinguishable into two layers—a superficial, consisting of protoplasm, and a central, of nutrient yolk.

Development.—The segmentation is usually of a type already referred to (p. 551) as very common among the Crustacea, viz., the superficial segmentation. The actual segmentation (Fig. 489) has only been observed in the case of certain Insects with very little yolk; but there can be very little doubt that in ordinary forms with abundant yolk the process is in essence the same. The segmentation-nucleus, originally situated near the middle of the ovum, divides into a number of nuclei, and most of these migrate towards the surface, and arrange themselves in the form of a sphere almost parallel with the latter; eventually they reach the surface and coalesce with the peripheral protoplasm, which then becomes divided into cell-areas corresponding with the nuclei.
The layer of cells thus formed constitutes the blastoderm. This thickens along one side to form the ventral plate, as already described in the case of the Cockroach (p. 581), and the changes which this structure undergoes, together with the mode of formation of the appendages, are similar in most members of the class. The same holds good of the formation of the amnion and the development of the endoderm. In some cases there is developed between the serosa and the true amnion a space filled with yolk, and the ventral plate appears sunk within the yolk. The nervous system is developed from the ectoderm in the manner indicated in the account of the development of the Cockroach (p. 582). The tracheal system is derived from a series of pairs of segmentally arranged ectodermal involutions (Fig. 492, st.).

Metamorphosis. — In some instances the young Insect, when it escapes from the egg-membranes, has exactly the form of the parent, except that, as a rule, the wings have not yet grown. But in most cases there is a metamorphosis. In some this is comparatively slight and gradual, the adult Insect differing from the larva only in comparatively unimportant points, and the segments and appendages of the latter becoming directly converted into those of the former. Such a metamorphosis, in which there is no quiescent stage, is said to be incomplete. The term complete
is applied to the metamorphosis of the majority of Insects, in which the larva differs so completely from the imago, or perfect adult.

Fig. 491.—A—E, ventral view of five stages in the development of *Hydrophilus*; a and b, points at which the blastopore first closes; af, edge of the amnion fold; af', caudal fold; af'', paired head fold; an, antenna; a, terminal segment; g, pit-like invagination to form the rudiment of the amnion cavity; k, procephalic lobes; s, groove-like medio-ventral invagination; t, germinal bands covered by the amnion. (From Lang, after Heider.)

Insect, in external form, the nature of the appendages, and the internal organisation, that there is need of a quiescent or *pupa*...
stage, during which the whole animal, or a considerable part of it, undergoes an entire transformation. The metamorphosis is complete in the Diptera, Lepidoptera, Coleoptera, and Hymenoptera, absent or incomplete in the other orders. In the most lowly organised larvae (many Diptera) the body of the larva or “maggot” is completely worm-like, without any appendages, and without any distinct head. In other cases (Lepidoptera, &c.), there is a distinct head; the three thoracic segments have three pairs of jointed legs, and the abdominal segments short unjointed pro-legs (Fig. 475). In most instances the larvae differ widely from the adults in their food and mode of life; very generally the jaws are adapted for biting, even when the mouth of the adult is suckorial. After a longer or shorter period passed in this larval condition, in which it is usually active and very voracious, the young Insect passes into a quiescent or pupa condition, during which it remains passive, enclosed in a tough integument, while a more or less complete reconstruction of the organs goes on, resulting in the development of all the parts of the perfect Insect. The development of the new parts takes place from certain patches of cells, the imaginal discs, present in the larva.

In the Diptera the larva or maggot is sometimes completely devoid of jaws. In some Diptera, however, the jaws are well developed, and there is a distinct head. After frequent moultings the maggot passes either into a quiescent or pupa stage inclosed in a hard skin, or into the stage of an active aquatic pupa, which swims about actively in water and may possess tracheal gills.

In the Lepidoptera the larvae (“caterpillars”) are worm-like, but with well-developed jaws, three pairs of jointed thoracic legs, and a number of unjointed stumpy abdominal legs. Lepidopterous larvae are often brilliantly coloured, and are very active, and feed with voracity, chiefly on leaves and other succulent parts of plants. Eventually they spin a cocoon of a silky substance, inclosed within which, and covered with a tough skin, they pass through a quiescent or pupa condition—the condition of the chrysalis (Fig. 475). From the interior of this the imago subsequently emerges with all the parts of the adult Insect fully formed.

In mode of life there is a very considerable difference between different orders and families of Insects. Some are parasites in the strict sense throughout life. This is the case, for instance, in the Strepsiptera (Bee-parasites), the females of which live permanently ensconced between the joints of the abdomen of their hosts. The Lice and Bird-llice are external parasites throughout life; Bugs and Fleas, though not adhering to their hosts, are parasites as regards their diet. Many Insects are parasites in the larval condition, though free in the adult state. This holds good, for example, of the larvae of the Ichneumons, which develop in the interior of the bodies of other insect-larvae; also of the larva of the Bot-flies
(Fig. 474), which inhabit the alimentary canal of mammalian hosts (Horses, Oxen, Sheep, Rhinoceroses, Tapirs).

In accordance with the high grade of the structure of their various systems of organs, Insects exhibit a correspondingly high degree of functional activity. The quantity of food consumed and assimilated is great in comparison with the bulk of the body, and the energy expended in muscular contractions is of very considerable amount. It is estimated that while the muscular force exerted by a Horse bears a ratio of about 0.7 to its own weight (reckoned as 1) the muscular force of an Insect bears a ratio to its weight of from about 14 to about 23. Insects are also distinguished among the Invertebrata by the keenness of their senses. The sense of sight is, as we should expect from the elaborate character of the optic organs, the most highly developed, many Insects having been shown by experiment to have a keen sense of colour; but a sense of smell, the seat of which is in the antennae, can be shown to exist in a high degree, and the parts about the mouth bear nerve-endings concerned in a well-developed sense of taste. A sense of hearing does not appear to be universally present, but is well marked in such forms as produce sounds. At the same time Insects are remarkable for the instincts, often leading to results of an elaborate character, which guide them in the pursuit of food and the protection and rearing of their young. Among the insects which are the most highly endowed in this respect are some—the Ants, Bees, Wasps, and Termites—which live together in organised associations or communities, the various individuals composing which are distinguishable into sexual individuals, neuter workers, and soldiers (Figs. 493 and 494), each specially organised for the part which it has to play in the economy of the community.
Distribution in Time.—The earliest known fossil remains of Insects have been found in rocks of Silurian age. A good many fossil Insects have been found in the Devonian; but they only become abundant in the Carboniferous. All the palæozoic Insects belong to a group which has been regarded as a distinct order, and has been named the *Paleodictyoptera*. The members of this group are characterised rather by the absence of the special characteristics of any of the existing orders than by any positive features of their own; but different families of the order approximate to a certain extent towards the groups of living Insects. Amongst them, for example, are forms representing the Cockroaches and the Phasmidae among the Orthoptera; others representing the modern Day-flies among the Neuroptera; others the Coleoptera.

Of the existing orders the Neuroptera, Orthoptera, and Coleoptera are first found in the Trias: the Hemiptera, Diptera, Hymenoptera, and Lepidoptera in the Jurassic.

CLASS V.—ARACHNIDA.

The class *Arachnida*, comprising the Scorpions and Spiders, the Mites and Ticks, the King-crabs, and a number of other families, is a much less homogeneous group than the Insecta, approaching the Crustacea in the variety which it presents in the arrangement of the segments and their appendages. In most members of the class, however, there is an anterior region of the body—the cephalothorax—representing both head and thorax, and a posterior part, or abdomen, which is typically composed of a number of distinct segments; in some cases cephalothorax and abdomen are amalgamated. There are no antennæ in the adult Arachnid, though rudiments of them have been found in the larvæ of some species. The first pair of appendages of the cephalothorax (probably representing the antennæ of the Crayfish) are the cheliceræ; the second are the pedipalpi, the representatives of the Crayfish’s and Cockroach’s mandibles. Behind these are four pairs of legs. The organs of respiration are sometimes tracheæ, similar to those of the Insects, sometimes book-lungs or sacs containing numerous book-leaf-like plates: sometimes leaf-like external appendages or gills.

1. Example of the Class.—The Scorpion (*Euscorpio* or *Buthus*).

Scorpions are inhabitants of warm countries—the largest kinds being found in tropical Africa and America. They are nocturnal animals, remaining in holes and crevices during the day, and issuing forth at night to hunt for their prey, which consists of
Spiders and Insects. These they seize with their pincer-claws and sting to death with their caudal spine, afterwards sucking their juices.

There are a number of different species of Scorpions, divided into several genera, which differ from one another in comparatively unimportant points, so that the following general description will apply almost equally well to any of them.

External features.—A Scorpion (Fig. 495) has a long narrow body, in superficial appearance not unlike that of a Crayfish. There is a small cephalothoracic shield or carapace, covering over

dorsally a short anterior region or cephalothorax. This is followed by a long posterior region or abdomen, the terminal part of which in the living animal is habitually carried over the back (Fig. 498), constituting the "tail," at the end of which the sting is placed. The carapace bears a pair of large eyes about its middle, and several pairs of smaller eyes on the antero-lateral margin. The anterior, broader part of the abdomen, which is termed the pro-abdomen, consists of seven segments, each of which is enclosed in firm, chitinous, dorsal and ventral plates, or terga and sterna. The tergum and sternum of each segment are separated from one another laterally by intervals of soft skin, except in the seventh,
where they are united laterally for a longer or shorter distance. The posterior, narrower part of the abdomen, known as the post-abdomen, consists of five segments, each enclosed in a complete investing ring of hard chitinous matter. Articulating with the last segment of the post-abdomen is a terminal appendage, the caudal spine or sting, swollen at the base and acutely pointed at the apex, where open the ducts of two poison-glands. The anal opening is situated on the ventral surface of the last segment of the post-abdomen, immediately in front of the sting.

The aperture of the mouth, which is very small, is at the anterior end of the cephalothorax on its ventral aspect; a lobe which overhangs it in front is the labrum. On each side of the mouth is a three-jointed appendage—the chelicera (Fig. 496, chel.)—which is terminated by a chela. Behind these are the very large pincher-claws or pedipalpi (ped.), each composed of six podomeres and terminating in powerful chela. The basal joint of each pedipalp has a process which bites against the corresponding process of the other pedipalp, these processes thus performing the function of jaws. Following upon the pedipalpi are four pairs of walking legs, each composed of seven podomeres, the last of which is provided with curved and pointed horny claws. The basal segments of the first two pairs of walking legs are modified so as to perform to some extent the function of jaws.

All the six pairs of appendages hitherto described—the chelicerae, the pedipalpi, and the four pairs of walking legs—belong to the cephalothorax. The first segment of the pre-abdomen (Fig. 496) has a narrow sternum, on which there is placed a soft rounded median lobe divided by a cleft; this is termed the genital operculum (op.); at its base is the opening of the genital duct. To the sternum of the second segment of the pre-abdomen are attached a pair of remarkable appendages of a comb-like shape—the pectines (pect.)—each consisting of a stem, along the posterior margin of which is a row of narrow processes, somewhat like the teeth of a comb; the function of these appendages is doubtful, but is probably sensory. The remainder of the segments of the pre-abdomen, and all those of the post-abdomen, are devoid of appendages. The sterna of the third, fourth, fifth, and sixth segments of the pre-abdomen, which are very broad, bear each a pair of oblique slits—the stigmata (stig.)—leading into the pulmonary sacs.

In the interior of the cephalothorax, over the nervous system, is a cartilaginous plate—the endosternite (Fig. 497)—which serves to give attachment to muscles, and is comparable to the cephalic apodeme of Apus (p. 491).
All the appendages of the Scorpion are post-oral in position, and the most anterior—the chelicerae—are probably best regarded as corresponding to the antennæ of the Crayfish, the equivalent of the Crayfish’s antennules and of the antennæ of the Cockroach not being present. The pedipalpi would then be the homologues of the mandibles of the Insect and the Crustacean.

<table>
<thead>
<tr>
<th>Crayfish</th>
<th>Cockroach</th>
<th>Scorpion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antennules</td>
<td>Antennæ</td>
<td>Absent.</td>
</tr>
<tr>
<td>Antennæ</td>
<td>Mandibles</td>
<td>Chelicerae.</td>
</tr>
<tr>
<td>Mandibles</td>
<td>First maxille.</td>
<td>Pedipalpi.</td>
</tr>
<tr>
<td>First maxille.</td>
<td>Second maxille.</td>
<td>First legs.</td>
</tr>
<tr>
<td>Second maxillipedes</td>
<td>Second legs.</td>
<td>Third legs.</td>
</tr>
<tr>
<td>Third maxillipedes</td>
<td>Third legs.</td>
<td>Fourth legs.</td>
</tr>
</tbody>
</table>

Digestive system.—The narrow mouth leads into a large chamber with elastic walls, the pharynx; this is capable of being greatly dilated by the action of a number of radiating bundles of muscular fibres, which run outwards from it to the walls of the cephalothorax, the result of this being to cause suction through the mouth, by which means the juices of the Scorpion’s prey are drawn in. A second dilatation, to which a narrow oesophagus leads, receives the ducts of a pair of salivary glands (Fig. 499, sal. gld.). Upon this follows the mesenteron (meson.), which is an elongated, wide, straight tube, with glandular walls, corresponding to the chylific ventricle of the Insect. Opening into the mesenteron are five pairs of narrow tubes (Figs. 498 and 499, hep. du.) leading into the substance of a large glandular body, usually termed the liver (hep.), though its hepatic functions are doubtful. The proctodaeum (proct.) is a short, narrow passage; into it there open two delicate tubes—the Malpighian tubes (mul.)—which act as the organs of renal excretion.

Circulatory organs.—An elongated tubular heart (Fig. 498, hrt.) lies in the pre-abdomen enclosed in a pericardial sinus; it is divided internally into a series of eight chambers by transverse partitions; into each of these chambers the blood passes by a pair of valvular apertures or ostia. The heart ends both in front and behind in main arteries or anterior and posterior aorta (ant. art., post. art.); and a series of pairs of lateral arteries are given off from the various chambers. The anterior aorta (truncus arteriosus) soon bifurcates to form a pair of vessels which embrace between them the oesophagus, and meet below in a median ventral trunk which runs backwards above the nerve cord. The blood carried to the various parts of the body by the arteries is gathered up into a large ventral sinus from which it passes to the book-lungs. From
these it is carried by a series of veins to the pericardial sinus to enter the heart through the ostia.

The organs of respiration in the Scorpions are in the form of pulmonary sacs or book-lungs (pul.), the stigmata or external openings of which have already been referred to. Each pulmonary sac is a compressed chamber lined with a thin cuticle. The lining membrane is raised up into numerous delicate laminae lying parallel with one another like the leaves of a book. Into the
numerous narrow spaces between the laminae the air penetrates, and oxygenates the blood which enters the interior of the laminae from the ventral sinus.

A pair of **coxal glands**, situated near the base of the fifth pair of appendages, are, in the embryo Scorpion, represented by tubes which, like nephridia, effect a communication between the body-cavity and the exterior; in the adult Scorpion the tube assumes the form of a closed gland, and its function is quite uncertain.

The **nervous system** is constructed on a plan which bears a considerable resemblance to that of the Crayfish and that of the Cockroach. There is a bilobed cerebral ganglion or **brain** (Fig. 498, *brn.*) from which nerves are given off to the eyes: a nerve collar formed of a pair of **oesophageal connectives** unites ventrally in a **sub-oesophageal ganglion**, forming the anterior part of a ventral nerve cord (*ne. co*). The connectives and sub-oesophageal ganglion give rise to the nerves, to the first six pairs of appendages, and to the operculum, the pectines, and the two following segments. The first ganglion in the nerve cord appears in the eleventh segment (reckoning the cephalo-thorax as made up of six); behind which a ganglion appears regularly in each segment as far back as the fourth of the post-abdomen.

The **organs of special sense** are the **eyes** and **pectines**. The lateral eyes (Fig. 518) are similar in character to the simple eyes or ocelli of Insects. The two larger central eyes (Fig. 519) differ from them in having the retinal cells arranged in groups as in the compound eye, but resemble them in the presence of a single cuticular lens.

Reproductive organs.—In the male the **testes** consist of two pairs of longitudinal tubules united by cross branches. These are connected with a median **vas deferens**, the terminal portion of which, provided with **accessory glands**, is modified to form a double penis: its external opening is just behind the operculum as already noticed. There is an unpaired **ovary**, which is made up of
three longitudinal tubules with transverse connecting branches; the oviducts open on the operculum.

Scorpions are viviparous. The eggs, which are spherical or oval, and in most species contain a large amount of food-yolk, lie in a follicle formed of a diverticulum of the oviduct. Fertilisation either takes place in the follicle or after the egg has escaped into the oviduct. The further development takes place in the oviducts and, when born, the young Scorpion differs from the parent very little save in size.

Development.—The segmentation is of the type to which the term discoidal is applied. On one side are formed a number of cells in the form of a one-layered disc or cap, which gradually spreads over the yolk. On this appears a thickening—the ventral plate (Fig. 500) corresponding to that of the Insect. A longitudinal groove which appears on the surface of this may be regarded as representing an elongated blastopore (Fig. 500, A). The cells of the blastoderm of the ventral plate become divisible into three layers—ectoderm, endoderm, and mesoderm. The mesoderm becomes divided into a series of masses which become hollowed out to form the primitive segments (B) and their cavities. Embryonic membranes—serosa and amnion—are formed as in the Insects. When about ten segments have become distinguishable, the rudiments of appendages (Fig. 500 C, and Fig. 501) appear in the form of hollow processes of the segments on either side of the middle line. Behind the
rudiments of the thoracic limbs appear a series of six pairs of abdominal appendages (ap. II.—VI.); the place of the first of these is afterwards taken by the operculum; the second develops into the pectines. The four posterior pairs become aborted, though they apparently have some relation to the development of the book-lungs.

2. DISTINCTIVE CHARACTERS AND CLASSIFICATION.

The Arachnida are air-breathing Arthropoda, in which the body is usually distinguishable into two regions—cephalothorax and abdomen. The cephalothorax bears sessile, usually simple, eyes, two pairs of jointed appendages—the chelicerae and pedipalpi—and four pairs of legs. There are no antennae. The organs of respiration, when present, are usually either tracheæ or book-lungs, but in the Xiphosura take the form of book-gills. Heart and vascular system are usually present; the heart is tubular, like that of the Insects. The sexes are nearly always separate, and there is usually no metamorphosis.

The class is divided into the following orders:

ORDER 1.—Scorpionida.

Arachnida in which the body consists of a continuous cephalothorax and an abdomen, the latter consisting of an anterior broader pre-abdomen of seven segments, and a posterior, narrower post-abdomen of five, with a caudal spine in the form of a sting. There are small chelate chelicerae and large chelate pedipalpi. A pair of comb-like pectines occur on the second segment of the pre-abdomen. The organs of respiration are four pairs of book-lungs in the third, fourth, fifth and sixth segments of the pre-abdomen.

This order includes the Scorpions.

ORDER 2.—Pseudoscorpionida.

Arachnida in which there is a continuous cephalothorax, sometimes marked dorsally with two transverse grooves, and a broad abdomen, not divided into pre- and post-abdomen, and not provided with a sting. The chelicerae are very small, the pedipalpi similar to those of the Scorpions. The organs of respiration are a system of tracheæ. A pair of spinning glands are present.

This order includes the Book-scorpions (Fig. 502).

ORDER 3.—Pedipalpida.

Arachnida in which the body consists of unsegmented cephalothorax and flattened abdomen of eleven to twelve segments. The chelicerae are simple, the pedipalpi simple or chelate, the first
pair of legs terminate in a many-jointed flagellum. The organs of respiration are two pairs of book-lungs on the second and third segments of the abdomen.

This order includes the Scorpion-spiders (Fig. 503).

Order 4.—Solpugida.

Arachnida with three regions—head, thorax (of three segments), and abdomen (of ten segments). The chelicerae are chelate; the pedipalpi elongated and leg-like. The organs of respiration are tracheae.

This order includes *Galacodes* (Fig. 504).

Order 5.—Phalangida.

Arachnida with an unsegmented cephalothorax, and an abdomen of six segments. The chelicerae are chelate, the pedipalpi leg-like. The organs of respiration are tracheae. No spinning glands are developed.

This order includes the Harvest-men.

Order 6.—Araneida.

Arachnida in which the body is composed of an undivided cephalothorax and an unsegmented abdomen, which is usually soft and rounded, and attached to the cephalothorax by a narrow neck. The chelicerae are sub-chelate, with poison glands: the pedipalpi simple. The organs of respiration are book-lungs alone, or book-lungs combined with tracheae.

This order comprises all the true Spiders (Fig. 505).

Order 7.—Acarida.

Arachnida in which the body exhibits no division into regions. The mouth-parts are adapted either for biting or piercing and sucking. The organs of respiration, when present, are in the form of tracheae.

This order includes the Mites and Ticks (Figs. 508 and 509).

Order 8.—Xiphosura.

Arachnida in which the body consists of a cephalothorax, covered over by a broad carapace, and an abdomen of seven firmly united segments, with a long narrow tail-piece or telson. The cephalothorax bears a pair of short chelate appendages and five pairs of legs. The abdomen bears in front a pair of united plate-like appendages, forming the operculum, followed by five pairs of flat appendages overlapped by the operculum. The organs of respiration are lamelliform gills attached to the abdominal appendages.

This order includes the King-crabs (*Limulus*) (Fig. 510).
Order 9.—Eurypterida.

Arachnida with a relatively small cephalothorax, followed by twelve free segments and a terminal, elongated, narrow telson. There are a pair of pre-oral leg-like or chelate appendages and four more leg-like appendages on the cephalothorax, the last expanded to form swimming paddles. A broad operculum is situated immediately behind the cephalothorax. There are pairs of lamellate appendages on certain of the anterior free segments. The exoskeleton is characteristically sculptured.

This order includes only a number of extinct (Palaeozoic) forms of large size (Fig. 512).

The external form in the Scorpionida has already been sufficiently described. Most nearly related to that order in this respect are the Pseudoscorpionida or Book-scorpions and their allies. In these (Fig. 502) there is an unsegmented cephalo-thorax, or the carapace is crossed by two transverse grooves which may indicate segmental divisions. There is a broad abdomen consisting of eleven, or more rarely ten, segments; the post-abdomen is not represented, nor the caudal sting. The chelicerae are small; the pedipalpi are large, and resemble those of the Scorpions in their chelate form. Spinning glands are present.

Fig. 502.—Chelifer bravaisii. 2—6, second to sixth pairs of appendages. (From Lang's Comparative Anatomy.)

The Pedipalpi, or Scorpion-spiders (Fig. 503), are intermediate in some of their external features between the Scorpions and the
Spiders. The abdomen is broad and marked out into a series of eleven or twelve distinct segments: in one of the genera of the order there is a short post-abdomen formed of the last three segments, with an elongated, many-jointed anal filament. The chelicerae end in simple claws; they are probably provided with poison glands; the pedipalps are very long, either claw-like or chelate; the first pair of legs are very long and slender, their terminal part made up of numerous short joints like antennae. There are eight eyes on the carapace, two larger central, and six smaller marginal.

The Solpugida (Fig. 504) have, at least superficially, the appearance of being intermediate between the Insecta and the other groups of Arachnida. The cephalothoracic region is divided

Fig. 504.—*Galeodes dastuguei* 2, natural size. 1—6, the six pairs of appendages 1, chelicera; 2, pedipalp; c, head; th, thorax; ab, abdomen. (From Lang, after Dufour.)
by a constriction into two parts, *head* and *thorax*, the latter made up of three segments. The chelicerae are chelate; the pedipalpi resemble the legs, and are used in locomotion. The first pair of legs are attached to the head. The abdomen is distinctly segmented, and there is no caudal appendage. A pair of poison-glands open at the bases of the chelicerae. There are two simple eyes on the head.

In the true Spiders (Fig. 505) the abdomen is rounded, unsegmented, and separated off from the cephalothorax by a constriction. The chelicerae (Fig. 506) are subchelate, and the duct of a large poison gland opens at the extremity. The pedipalpi (Fig. 506, *B*) are elongated, and end in simple extremities; in the male (Fig. 507) the terminal joint is modified to serve for the reception and transference of the sperms. At the extremity of the abdomen is the spinning apparatus or *arachnidium* (Fig. 513, *arach.)*. This consists of four or six elevations, the *spinnerets*, sometimes jointed, probably derived from embryonic rudiments of abdominal appendages. On the surfaces of these open the numerous fine ducts of the spinning glands (*sp. glds.*), secreting the material of which the spider’s web is composed. The fine threads of viscid secretion issuing from the ducts harden on exposure to the air, and are worked up into the web by means of the posterior legs. There are six or eight eyes on the carapace.

In the spider-like *Phalangida*, or “Harvest-men,” the cephalo-
Thorax is not constricted off from the abdomen. The chelicerae are chelate, the pedipalpi short and leg-like, the legs long and slender.

In the Acarida or Mites and Ticks (Figs. 508 and 509) the distinction into regions is no longer recognisable. The form of the mouth parts varies somewhat in the different families. Sometimes the basal portions of the pedipalpi form a sucking proboscis enclosing the stylet-like chelicerae, modified to form piercing organs; sometimes these appendages are claw-like or chelate. The legs vary somewhat in shape in the different groups, according as they are used for prehension, for creeping, for running, or for swimming; they end usually in two claws, between which there may be discs or stalked suckers.
In the *Xiphosura* or King-crabs (Fig. 510), the body consists of two well-marked regions—cephalothorax and abdomen. The former is covered over by a wide, dorsally convex, sub-crescentic shield or carapace, bearing two large compound, and two smaller simple, eyes. The segments of the abdomen (seven in number) are united together, being covered dorsally by a continuous abdominal carapace. At the posterior end is attached a very long, narrow, caudal spine. The anterior appendages (Fig. 511) resemble those of the Scorpion. In front of the mouth is a pair of short, three-jointed, chelate appendages, the chelicerae (I), at the sides of a labrum or upper lip. Behind these follow a series of five pairs of legs, the bases of all of which, with the exception of the last, are covered with spines, and have the action of jaws, while the extremities are for the most part chelate. The first pair of appendages of the abdomen are flat plates, which are united together in the middle line and together form the broad operculum (operc.), overlapping all the posterior appendages; on its posterior face are the two genital apertures. The posterior appendages, of which there are five pairs, are thin flat plates to which the gills are attached; each of them is divided by sutures into a small inner ramus or endopodite, and a larger external ramus or exopodite. A labrum (rostrum) lies in front of the mouth, and between the sixth pair of appendages is a pair of processes, the chilaria.

In the *Eurypterida* (Fig. 512) there is a small cephalothorax bearing a pair of large eyes and a pair of ocelli, and an elongated segmented region containing twelve segments, followed by a narrow pointed telson. There are usually five pairs of legs sur-
rounding the mouth, and, with the exception of the first, toothed at the bases in order to perform the functions of jaws: the last pair are stouter than the others and are expanded so as, apparently, to assume the character of swimming paddles. Certain of the more anterior of the free segments bear paired lamelliform appendages which probably carried the branchiae as in the Xiphosura. The exoskeleton is in many cases elaborately sculptured.

A cartilaginous internal endosternite of the same nature as that which has been described as occurring in the Scorpions is found in Limulus and in certain Spiders, but not in the other groups.

Coxal glands, similar to those that have been described in the Scorpion, occur also in most Spiders, in the Solpugida and Phalangida, in some Acarida and the Xiphosura. In the Solpugida and Phalangida they occur on the bases of the last pair of legs; in the Araneida and Xiphosura, as in the Scorpion, they are found on the bases of the fifth pair of appendages.

Alimentary system.—The oesophagus (Fig. 513, os.) of the Spiders is expanded behind into a special sucking stomach (suck. st.). The mesenteron (mesent.) gives off in the cephalothorax five pairs of narrow diverticula (coe.) which enter the bases of the pedipalps and legs; in the abdomen it also gives off a number of ceca, which branch and come in close relation with a mass of cells commonly termed liver (hep.), though not known to have the function of that
organ. The rectum or proctodeum (rect.) is dilated; the dilated portion (rect. occ.) gives off two pairs of Malpighian tubes (mal).

In the Pseudoscorpionida the mesenteron, which is bent into a loop, gives off three diverticula; the proctodeum has also a diverticulum. In the Solpugida the mesenteron also gives off diverticula; the occurrence of Malpighian tubes is doubtful. In the Acarida there are always diverticula, the number and arrangement of which vary, connected with the mesenteron. There are usually two long coiled Malpighian tubes.

In the Xiphosura, the mouth (Fig. 514, mo.), which is situated some distance behind the anterior extremity of the body, leads into a suctorial pharynx, followed by a stomach, which opens into the elongated mesenteron; the proctodeum, a short tube with folded walls, opens on the exterior at the posterior extremity of the abdomen. Into the mesenteron, as in the Scorpion, open the ducts of a large gland, usually termed the liver (l. liv.).

A heart is absent in all the Mites with the exception of one family. In the other Arachnida it is present, and has the same general form as in the Scorpions, though always more concentrated.

In the various orders the organs of respiration differ a good deal in their character. In the Pseudoscorpionida they take the form of branching tracheae similar to those of Insects. In the Pedipalpi there are two pulmonary sacs or book-lungs similar to those of the scorpions. In the Solpugida there is a system of

Fig. 512.—Eurypterus fischeri (Silurian).
(From Nicholson and Lydecker.)
Tracheae are present in the Phalangida and also in the majority of the Acarida. In the Xiphosura the organs of respiration are
external appendages or gills (book-gills), in the shape of delicate laminae attached to the abdominal appendages (Fig. 517).

The nervous system is, in most instances, more concentrated than in the Scorpions. There may be one or two separate abdominal ganglia behind the mass formed by the united cephalothoracic and anterior abdominal (Pseudoscorpionida, Pedipalpida, some Araneida, Solpugida, Phalangida). In most of the Araneida and in the Acarida all the abdominal are united with all the cephalothoracic ganglia to form a single mass perforated by the aësophagus, the part lying behind, which is much the larger, representing the ventral nerve cord.

Sense organs.—Eyes are present in all except in some of the Acarida. Their number and arrangement have been given with
the external characters of the groups. They are all (Fig. 518) of
the type of the ocelli or simple eyes of Insects, except the central
eyes of the Scorpions (Fig. 519) and the compound eyes of Limulus.
The former are intermediate in character between ocelli and faceted eyes,
possessing the single cuticular lens (lens) of the ocellus, and resembling
the faceted eye in having the retinal cells arranged in groups corresponding
to ommatidia. Each retinula, composed of five contents, contains a thick axial
rod or rhabdome (rhabd.).

In Limulus the compound eye has a continuous chitinous cornea-lens of the nature of a thickening of the
cuticle. This, though non-facetted, differs from the corresponding
part in the compound eye of the Scorpion in being produced
internally into a number of conical papillae, each of which lies
over one of the ommatidea and may be looked upon as its lens.

A considerable variety is observable in the exact arrangement
of the parts of the reproductive apparatus
in different groups of the Arachnida. In general,
testes or ovaries are either paired or (more rarely)
unpaired tubes, with paired vas deferentia or ovicducts, which unite in
a median duct opening on the exterior by an
unpaired genital opening. Viviparity is ex-
ceptional. In the Spiders the ovaries (Fig. 113, ov.) are two wide tubes, on
the surface of which follicles project promi-
nently; sometimes they
unite into a single circular ovary. Each ovary has a short ovicduct,
or, when the ovary is single it has two, right and left; these unite
in a median vagina, which opens on the exterior by a median genital aperture at the base of the abdomen. One, two, or three receptacula seminis are present, and either open into the vagina or independently on the surface. In the male there are two elongated tubular testes with two narrow, and often greatly coiled, efferent ducts, which unite in a short median vas deferens, the aperture of which is on the base of the abdomen between the stigmata of the first pair. The pedipalpi of the male (Fig. 507) are modified to act as intro- mittent organs; the terminal segment is swollen, and contains a twisted tube (sph.) into which the sperms from the reproductive aperture are received in order to be transferred in the act of copulation to the reproductive aperture of the female. The eggs of spiders are laid in nests or cocoons, and are usually guarded by the mother, sometimes carried about by her.

In their mode of life the Arachnida present almost as great a diversity as the Insecta. Some Acarida are parasites throughout life. Most of the other groups of Arachnida are predaceous—preying for the most part on Insects or other Arachnids. To capture the Insects which constitute their food the majority of Spiders construct a web formed of the threads secreted by the arachnidium. The primary function of the threads formed from the secretion of the spinning organ is to constitute the material for the manufacture of a cocoon for enclosing the eggs, and in some Arachnids this is the sole purpose to which they are devoted. In others there is added a nest for the protection of the eggs and of the parent itself; this in many cases becomes a permanent urking place which the Spider inhabits at all seasons, and from which it darts out to capture its prey; in the Trap-door Spider, the nest has a closely fitting hinged lid. In very many Spiders the secretion is used mainly to form the web by means of which the prey is snared, with the addition frequently of a nest in which the Spider lies in wait. A subsidiary function of the threads is to aid in locomotion, the Spider being enabled by means of them to let

Fig. 510.—Section of the central eye of Euscorpius. Letters as in preceding figure. pign, cells containing pigment; vibr, vitreous body (a specialised part of the ectoderm). (After Lankeseter and Bourne.)
itself down safely from considerable heights, and even to float in the air.

Some of the Mites, as already mentioned, are parasitic; others feed on various kinds of fresh or decaying animal or vegetable substances. Most free Acarida are terrestrial; some are aquatic.

The Xiphosura are marine, living at a depth of a few fathoms in warm seas, burrowing in sand; their food consists of various kinds of marine Annelids.

Geological History.—The most ancient of the living groups of the Arachnida are the Scorpions, which are represented in Silurian rocks by various fossil forms not differing very widely from those existing at the present day. The earliest known fossil Spiders have been found in deposits of Carboniferous age; and remains of Pedipalpida occur in the same formation. In Tertiary deposits there have been found representatives of all the principal groups of living Arachnida.

The earliest fossil remains of Xiphosura that have been found, occur in strata of the Triassic period. Other fossil species occur in later formations. These are all nearly related to the living species of Limulus. The Eurypterida, as already noted, are entirely paleozoic, ranging from the Lower Silurian rocks to the Devonian.

APPENDIX TO THE ARACHNIDA.

THE PYCNOGONIDA, LINGUATULIDA, AND TARDIGRADA.

These three groups, though not in any way related to one another, and of doubtful relationships to the Arachnida, are, as a matter of convenience, mentioned together here.

The Pycnogonida.

These are marine Spider-like Arthropods (Fig. 520) in which the body consists of a cephalothorax composed of an anterior proboscis (s), three head segments, and one thoracic segment, followed by three free thoracic segments and a rudimentary abdomen (ab.). The cephalothorax bears usually four simple eyes and four pairs of appendages, one or both of the first two of which may be chelate. To these succeed a pair of usually ten-jointed ovigerous legs (3), and the first pair of thoracic legs (4). The free thoracic segments bear lateral processes for the articulation of the remaining three pairs of legs. The rudimentary abdomen (ab.) is devoid of appendages.

Diverticula from the mesenteron penetrate for a considerable distance into the limbs. Malpighian vessels are absent. There is a heart with two or three pairs of ostia. Organs of respiration are absent. The nervous system consists of brain, sub-esophageal ganglia and three other ganglia. The testes in the male are partly, and the ovaries in the female either partly or completely, contained in the bases of the thoracic appendages on which they open. In the male 4–7 cement glands are situated in the fourth joints of certain of the appendages; their secretion cements the eggs together into masses which are carried on the ovigerous legs of the male, and in one species on those of the female also.

A metamorphosis occurs in most cases. The larva usually has three pairs of appendages, so that it bears a superficial resemblance to a nauplius; but the
appendages are simple and in other respects the larva has no essential likeness to the nauplius form. Additional segments with their appendages are formed behind the original three until the form of the adult is completed. Different kinds of Pycnogonids occur at different depths from between tidal limits to considerable depths in the ocean. The larvae of the species of one genus are internal parasites in certain hydroid Zoophytes.

The **Linguatulida** or **Pentastomida**.

The Linguatulida (Fig. 521) are parasitic animals which, when superficially examined, present little appearance of affinity with the Arthropoda. The body is completely worm-like, not divided into regions, and presenting only a superficial annulation, which in no way corresponds with division of the body into segments. The sole representatives of limbs are four hooks (hk.) at the sides of the mouth. The muscular fibres are striated. The alimentary canal is simple and straight, and Malpighian tubes are absent. Heart and organs of respiration are wanting. The nervous system is greatly reduced. A narrow nerve-collar surrounds the oesophagus, presenting no brain enlargement, and connected behind with a single ventral nerve mass. Organs of special sense are absent.

Some species of Pentastomum are in the adult condition parasites in the lungs of snakes. One species (*Pentastomum tenuioides*) inhabits certain cavities—the frontal sinuses and maxillary antra—connected with the nasal chambers,

Fig. 520.— *Nymphon hispidum.* 1—7, appendages; *ab.* abdomen; *s.* proboscis.

(From Lang, after Hook.)

Fig. 521.— *Pentastomum tenuioides,* young female. *mn.* anus; *mg.* ganglion; *hk.* hooks; *mo.* mouth; *os.* oesophagus; *ov.* ovary; *ovid.* oviburs; *rec. sem.* receptaculum seminis; *vt.* utr. sexual aperture; *stom.* stomach; *ut.* uterus.

(After Leuckart.)

S 8
in the Dog and Wolf. Its embryos escaping and falling on grass and other herbage, which form the food of Hares and Rabbits, are taken up by the latter, and perforating the wall of the alimentary canal, by means of a boring apparatus composed of several chitinous pieces, lodge themselves in the liver, where they become encysted and undergo a metamorphosis. Afterwards they leave the cysts and move about. If it should be received into the mouth of a Dog (still contained probably in most cases in the tissues of the Hare or Rabbit) the young Pentastomum may find its way to the frontal sinuses or maxillary antra, there to undergo its final transformation into the adult form. The larva possesses two pairs of short legs.

The Tardigrada.

The Tardigrada ("bear animalcules") are soft-skinned animals (Fig. 522) of minute size, not exceeding a millimetre in length. The body is unsegmented and not distinguishable into regions, except that in some a slight constriction separates off from the rest an anterior part or head. The mouth is provided with a sucking proboscis. There are four pairs of short unjointed legs (I—IV.), the last of which is terminal, and each is provided with two or four claws. The mouth is surrounded by papillae; the buccal cavity contains a pair of horny, sometimes partly calcified, teeth (styl.). The ducts of a pair of salivary (?) glands (sali) open into the cavity of the mouth; there is a muscular pharynx (ph.), a narrow esophagus, and a wide mesenteron (stom.); the anus is sub-terminal, situated in front of the last pair of limbs. A pair of tubes (mal.) which open into the terminal part of the intestine are perhaps representatives of Malpighian tubes. The muscles are all non-striated. There are no organs of respiration, and heart and blood-vessels are likewise absent. There is a brain and a ventral nerve-cord with four ganglia. Two eyespots situated at the anterior end are the only representatives of organs of special sense. The gonads in both sexes are saccular, and open into the terminal part of the intestine. Segmentation is complete and regular. The young animal at one stage has only two pairs of rudimentary legs, but develops the full number before being hatched.

In the larva there is a head and four distinct segments.

Some of the Tardigrada live amongst damp moss, others in fresh or in salt water.

Fig. 522. — Macrobiotus hufelandi.
I—IV. appendages; bucc. buccal cavity; gld. accessory gland; mal. Malpighian tube; ov. ovary; rect. rectum; sali. salivary glands; stom. stomach; styl. teeth. (From Hertwig's *Lekhruch, after Gref and Plate.*
Relationships of the Air-breathing Arthropoda.1

Notwithstanding the existence of some striking superficial resemblances between the Arachnida and the Insecta, the evidence afforded by anatomy and embryology points to the conclusion that there is no direct genetic relationship between the two groups. The occurrence in both of a peculiar form of respiratory organs, the tracheae, seems at first sight to indicate such a relationship; but the evidence of an independent origin is so strong that it must be supposed that the tracheae have been independently developed in the two classes. The most important points of difference are the separation of head and thorax in the Insecta, the mode of development of the eyes, the presence in the Arachnida of an extensive "liver" and (perhaps) the endodermal origin of the Malpighian tubes in the latter class.

Resemblances between Limulus and the Scorpions are readily apparent. In both there is a cephalothorax bearing six pairs of appendages, together with two median and several lateral eyes. The appendages in both are all originally post-oral, the first pair becoming pra-oral in course of growth, and the appendages belonging to it coalescing with the brain. The upper lip between the bases of these appendages is similarly developed in both. The pair of processes situated behind the sixth pair of appendages, which in Limulus form the chilaria, are represented in the Scorpions by a small pentagonal plate in front of the operculum. The abdomen of Limulus corresponds to the pra- and post-abdomen of the Scorpion; it contains only eight segments; but there is evidence, from a comparison with certain fossil forms, that the last segment represents several united metameres. A certain amount of correspondence is also traceable in the appendages of the abdomen. In both the first pair form the operculum; in the Scorpion the second pair form the pectines, while the rest disappear; in Limulus all persist as the lamelliform appendages to which the book-gills are attached. In structure there is considerable similarity between the book-gills of Limulus and the book-lungs of the Scorpion, but how far they are equivalent to one another remains doubtful in view of the difference in their position, the book-gills being attached to the dorsal surface of the abdominal appendages and the book-lungs sunk within the segments.

The presence in both of the large "liver," of a circum-œsophageal artery, of a cartilaginous endosternite, and of a pair of coxal

1 The Xiphosura and also the Pentastomida, though not air-breathing, are discussed here.
glands on the basal joints of the appendages of the fifth pair, are some of the points of correspondence in the internal anatomy.

While Limulus is thus closely related to the Scorpions on the one hand, it exhibits, on the other, indications of affinities with the Trilobites, a group of extinct Arthropods probably finding their nearest existing allies in the Phyllopod Crustacea (p. 559). This resemblance to the Trilobites is most marked in the stage—the trilobite stage—in which the young King-crab escapes from the egg. Certain fossil representatives of the Xiphosura come still nearer to the Trilobites than the adult Limulus, and thus increase the probability that there is a genetic connection between the two groups.

It seems probable that the air-breathing Arachnida were derived through Limulus-like ancestors from the Crustacea, and that the tracheae were developed as modifications of the pulmonary sacs, the latter having been originally derived from gills like those of Limulus.

There is a very evident close relationship between the Myriapoda and the Insecta. The Insects are more highly specialised, and have their structure modified in adaptation to a special mode of locomotion, but the resemblances in many respects are very strong. One of the most striking points of difference is the indefiniteness in the number of the segments in the Myriapoda, and their constant and definite arrangement in the Insecta. The well-defined thorax of the Insects is wanting in the Myriapods in general, but certain of the segments following the head differ from the rest in various respects, and might be looked upon as constituting a thoracic region. The presence in both groups of a sharply marked-off head bearing antennae and jaws is an important point of resemblance; so is the absence in both of the voluminous "liver" of the Crustacea and Arachnida. The gap between the two classes is narrowed by two converging groups—the Symphyta among the Myriapoda on the one hand, and the wingless and in other respects primitive Aptera among the Insecta on the other.

While the Insecta thus appear to be nearly related to the Myriapoda, there are indications of relationship between the latter class and the Onychophora, and, through these, the Chaetopoda. The elongated, homonomously segmented body, the well-defined head with its antennae, the occurrence of similar appendages on all the body segments, all point in this direction. Accordingly, instead of placing the branchiate Arthropoda in one group and all the air-breathing forms in another, and deriving the latter from the former, we should probably express more correctly the affinities of the various groups of Arthropods by some such scheme as that expressed in the diagram (Fig. 523).

Here an intermediate link between Annelida and the existing
Arthropoda is supposed to have been constituted by hypothetical primitive forms from which Peripatus, the Insecta, and the Myriapoda are supposed to have been evolved in the one direction, and the Crustacea, Eurypterida, Xiphosura, and air-breathing Arachnida in the other.

On account mainly of general resemblances to the Spiders, the Pycnogonida have frequently been grouped with the Arachnida, and attempts have been made to homologise their appendages with those of the Spiders and Scorpions. There is one pair more in the Pycnogonida; and either the last pair would have to be set down as corresponding to the vestigial first abdominal pair of the ordinary Arachnida, or the ovigerous legs would have to be reckoned, not as independent appendages, but as parts of the second pair, a view for which there is some ground. A close relationship with the Arachnida, however, cannot be traced, and their affinities are perhaps best expressed, as in the diagram, by connecting them with the Arachnid branch of the Arthropod tree at a point below that at which the air-breathing forms had become developed from forms allied to the Xiphosura.

The position of the Pentastomida is a matter of uncertainty. In the absence of organs of respiration and excretion, the only
feature in the adult which distinctly points to arthropod affinities is the striated character of the muscular tissue. The presence of two pairs of legs in the larva, however, is sufficient to confirm the position of the group as aberrant and probably degenerate Arthropods, while leaving it uncertain in what class they find their nearest allies. The Tardigrada are still more aberrant in some respects. They differ from Arthropods in general in the absence of external segmentation in the adult state, in the simple unjointed character of the appendages, in the absence of striation in the muscular fibres, and in the absence of organs of respiration and circulation. It is impossible to place them in any of the great classes, and they are perhaps best looked upon as a special offset of the Arthropod tree given off near the base.
SECTION XII

PHYLUM MOLLUSCA

The Mollusca, like the Arthropoda, form one of the chief divisions of the animal kingdom, both for diversity of organization and for number of genera and species. They are sharply distinguished from Arthropods by the absence of segmentation, and by having, as a rule, an exoskeleton in the form of a shell, usually external, sometimes internal. An enumeration of the Classes of the Phylum will serve to give some notion of its extent.

Class 1.—Pelecypoda, including the bivalved Shell-fish, such as Mussels, Cockles, Oysters, &c.

Class 2.—Amphineura, including the Chitons and their allies.

Class 3.—Gastropoda, including the univalved Shell-fish, such as Periwinkles, Whelks, Snails, Slugs, &c.

Class 4.—Scaphopoda, including the Tooth-shells.

Class 5.—Cephalopoda, including the Cuttle-fishes, Squids, Octopi, and Nautili.

CLASS I.—PELECYPODA.

1. Example of the Class—The Fresh-water Mussels (Anodonta and Unio).

Fresh-water Mussels are found in rivers and lakes in most parts of the world. Anodonta cygnea, the Swan-mussel, is the commonest species in England; but the Pearl-mussel, Unio margaritifer is found in mountain streams, and other species of the same genus are universally distributed.

The Mussel (Fig. 524) is enclosed in a brown shell formed of two separate halves or valves hinged together along one edge. It lies on the bottom, partly buried in the mud or sand, with the valves slightly gaping, and in the narrow cleft thus formed a
delicate, semi-transparent substance (m.) is seen, the edge of the mantle or pullium. The mantle really consists of separate halves or lobes corresponding with the valves of the shell, but in the position of rest the two lobes are so closely approximated as to appear simply like a membrane uniting the valves. At one end, however, the mantle projects between the valves in the form of two short tubes, one (ex. sph.) smooth-walled, the other (in. sph.) beset with delicate processes or fimbria. By diffusing particles of carmine or indigo in the water it can be seen that a current is always passing in at the fimbriated tube, hence called the inhalant siphon, and out at the smooth or exhalant siphon. Frequently a semi-transparent, tongue-like body (ft.) is protruded between the valves at the opposite side from the hinge and at the end furthest from the siphons: this is the foot, by its means the animal is able slowly to plough its way through the sand or mud. When the Mussel is irritated the foot and siphons are withdrawn and the valves tightly closed. In a dead animal, on the other hand, the shell always gapes, and it can then be seen that each valve is lined by the corresponding lobe of the mantle, that the exhalant siphon is formed by the union of the lobes above and below it, and is thus an actual tube, but that the boundary of the inhalant siphon facing the gape of the shell is simply formed by the approximation of the mantle-lobes, so that this tube is a temporary one.

The hinge of the shell is dorsal, the gape ventral, the end bearing the siphons posterior, the end from which the foot is protruded anterior: hence the valves and mantle-lobes are respectively right and left.

In a dead and gaping Mussel the general disposition of the parts of the animal is readily seen. The main part of the body
lies between the dorsal ends of the valves: it is produced in the middle ventral line into the keel-like foot; and on each side, between the foot and the corresponding mantle-lobe, are two delicate, striated plates, the gills (Fig. 530). Thus the whole animal has been compared to a book, the back being represented by the hinge, the covers by the valves, the fly-leaves by the mantle-lobes, the two first and the two last pages by the gills, and the remainder of the leaves by the foot.

The Shell.—When the body of the mussel is removed from the shell the two valves are seen to be united, along a straight

![Diagram](image)

Fig. 525. *Anodonta cygnea.* A, interior of right valve; B, the animal removed from the shell. a. ad, anterior adductor or its impression; a. r, anterior retractor or its impression; d. g, digestive gland, seen through mantle; e. eph, exhalant siphon; f. foot; g. l. gills, seen through mantle; h. l. hinge-line; m. sph, inhalant siphon; k. l. kidney, seen through mantle; k. o. Kehler’s organ, seen through mantle; m. mantle; p. ad, posterior adductor or its impression; p. c. pericardium, seen through mantle; p. f. pallial line; p. m, pallial muscles; p. r. posterior retractor or its impression; p. r. protractor or its impression.

hinge-line (Fig. 525, A, h. l.), by a tough, elastic substance, the hinge-ligament (Figs. 524 and 530, g.) passing transversely from valve to valve. It is by the elasticity of this ligament that the shell is opened: it is closed, as we shall see, by muscular action: hence the mere relaxation of the muscles opens the shell. In *Anodonta* the only junction between the two valves is afforded by the ligament, but in *Unio* each is produced into strong projections and
ridges, the hinge-teeth, separated by grooves or sockets, and so arranged that the teeth of one valve fit into the sockets of the other.

The valves are marked externally by a series of concentric lines (Fig. 524) parallel with the free edge or gape, and starting from a swollen knob or elevation, the umbo (um.), situated towards the anterior edge of the hinge-line. These lines are lines of growth. The shell is thickest at the umbo, which represents the part first formed in the young animal, and new layers are deposited under this original portion, as secretions from the mantle. As the animal grows each layer projects beyond its predecessor, and in this way successive outcrops are produced giving rise to the markings in question. In the region of the umbo the shell is usually more or less eroded by the action of the carbonic acid in the water.

The inner surface of the shell also presents characteristic markings (Fig. 525, A). Parallel with the gape and at a short distance from it is a delicate streak (pl. l.) caused by the insertion into the shell of muscular fibres from the edge of the mantle: the streak is hence called the pallial line. Beneath the anterior end of the hinge the pallial line ends in an oval mark, the anterior adductor impression (a. ad.), into which is inserted one of the muscles which close the shell. A similar but larger posterior adductor impression (p. ad.) lies beneath the posterior end of the hinge. Two smaller markings in close relation with the anterior adductor impression mark the origin of the anterior retractor (a. r.) and of the protractor (prc.) of the foot: one connected with the posterior adductor impression is that of the posterior retractor (p. r.) of the foot. From all these impressions faint converging lines can be traced to the umbo: they mark the gradual shifting of the muscles during the growth of the animal.

The shell consists of three layers. Outside is a brown horn-like layer, the periostracum (Fig. 526, prc.), composed of conchiolin, a substance allied in composition to chitin. Beneath this is a
prismatic layer (prs.) formed of minute prisms of calcium carbonate separated by thin layers of conchiolin; and, lastly, forming the internal part of the shell is the nacre (n.); or "mother-of-pearl," formed of alternate layers of carbonate of lime and conchiolin arranged parallel to the surface. The periostracum and the prismatic layer are secreted from the edge of the mantle only, the pearly layer from the whole of its outer surface. The hinge ligament is continuous with the periostracum, and is to be looked upon simply as a median uncalcified portion of the shell, which is therefore, in strictness, a single continuous structure.

By the removal of the shell the body of the animal (Fig. 525, B) is seen to be elongated from before backwards, narrow from side to side, produced on each side into a mantle-lobe (m.) and continued ventrally into a keel-like visceral mass (Fig. 527, v.m.), which passes below and in front into the foot (ft.). Thus each valve of the shell is in contact with the dorso-lateral region of the body of its own side together with the corresponding mantle-lobe, and it is from the epithelium (Fig. 526, ep.1) covering these parts that the shell is formed as a cuticular secretion. The whole space between the two mantle-lobes, containing the gills, visceral mass, and foot, is called the mantle-cavity.

A single layer of epithelial cells covers the whole external surface, i.e. the body proper, both surfaces of the mantle, the gills, and foot; that of the gills and of the inner surface of the mantle (Fig. 526, ep.2) is ciliated. Beneath the epidermis come connective and muscular tissue, which occupy nearly the whole of the interior of the body not taken up by the viscera, the coelome being, as we shall see, much reduced. The muscles are all unstriped, and are arranged in distinct bands or sheets, many of them very large and conspicuous. The largest are the anterior and posterior adductors (Figs. 525 and 527, a. ad., p. ad.), great cylindrical muscles, passing transversely across the body and inserted at either end into the valves of the shell, which are approximated by their contraction. Two muscles of much smaller size pass from the shell to the foot, which they serve to draw back: they are the anterior (a. r.) and posterior (p. r.) retractor muscles of the foot. A third foot-muscle (pre.) arises from the shell, close to the anterior adductor, and has its fibres spread fan-wise over the visceral mass, which it serves to compress, thus forcing out the foot and acting as a protractor of that organ. The substance of the foot itself consists of a complex mass of fibres, the intrinsic muscles of the foot, many of which also act as protractors. Lastly, all along the border of the mantle is a row of delicate pallial muscles (Fig. 525, B, pl. m.), which, by their insertion into the shell, give rise to the pallial line already seen.

The coelome is reduced to a single ovoidal chamber, the pericardium (Fig. 527, pe.), lying in the dorsal region of the body and containing the heart and part of the intestine; it is lined by
coelomic epithelium. In the remainder of the body the space between the ectoderm and the viscera is filled by the muscles and connective tissue.

Digestive organs.—The *mouth* (Fig. 527, *mth.*) lies in the middle line, just below the anterior adductor. On each side of it are two triangular flaps, the *internal* (*l.int. plp.*) and *external* (*l.ext. plp.*), *labial palps*; the external palps unite with one another in front of the mouth, forming an upper lip; the internal are similarly united behind the mouth, forming a lower lip; both are ciliated externally. The mouth leads by a short *gullet* (Fig. 528, *gul.*) into a large *stomach* (*st.*), which receives the ducts (*d.d.* of a pair of irregular, dark-brown *digestive glands* (*d.gl.*). The *intestine*

![Figure 527: Anodonta cygnea.](image)

Fig. 527.—*Anodonta cygnea.* The animal with most of the left mantle-lobe removed; *a.* anus; *a. ad.* anterior adductor; *a. r.* anterior retractor; *au.* left auricle; *d. p. a.* dorsal pallial aperture; *ex. sph.* exhalant siphon; *f. t.* foot; *in. sph.* inhalant siphon; *kd.* kidney; *l. ext. gl.* left external gill; *l. ext. plp.* left external labial palp; *l. int. al.* left internal gill; *l. int. plp.* left internal labial palp; *l. m.* cut edge of left mantle-lobe; *mth.* mouth; *p. ad.* posterior adductor; *p.r.* pericardium; *p. r.* posterior retractor; *prc.* protractor; *rect.* rectum; *r. m.* right mantle-lobe; *r. ventr.* right ventricle; *r. mth.* visceral mass.

(int.) is given off from the posterior end of the stomach, descends into the visceral mass, where it is coiled upon itself, then ascends parallel to its first portion, turns sharply backwards, and proceeds, as the *rectum* (*ret.*), through the pericardium, where it traverses the ventricle of the heart, and above the posterior adductor, finally discharging by the *anus* (*a.*) into the exhalant siphon, or cloaca. The wall of the rectum is produced into a longitudinal ridge, or *typhlosole* (*ty.*), like that of the Earthworm, and two similar ridges begin in the stomach and are continued into the first portion of the intestine. The stomach contains, at certain seasons of the year, a gelatinous rod, the *crystalline style*.

The *gills* consist, as we have seen, of two plate-like bodies on each side between the visceral mass and the mantle: we have thus
a right and a left outer (Fig. 527, l. ext. gl.), and a right and a left inner gill (l. int. gl.). Seen from the surface, each gill presents a delicate double striation, being marked by faint lines running parallel with, and by more pronounced lines running at right angles to, the long axis of the organ. Moreover, each gill is double, being formed of two similar plates, the inner and outer lamelle, united with one another along the anterior, ventral, and posterior edges of the gill, but free dorsally. The gill has thus the form of a long and extremely narrow bag open above (Figs. 528, 529 and 530): its cavity is subdivided by vertical bars of tissue, the inter-lamellar junctions (i. l. j.), which extend between the two lamellae, and divide the intervening space into distinct compartments or water-tubes (w. t.), closed ventrally, but freely open along the dorsal edge of the gill. The vertical striation of the gill is due to the fact that each lamella is made up of a number of close-set gill-filaments (f.): the longitudinal striation to the circumstance that these filaments are connected by horizontal bars, the inter-filamentar junctions (i. f. j.). At the thin free or ventral edge of the gill the filaments of the two lamellae are continuous with one another, so that each gill has actually a single set of V-shaped filaments, the outer limbs of which go to form the outer lamella, their inner limbs the inner lamella. Between the
filaments, and bounded above and below by the inter-filamentar junctions, are minute apertures, or ostia (os.), which lead from the mantle-cavity through a more or less irregular series of cavities into the interior of the water-tubes. The filaments themselves are supported by chitinous rods (r.), and are covered with ciliated epithelium, the large cilia (Fig. 529, D), of which produce a current running from the exterior through the ostia into the water-tubes; and finally escaping by the wide dorsal apertures of the latter, The whole organ is traversed by bloodvessels (b. v.).

The mode of attachment of the gills presents certain features of importance. The outer lamella of the outer gill is attached along its whole length to the mantle (Fig. 530): the inner lamella of the outer, and the outer lamella of the inner gill are attached

Fig. 529.——Anodonta cygnea. A, transverse section of outer; B of inner gill; C, diagram of gill-structure; D, transverse section of gill filament; b. c. blood-corpuscle; b. v. blood-vessels; ch. chitin; f. branchial filaments; ep. epithelium; i. f. j. inter-filamentar junction; i. l. inner lamella; l. i. j. inter-lamellar junction; o. l. outer lamella; os. external ostium; os'. internal ostium; r. chitinous rods; wt. water tubes. (A, B, and D, after Peck.)
together to the sides of the visceral mass a little below the origin of the mantle: the inner lamella of the inner gill is also attached to the visceral mass in front (A), but is free further back (B). The gills are longer than the visceral mass, and project behind it, below

the posterior adductor (C), as far as the posterior edge of the mantle; in this region the inner lamellae of the right and left inner gills are united with one another, and the dorsal edges of all four gills constitute a horizontal partition between the pallial cavity below and the exhalant chamber or cloaca above. Owing
to this arrangement it will be seen that the water tubes all open dorsally into a supra-branchial chamber (s. br. c.) continuous posteriorly with the cloaca and thus opening on the exterior by the exhalant siphon.

The physiological importance of the gills will now be obvious. By the action of their cilia a current is produced which sets in through the inhalant siphon into the pallial cavity, through the ostia into the water tubes, into the supra-branchial chamber, and out at the exhalant siphon. The in-going current carries with it not only oxygen for the aeration of the blood, but also Diatoms, Infusoria and other microscopic organisms, which are swept into the mouth by the cilia covering the labial palps. The out-going current carries with it the various products of excretion and the faeces passed into the cloaca. The action of the gills in producing the food-current is of more importance than their respiratory function, which they share with the mantle.

The excretory organs are a single pair of curiously-modified meso-nephridia, situated one on each side of the body just below the pericardium. Each nephridium consists of two parts, a brown spongy glandular portion or kidney (Fig. 528, kl.), and a thin-walled non-glandular part or bladder (bl.). The two parts lie parallel to one another, the bladder being placed dorsally and immediately below the floor of the pericardium: they communicate with one another posteriorly, while in front the kidney opens into the pericardium (r. p. ap.), and the bladder on to the exterior by a minute aperture (r. ap.), situated between the inner gill and the visceral mass. Thus the whole organ, often called after its discoverer, the organ of Bojanus, is simply a tube bent upon itself, opening at one end into the coelome, and at the other on the external surface of the body: it has thus the normal relations of a nephridium. The epithelium of the bladder is ciliated, and produces an outward current.

It seems probable that an excretory function is also discharged by a large granular mass of reddish-brown colour, called the pericardial gland or Keber's organ (Fig. 530, B, k. o.). It lies in the anterior region of the body just in front of the pericardium, into which it discharges.

The circulatory system is well developed. The heart lies in the pericardium and consists of a single ventricle (Figs. 528, 530, and 531, c.) and of right and left auricles (au.). The ventricle is a muscular chamber which has the peculiarity of surrounding the rectum (Figs. 528 and 530, B): the auricles are thin-walled chambers communicating with the ventricle by valvular apertures opening towards the latter. From each end of the ventricle an artery is given off, the anterior aorta (Fig. 528, a. ao.) passing above, the posterior aorta (p. ao.) below the rectum. From the aortae the blood passes into arteries (Fig. 531, art.\(^1\), art.\(^2\)) which
ramify all over the body, finally forming an extensive network of vessels, many of which are devoid of proper walls, and have therefore the nature of sinuses. The returning blood passes into a large longitudinal vein, the *vena cava* (*v. c.*) placed between the nephridia, whence it is taken to the kidneys themselves (*nph. v.*), thence by *afferent branchial veins* (*af. br. v.*) to the gills, and is finally returned by *efferent branchial veins* (*ef. br. v.*) to the auricles. The mantle has a very extensive blood supply, and probably acts as the chief respiratory organ: its blood (*art.*) is returned directly to the auricles without passing through either the kidneys or the gills. The blood is colourless and contains leucocytes.

The **nervous system** is formed on a type quite different from anything we have yet met with. On each side of the gullet is a small *cerebro-pleural ganglion* (*Fig. 528, c.pl. gn.*) united with its fellow of the opposite side by a nerve-cord, the *cerebral commissure*, passing above the gullet. Each cerebro-pleural ganglion also gives off a cord, the *cerebro-pedal connective*, which passes downwards and backwards to a *pedal ganglion* (*pd. gn.*) situated at the junction of the visceral mass with the foot: the two pedal ganglia are so closely united as to form a single bilobed mass. From each cerebro-pleural ganglion there further proceeds a long *cerebro-visceral connective* which passes directly backwards, through the kidney, and ends in a *visceral ganglion* (*v. gn.*) placed on the ventral
side of the posterior adductor muscle. The visceral, like the pedal ganglia, are fused together. The cerebro-pleural ganglia supply the labial palps and the anterior part of the mantle; the pedal the foot and its muscles; the visceral the enteric canal, heart, gills, and posterior portion of the mantle.

It will be seen that the cerebral commissures and cerebro-pedal connectives together with the cerebro-pleural and pedal ganglia, form a nerve ring which surrounds the gullet: the cerebro-pleural ganglia may be looked upon as a supra-oesophageal nerve mass corresponding with the brain of Annelids and Arthropods, and the pedal ganglia as an infra-oesophageal mass representing the ventral nerve cord.

Sensory organs are poorly developed, as might be expected in an animal of such sedentary habits. In connection with each visceral ganglion is a patch of sensory epithelium forming the so-called olfactory organ or, better, *osphradium*, the function of which is apparently to test the purity of the water entering by the respiratory current. Close to the pedal ganglion a minute otocyst (Fig. 532) is sometimes found, the nerve of which is said to spring from the cerebro-pedal connective, being probably derived from the cerebral ganglion. Sensory cells—probably tactile—also occur round the edge of the mantle, and especially on the fimbriae of the inhalant siphon.

Reproductive organs.—The sexes are separate. The gonads (Fig. 528, *gon.*) are large, paired, racemose glands, occupying a considerable portion of the visceral mass amongst the coils of the intestine: the testis is white, the ovary reddish. The gonad of each side has a short duct which opens (*g. ap.*) on the surface of the visceral mass just in front of the renal aperture.

In the breeding season the eggs, extruded from the genital aperture, pass into the suprabranchial chamber and so to the cloaca. There, in all probability, they are impregnated by sperms introduced with the respiratory current. The oosperms are then passed into the cavities of the outer gills, which they distend enormously. Thus the outer gills act as brood-pouches, and in them the embryo develops into the peculiar larval form presently to be described.
Development.—Segmentation of the oosperm is complete, but unequal. A gastrula is formed by the invagination of the megameres into the micromeres, but the archenteron (Fig. 533, ent.) thus formed is quite small and insignificant, and has no physiological importance until a late period of larval life. Certain of the cells of the gastrula are budded off into the blastocoel, where they accumulate and form the mesoderm (mes.). At about the same time a deep invagination (sd.) is formed, which might easily be mistaken for the archenteron, but is really a very characteristic molluscan organ, the shell-gland: it marks the dorsal surface of the embryo. The posterior end is distinguished by a tuft of long cilia.

The shell-gland becomes converted into a plate of long, cylindrical cells (Fig. 534, sd.), from which an unpaired shell (s.) is secreted. This is replaced before long by a bivalved shell of triangular form, its ventral angles produced into incurved hooks.
beset with spines (Fig. 535, sh). At the same time the body of the larva, which has hitherto been an undivided mass projecting between the two valves of the shell, becomes cleft from below upwards, and thus divided into a single dorsally-placed body proper, and paired—right and left—mantle-lobes. Upon the latter peculiar brush-like sense-organs make their appearance, and on the ventral surface of the body is formed a glandular pouch, which secretes a long thread, the provisional byssus (f). The mesoderm cells give rise to a single immense adductor muscle (sm), the fibres of which extend from valve to valve.

The larva is now called a glochidium: it remains in the brood-pouch, nourished by a secretion from the walls of the latter, and entangled with its fellows by means of the byssus. At this stage the outer gill appears to be stuffed full of closely aggregated sand-grains. Before long the larvae are ejected through the exhalant siphon, and lie in masses on the bottom until they happen to come in contact with a passing Stickleback or other fresh-water Fish, when they fix themselves on some part of its body by means of the hooked valves. The glochidia of Unio usually become attached to the gills, those of Anodonta to the skin or the fins. In this position they become encysted by an overgrowth of the skin or mucous membrane of the host, and are nourished by its juices absorbed through processes of the mantle. They thus lead a truly ectoparasitic existence for about ten weeks.

While in this condition a metamorphosis takes place. The provisional byssus and sense-organs disappear (Fig. 536), and immediately posterior to the former an invagination, the stomodaeum (m), is formed, and soon communicates with the archenteron. The posterior end of this cavity is in close contact with the ectoderm, so that the anus is formed by a simple process of rupture, and without the development of a proctodaeum. The foot (fu) arises as a median ventral elevation behind the mouth, and on each side of

Fig. 535.—A, advanced embryo of Anodonta. B, free glochidium; f, provisional byssus; sh, shell; sh, hooks; sm, adductor muscle; so, sense-organs; s, cilia. (From Korschelt and Heider's Embryology.)
it two papillae (k) appear, the rudiments of the gills. The larva is now fitted for free existence: it drops from its host, and gradually assumes the adult form and mode of life.

2. Distinctive Characters and Classification.

The Pelecypoda are bilaterally symmetrical, compressed Molluscs, in which the mantle consists of paired right and left lobes, secreting a bivalved calcareous shell. There is no distinct head. The ventral region of the body is differentiated into a muscular foot, which is usually ploughshare- or tongue-shaped: in some cases there is a byssus-gland posterior to the foot, which secretes a mass of horny fibres, the byssus, by which the animal may be permanently attached. There are usually two pairs of gills, but the two gills of each side are to be looked upon as modifications of a single primitive gill or ctenidium: the chief function of the gills is the production of a respiratory and food-carrying current of water. The body is covered by a one-layered epidermis, which is ciliated on the gills, and on the inner surface of the mantle. The muscular system is well developed, the largest muscles being either one or two adductors, which close the shell, and several bands connected with the foot and byssus: the muscles are usually unstriped. The coelome is reduced to a dorsally-placed pericardium. The mouth

![Diagram of metamorphosis of Ano, donta.](image-url)
is bounded by two pairs of flat, triangular tentacles or labial palps the cilia of which serve to carry food particles to the mouth: the enteric canal is coiled, and is formed mainly from the mesenteron: there are large paired digestive glands: the rectum passes through the pericardium, usually perforates the ventricle, and ends above the posterior adductor. The heart is contained within the pericardium, and consists of a median ventricle, and of right and left auricles: the blood, which is usually colourless, is taken from the ventricle to the body by one or two aortae, and is returned partly directly, partly by way of the renal organs and gills, to the auricles. The renal organs are a single pair of meso-nephridia, which usually open at one end into the pericardium, at the other on the exterior. The nervous system consists typically of four pairs of ganglia called respectively cerebral, pleural, pedal, and visceral: the cerebral and pleural of each side are usually fused into a single cerebro-pleural ganglion. The chief sense-organs are otocysts and osphradia or water-testing organs. The sexes are separate or united: there are no accessory organs of reproduction. Development is accompanied by a metamorphosis, which usually includes a trochosphere stage.

The classification of the Pelecypoda is as follows:

Order 1.—Protobranchia.

Pelecypoda, in which the gills take the form of a single pair of plume-like organs or ctenidia, each with two rows of flattened gill-filaments. The foot is not compressed, but has a flattened ventral surface or sole upon which the animal creeps. There are two adductor muscles.

This group includes only four genera—Nucula, Yoldia, Leda, and Solenomya.

Order 2.—Filibranchia.

Pelecypoda, in which there are two pairs of plate-like gills formed of distinct V-shaped filaments: interfilamentar junctions are either absent or formed by groups of interlocking cilia: interlamellar junctions are either absent or non-vascular. As a rule there are two adductor muscles, but the anterior may be greatly reduced or absent.

Including the Noah's ark shell (Arca), Sea mussel (Mytilus), Anomia, Trigonia, &c.

Order 3.—Pseudo-lamellibranchia.

Pelecypoda, in which the gills are plaited so as to present vertical folds: the interfilamentar junctions may be ciliary or vascular: the interlamellar junctions vascular or non-vascular.
There is a single large (posterior) adductor muscle. The shell is frequently inequivalve.

Including—the Scallop (Pecten), Oyster (Ostrea), Pearl oyster (Meleagrina), Lima, Pinna, &c.

Order 4.—Eulamellibranchia.

Pelecypoda in which the gill-filaments are united by vascular inter-filamentar and inter-lamellar junctions, firm, basket-like gills being the result: the gills may be smooth or plaited. There are two equal-sized adductor muscles.

Sub-order a.—Integripalliata.

Eulamellibranchia in which the siphons are small or absent, and the pallial line on the shell is entire.

Including the Fresh-water Mussels (Anodonta and Unio).

Sub-order b.—Sinupalliata.

Eulamellibranchia in which the siphons are of considerable size, and the pallial line is inflected to form a sinus.

Including the Cockle (Cardium), Mya, Pholas, Teredo (Shipworm), Aspergillum, &c.

Order 5.—Septibranchia.

Pelecypoda in which the gills are reduced to a horizontal muscular partition. There are two adductor muscles.

Including Poromya, Cuspidaria, &c.

Systematic Position of the Examples.

Anodonta and Unio are two genera belonging to the family Unionidae, sub-order Asiphoiidae, order Eulamellibranchia.

Their complex basket-like gills are alone sufficient to place them among the Eulamellibranchia. The incomplete ventral siphon and the correlated entire pallial line (see p. 650) indicate their position among the Asiphoiidae. The regular shell, with thick brown periostracum and large external ligament, the elongated branchial or inhalant aperture, the long, compressed foot, and the absence of a byssus, place them among the Unionidae. Anodonta is distinguished from Unio by the absence of hinge-teeth.

The most important variations in structure in the present class are connected with modifications of the gills, the foot, the muscular system, and the siphons. With the structure of the muscles and of the siphons are correlated important variations in the shell
which are of great systematic value, especially in cases where, as with fossils, the shell is the only part available for examination.

In all the Protobranchia, some of the Filibranchia, such as Arca, and all the Eulamellibranchia and Septibranchia, there are two almost equal-sized **adductor muscles**, as in Anodonta. In many Filibranchs, such as the common Sea-mussel (*Mytilus edulis*), the anterior adductor becomes greatly reduced and the posterior correspondingly enlarged, and in another species of the same genus (*M. tulus*) the anterior adductor has completely atrophied, the function of closing the shell being performed by the great posterior adductor alone. In Anomia and in the Pseudo-lamellibranchs there is a single immense adductor (Fig. 537 x, xi) placed nearly in the middle of the greatly shortened body, and known to represent the posterior adductor, both from the fact that the rectum passes over it; and from the circumstance that, in the embryo Oyster, two adductors are present, the anterior of which atrophies, while the posterior enlarges to form the single muscle of the adult.

These peculiarities in the muscular system bear their mark upon the **shell**, in which impressions corresponding to the
adductors are clearly marked on the inner surface (Fig. 538). The whole class is, in fact, frequently classified on this basis, species with equal-sized adductors (Protobranchs, some Filibranchs, and all Eulamellibranchs and Septibranchs) being called *Isomyaria* (A), those with a large posterior and a reduced anterior adductor (most Filibranchs) *Heteromyaria* (B), and those with large centrally placed posterior and no anterior adductor (Pseudolamellibranchs and Anomia among Filibranchs) *Monomyaria* (C).

In many forms, such as Nucula (Fig. 548), Ostrea, &c., the right and left mantle-lobes are quite free from each other, so that there are no siphons. In Anodonta and Unio, as we have seen, the two lobes unite along the line of attachment of the gills, so as to enclose a dorsal or exhalant siphon, a ventral or inhalant siphon being formed simply by apposition of the lobes ventrally. In such cases the pallial muscles in their neighbourhood act as retractors of the short and imperfect tubes thus formed. In other species a second concrescence of the mantle-lobes takes place so as to convert the inhalant siphon into an actual circumscribed aperture or short tube. In the Sinupalliata the two siphons are prolonged into distinct muscular tubes (Fig. 539, A, B) which, in the position of extension, project beyond the posterior margin of the shell, and may even be considerably longer than the body.
these circumstances the posterior pallial muscles become enlarged to form retractors of the siphons, and the portion of the pallial line from which they arise becomes, as it were, pushed forwards so as to form a bay or *pallial sinus* (Fig. 540, p.s.). Thus the shells of species with well-developed siphons are *sin unpalliate*, or have an indented pallial line, while those with small or no siphons are *integripalliate*, or have an entire pallial line. The larger the siphons the stronger are their muscles, and the deeper is the pallial sinus: when very large they cannot be completely retracted, and the posterior border of the shell then gapes permanently. The siphons may be separate (Fig. 541) or united (Fig. 542). They are specially adapted for species of burrowing habits, which are able to remain buried in the mud or sand, the ends of the siphons only being exposed for the supply of aerated water and food, and even they can be instantly withdrawn in the event of danger.

In addition to their union posteriorly to form the siphons, the mantle-lobes may concresce to a greater or less extent along their ventral border (Fig. 543), forming a more or less tubular investment for the body, and leaving an anterior *pedal aperture* for the protrusion of the foot. Their anterior portions may also be united to form a sort of hood.

To return to the *shell*, the muscular impressions and the pallial line have already been referred to. As a general rule the right and left valves are alike, or nearly so, the shell being therefore *equivalve*. Each valve is *inequilateral*, being divided into unequal

Fig. 540. *Venus gudia*, inner surface of left valve; *al*, anterior lateral tooth; *am*, anterior adductor impression; *c*, cardinal teeth; *l*, ligament; *lu*, lunule; *p*, pallial line; *p.l*, posterior lateral tooth; *p.a*, posterior adductor impression; *p.s*, pallial sinus; *u*, umbo. (From the Cambridge Natural History.)

Fig. 541. *Scrobicularia piperata*, in its natural position, partly buried in sand. *A*, exhalant siphon; *B*, inhalant siphon. (From the Cambridge Natural History.)
portions by a line drawn from the umbo to the gape. It will be remembered that in the Brachiopoda, the only other class of bivalved animals, the precise opposite is the case, the shell being equilateral and inequivalved. Some Pseudolamellibranchs are, however, nearly equilateral and markedly inequivalved, such as the scallop (*Pecten*), and the inequivalve character is still more marked in the oyster, in which the right valve is deeply concavo-convex and permanently attached to a rock, while the left is flat and forms a sort of lid. This condition of things reaches its maximum in the extinct *Hippurites* (Fig. 544, B.), in which the right valve has the form of a long tube closed at one end by the flat lid-like left valve. In the extinct *Requienia* (A) the left valve is spirally coiled so that it resembles a snail-shell, and its aperture is closed by the flat lid-like right valve: in *Dioecus*, also extinct, both valves are coiled.

The hinge-teeth (Fig. 540) vary indefinitely in form and size or may be absent altogether; the hinge-ligament is usually band-like, but in *Pecten* takes the form of a cylindrical cord. The variations in form, ornamentation, colour, &c., among the many thousand known species of shell are too numerous to mention; but reference must be made to peculiar modifications found in certain burrowing forms. In *Pholas*, a

![Diagram](https://example.com/diagram.png)
the two valves. In *Teredo* (Fig. 545), the so-called Ship-worm, which causes great destruction by boring into piles, ships’-timbers, &c., the valves (v.) remain very small and weak but movable, and the general surface of the mantle secretes a continuous shelly tube which lines the burrow. In *Aspergillus* (Fig. 546) the valves are completely fused to the tube, the anterior end of which is closed by a plate perforated with numerous holes like the rose of a watering-pot.

In *Nucula*, *Area*, &c., the foot (Fig. 548, fl.) presents what may be considered as its most primitive form, having a flat ventral surface or sole upon which the animal creeps. Far more common is the ploughshare-like form we are already familiar with in *Anodonta* and *Unio*, adapted for slowly making its way through sand or mud. In a few forms, e.g. *Trigonia* and *Cardium*, it is bent upon itself and is capable of being suddenly straightened so as to act as a leaping organ: in *Mytilus* it is cylindrical (Fig. 547, F); in the Oyster it is absent. In addition to the anterior and posterior retractors the foot is sometimes provided with a *levator* muscle (Fig. 548, l), particularly well developed in *Nucula* and its allies.

Immediately posterior to the foot a *byssus-gland* is frequently found: it secretes a silky substance in the form of threads, which serve to anchor the animal permanently or

Fig. 544.—*Requienia ammonacea*; B, *Hippurites cornu-vaccinum*. a, right valve; f, point of fixation. (From the Cambridge Natural History.)

Fig. 545.—*Teredo navalis*, in a piece of timber. P, pallets; ss, siphons; T, tube; V, valve of shell. (From the Cambridge Natural History.)
temporarily. It is by means of the byssus that the Sea-mussel (*Mytilus*) is attached to the rocks (Fig. 547, *By*); in *Plana* the threads are fine enough to be woven in a fabric. In *Lima* the threads of the byssus are spun into a kind of nest in which the animals lie protected, and in *Vulsella* the gelatinous byssus forms a sheath within which the entire shell, which is of a delicate character, can be retracted. In such forms as *Mytilus* the muscles which ordinarily serve to retract the foot are inserted mainly into the byssus: the latter being fixed they serve to rotate the animal in various directions or, in other words, act as *adjustors*. It must be borne in mind that the definitive byssus just described is not homologous with the provisional byssus of *Anodonta* (p. 644) which lies in front of the mouth.

The *gills* are found in their simplest form in the Protobranchia (e.g. *Nucula*), where they consist of a single plume-like organ or *ctenidium* (Fig. 548, *gl*) on each side of the body. Each ctenidium is of small size compared with the gills of *Anodonta*, and is formed of a longitudinal *axis*, fixed at its anterior end and free posteriorly, to which are attached two rows—an inner and outer—of somewhat triangular *gill-filaments*, all perfectly free from one another (Fig. 549, *A*).

In *Amusium* (*B*) the gill-filaments are much elongated and thread-like instead of triangular. In the common Ark-shell (*Arca, C*) a great change is seen. The gill-filaments are delicate and somewhat flattened threads, each bent upon itself into the form of an elongated *U*, and therefore consisting of a proximal or fixed limb and a distal or free limb. The flexure takes place in such a way that the free limb is external in the outer row of filaments, internal in the inner row. Adjacent filaments are loosely united by groups of large interlocking cilia (Fig. 550), placed at regular intervals, and in this way the outer and inner
limbs of the filaments are respectively joined together, so as to convert each longitudinal row of U-shaped filaments into a double plate, fairly coherent unless the ciliary junctions are forcibly separated. In this way the single ctenidium of Nucula has given place to two plate-like gills, each formed of an outer and an inner lamella: the inner lamella of the outer and the outer lamella of the inner gill are united along their dorsal edges, the line of junction representing the axis of the ctenidium: the outer lamella of the outer and the inner lamella of the inner gill are free dorsally.

In Mytilus (Fig. 549, D) the gill is strengthened by the development of delicate non-vascular bars or inter-lamellar junctions between the two limbs of each filament. In Lucina these junctions are large and provided with blood-vessels, and vascular bars of tissue, the inter-filamentar junctions, replace the ciliary junctions of the lower forms. Thus by a regular series of gradations the ctenidium is replaced by the complex double gill we are already familiar with in Anodonta. In all the higher forms the outer lamella of the outer gill concresces with the mantle and the inner lamella of the inner gill with the visceral mass, while, posterior to the latter, the inner lamellae of the right and left inner gills unite with one another. The blood-vessels, which are confined to the filaments in the simpler types, occur only in the inter-filamentar and inter-lamellar junctions in the more complex forms of gill. In the Septibranchia the gills are degenerate, being represented by a horizontal muscular partition or septum.

Fig. 548.—Nucula nucleus, the animal with the left mantle-lobe removed; a, ad, anterior adductor; ar, anterior retractor; ft, foot; gl, gill; gon, gonad; l, levator; m, right lobe of mantle; m.b, mouth; p, ad, posterior adductor; p.lp, palp; p, r, posterior retractor. (After Pelseneer.)
(Fig. 549, F, sep. and Fig. 551 IX), which divides the inhalant and exhalant chambers from one another. Respiration in this case is performed entirely by the internal face of the mantle.

Digestive Organs.—The mouth is anterior; in forms with two adductor muscles it is always placed immediately behind the anterior adductor. It is bounded by two pairs of labial palps which sometimes attain an immense size (Fig. 548); there is never any trace of jaws or other masticatory apparatus. The convolutions of the intestine are sometimes very complex. The crystalline style either lies freely in the stomach and anterior part of the intestine, or is contained in a cecal pouch of the stomach (Fig. 552), which may be prolonged into one of the lobes of the mantle. The anterior end of the style, which projects into the stomach, appears to be slowly dissolved by the digestive juice,
forming a sort of cement to enclose the hard particles of the food and prevent any harmful effect on the mucous membrane.

The excretory organs occur in their simplest form in the Protobranchia, in which they have the forms of cylindrical curved tubes or meso-nephridia (Fig. 553, vi), opening at one end into the pericardium and at the other on to the exterior; the whole nephridium is lined with glandular epithelium, and has no communication with its fellow of the opposite side. In the higher forms the organ becomes differentiated into a secreting portion or kidney, which becomes very spongy in texture, and opens into the pericardium, and a non-secretory portion or bladder, which opens externally. Frequently there is a communication between the right and left nephridia, and in some genera, such as the Oyster, the organs become extensively branched.

Circulatory Organs.—The heart is usually perforated by the rectum, but lies altogether above it in Nucula (Fig. 553, vii) and some other genera; the ordinary arrangement seems to have been brought about by the heart becoming folded over the intestine and united below. In the Oyster and some other forms the heart is below the rectum. Pores are often found on the surface of the foot, and it has been asserted that through them the
external water mixes with the blood; this is, however, certainly not the case: the blood system is everywhere closed.

The nervous system is found in its most primitive condition in Nucula (Fig. 554). Instead of a single cerebro-pleural ganglion there are, on each side, distinct cerebral (xvi.) and pleural (I) ganglia, each united by a connective with the pedal.

The most characteristic sense-organs are the otoecysts and the osphradia. The otoecyst—auditory or directive organ—is always placed in the foot, just behind the pedal ganglion, to which it is connected by a nerve: the latter probably has its origin in the cerebral ganglion. The otoecysts are developed as involutions of the ectoderm, but, except in Nucula (Fig. 554, x-xii), the connection with the exterior is lost, and they become shut sacs.

The osphradia—olfactory or water-testing organs—are patches of sensory epithelium situated in immediate relation with the visceral ganglia (Fig. 554, viii), from which they are usually said to be innervated. There is, however, some reason for thinking that the osphradial
nerve actually springs from the cerebral ganglion. Patches of sensory epithelium, very similar to the osphradia, and called the abdominal sense-organs, occur, one on each side of the anus, in Area and other asiphoniate forms, and a similar organ has been described beside the retractor muscles of the siphons in several Sipholiata.

In a few instances eyes are present, but never in what we are accustomed to consider as the normal position for such organs, at the anterior or head end of the body. They occur, in fact, in the only situation where they can be of any use, namely, along the edge of the mantle. The best known form in which they occur is the common Scallop (Pecten), which has a single row (Fig. 537, vii) all round the mantle border. Each has a cornea (Fig. 555 J), a cellular (not cuticular) lens (2), a retina (5), formed of cells, the inner ends of which are modified into visual rods, and an optic nerve (7), one branch of which spreads over the front of the retina and sends branches backwards to the visual rods. In this peculiarity, as well as in the cellular lens, the eye of Pecten is singularly like that of Vertebrates. The pallial eyes of Pelecypoda are probably to be looked upon as modified tentacles.

Reproduction and Development.

—Most Pelecypoda are dioecious, but several hermaphrodite forms are known. Some of these, such as the Oyster, are protandrous, the gonad producing first sperms and afterwards ova: in others part of the gonad serves as an ovary, part as a testis, the two opening into a common duct; in others again there is a distinct ovary and testis on each side opening by separate ducts. There are never any accessory organs of reproduction, such as spermatheca, penis, etc. Fertilisation frequently takes place in the water after the eggs are laid. Segmentation is total but unequal, and the gastrula is formed either by invagination or by epiboly. A shell-gland (Fig. 556 sd.) is formed as an invagination of the dorsal surface, a stomodaeum (m)
as an invagination of the ventral surface, and the larva of most forms, unlike that of Anodonta or Unio, passes into a stage in which it closely resembles the trochosphere of Worms (Fig. 556) having a pre-oral and a post-oral circllet of cilia, a tuft of cilia round the anus, and an apical tuft in the middle of the prostomium. There is also an ectodermal thickening on the prostomium which becomes the cerebral ganglion, and a similar ventral thickening which gives rise to the pedal ganglion and corresponds with the rudiment of the ventral nerve-cord in Worms. The pelecypod trochosphere is, however, distinguished from the corresponding stage in Worms by the presence of the shell-gland, which soon secretes a delicate unpaired shell. The prostomial region grows out into a thickened retractile rim, bearing the pre-oral circllet of cilia, and called the velum (Fig. 557 vel.): the larva at this stage is distinguished as a veliger—a very characteristic molluscan
phase of development. The shell soon becomes bivalved and extends ventrally on each side, paired processes of the dorsal region of the body accompanying it and forming the mantle-lobes. A projection grows out from the ventral surface, between mouth and anus, and becomes the foot (Fig. 558 f), and on the sides of the body the gill-filaments (k) arise as a row of delicate processes, at first simple, but afterwards becoming bent upon themselves so as to assume a V-shape. Eyes are often present in the larva at the base of the velum.

General Remarks.—Although none of the Pelecypoda are microscopic, they present a considerable range in size, from the little fresh-water Cyclus, about 1 cm. long to the Giant Clam (Tridacna gigas) of the Indian and Pacific islands, which is sometimes 60 cm. (two feet) in length and 500 pounds in weight.
Many pelecypod shells are white or dull brown in colour, but in several genera brilliant tints are the rule, the various species of Scallop (Pecten) being specially remarkable in this respect. The inner surface of the shell often exhibits beautiful iridescent tints, noticeably in the so-called Pearl-oyster (Melagrina) and the Australian Trigonia. As far as is known, the colours are all "non-significant," i.e. are of no physiological or ethological importance. In this connection the formation of pearls by some species must be mentioned: they are deposits of nacre formed round sand-grains or other foreign bodies, either between the mantle and shell or in the soft parts. They are produced, amongst other species, by the "Pearl-oyster" (Melagrina margaritifera) and by the Pearl-mussel (Unio margaritifera). Some species, such as the common boring Pholas, are phosphorescent.

Most Pelecypoda are sluggish in habit, progressing only by slow contractions of the foot, and some are permanently fixed, during adult life, by the byssus. The Scallops, however, swim freely by clapping the valves together. The Cockles (Cardium), Trigonia, etc., jump by sudden movements of the foot, and the Razor-fish (Solen) jerks itself forward by suddenly withdrawing its foot and thus ejecting water through the siphons. The only parasitic genus is Entoralcea, found in the gullet of a Holothurian.

Pelecypoda are abundant both in fresh water and the sea; the marine forms are mainly littoral. None are pelagic or terrestrial. They are very abundant in the fossil condition, occurring in all formations from the Upper Cambrian upwards, and, owing to their gregarious habits, frequently forming extensive deposits or shell-beds. The oldest forms are all iso- or hetero-myarian the
monomyarian types (Pseudolamellibranchia) appear first in the Carboniferous, and the Siphoniata not until the Triassic period. The modern genus Area dates from the Upper Cambrian, and thus furnishes as striking an example of a "persistent type" as some of the Brachiopods.

There seems to be little doubt that the Protobranchia, and especially Nucula, exhibit the most primitive type of pelecypod organisation, as indicated by the plume-like gills with separate filaments, the simple nephridia, and the distinct cerebral and pleural ganglia; absence of concrescence is always a mark of low or generalised organisation. The Filibranchia with imperfectly united gill-filaments come next, and are divisible into two groups, isomyarian with equal-sized adductors and heteromyarian with more or less atrophied anterior and proportionally enlarged posterior adductor; the latter group is to be looked upon as the more specialised, and leads to the Pseudolamellibranchia (monomyarian) in which the anterior adductor disappears completely in the adult, while the posterior is immensely enlarged and assumes a central position. Similarly the isomyarian Filibranchia lead to the Eulamellibranchia, which are equal-muscled, but have the gill-filaments united into a complete basket-work. In the Eulamellibranchia, lastly, there is a gradual series of stages from comparatively generalised forms with free mantle-lobes up to the highly specialised species with large siphons. That the Pseudolamellibranchia and the siphoniate Eulamellibranchia are to be looked upon as the highest members of the class, is indicated, not only by morphological evidence, but by their comparatively late appearance in time.
CLASS II.—AMPHINEURA.

The Amphineura are a class of marine Mollusca formerly grouped with the Gastropoda, but now recognised as sufficiently far removed from the latter to require separation as a distinct class. The commonest, as well as the most highly organised, of the Amphineura are the Chitons, a group of remarkably sluggish Limpet-like Molluscs with a shell composed of eight pieces. The other members of the class are lowly organised forms, comprising the most primitive of the entire phylum, all of which are devoid of a shell.

1. DISTINCTIVE CHARACTERS AND CLASSIFICATION.

The Amphineura may be defined as bilaterally symmetrical, more or less elongated Mollusca, with terminal mouth and anus, either devoid of a shell, or possessing one which consists of eight median valves. The mantle contains numerous spicules of carbonate of lime, and is not divided into paired lateral lobes. The ctenidia are either absent, or there is a single pair, or they occur as a circlet round the anus, or as two lateral rows situated between the edge of the mantle and the side of the foot. An odontophore (vide infra) is sometimes present, sometimes absent. The nervous system consists of two pairs of nerve-cords, pedal and pallial, connected in front with a nerve-ring.

The class is divisible into two orders:—

Order 1.—Placophora.

Amphineura with a broad foot, and with a shell which consists of eight transverse valves. There is a row of ctenidia on either side. This order includes the Chitons.

Order 2.—Aplacophora.

Amphineura with an elongated body covered completely by the mantle, without shell, but with calcareous spicules. There is no foot, but generally a ventral longitudinal groove along which usually runs a low ciliated ridge. In some there is a posterior cavity containing a pair or a circlet of ctenidia.

This order includes Neomenia, Pronomenia, Chatoderma, and several allied genera.

2. GENERAL ORGANISATION.

External Features.—The Aplacophora are distinguished by their worm-like body, sometimes elongated and narrow and capable of being coiled into a spiral, sometimes comparatively
short and thick. In most instances there is little difference in external appearance between the anterior and posterior ends. In *Chætoderma* (Fig. 560) alone is there a distinct head, separated off from the body by a constriction, as well as a posterior cloacal region which is similarly marked off. A shell is completely absent. The mantle covering the surface possesses a cuticle, in the substance or on the surface of which are spicules of calcified material. Along the middle of the ventral surface runs, in most instances, a groove, in some cases merely represented by a narrow strip from which the cuticle and spicules are absent. The ventral groove, when present, usually contains a slight longitudinal ridge, and this is all that in these primitive forms represents the foot, an organ so highly developed in other Molluscs. In *Chætoderma* it is entirely absent. With the ventral groove is connected in front an anterior ciliated groove, while behind it is in direct communication with the cavity of the cloaca.

In *Pronomenia ctenidia* are absent. In the remaining genera there is either a pair or a circle of gills situated in the cloaca—a cavity at the posterior end of the body into which the anus opens (Fig. 565).

In *Chiton* (Figs. 562 and 563) the body is dorso-ventrally compressed, convex above, and presents below a broad flat foot (narrow in *Chitonellus*) which acts not only as an organ for effecting creeping movements, but also as a sucker for enabling the animal when at rest to adhere firmly, like a Limpet, to the surface of a rock. The most remarkable external feature of Chiton is the presence on the dorsal surface of a calcareous shell (Figs. 562 and 564) made up of no fewer than eight transversely elongated pieces or valves, arranged in a longitudinal row, articulating together and partly overlapping one another. These valves are primitive, being direct developments of a series of shell-glands of the embryo and not secondary structures like the shells of other Molluscs. They are sometimes partly, sometimes completely, covered over by the mantle. Each valve consists of two very distinct layers, a more superficial and a deeper, the latter formed of compact calcareous substance, the former perforated by numerous vertical canals for the lodgment of the sense-organs to be presently referred to. External
to the valves the dorsal integument (mantle) of Chiton and its allies is usually beset with a number of horny or calcified tubercles and spicules. The mantle develops only very slight lateral flaps, and under cover of these are a series of small ctenidia (Figs. 563 and 569, cten) to the number of fourteen to eighty. The mouth and anus are both median, situated at the anterior and posterior extremities respectively.

Alimentary System.—In the Aplacophora the mouth is usually a longitudinal, rarely (Chaetoderma) a transverse, slit, situated ventrally near the anterior extremity. There is a buccal cavity, with in some cases an odontophore¹ (Fig. 565, rad) in others a single chitinous tooth; sometimes teeth are entirely absent. There are both salivary and buccal glands. Very characteristic of the group as compared with other Mollusces is the presence of a straight intestine devoid of coils. It has connected with it either a single cæcum or a double row. In the Placophora the buccal cavity always contains a well-developed odontophore. The intestine is elongated

¹ For a description of the structure of this characteristic organ, see the account of Triton, infra.
and coiled. There are salivary glands and a large paired liver (Fig. 566, liv.)

Body-Cavity.—In the Aplacophora the interstices between the organs and the body wall are filled with a form of connective tissue with muscular fibres; a vertical diaphragm (Fig. 565, dia,) separates the posterior part of the body, containing the pericardium (peri), from the rest. In the Placophora the cœlome (Fig. 566), is an extensive cavity, lined with a cœlomic epithelium, and divided into three completely separated parts, the pericardium, the genital cavity, and the general body cavity.

Vascular System.—The existence of a heart in the Aplacophora is somewhat doubtful; the organ which is supposed to be of that nature is contained in a cavity termed the pericardium (Figs. 565 and 568, peri).

In Chiton there is a well-developed heart (Fig. 566, ht.) consisting of a median ventricle and two lateral auricles. The pericardial cavity in which it lies is a space of considerable extent in the posterior region of the body, below the two last valves of the shell.

The **Nervous System** consists in the Aplacophora (Fig. 567, A, B, C) of four longitudinal nerve cords—two pedal and two pallial.
These are connected together by an oesophageal ring, thickened dorsally into a single or double cerebral ganglion; and in front of this is a second, more slender stomatogastric nerve-ring with small ganglia. The pedal cords (v.v) may present in front a pair of ganglionic thickenings connected by a commissure, and further back there may be a series of enlargements united by commissures. The pallial cords (l.v) are connected behind, above the rectum, by a commissure (p.c) which usually bears a median enlargement. Sometimes a union takes place posteriorly between the cords of the two pairs. There are no eyes, nor otoceysts, nor tentacles. Some have a sensory frontal lobe and a sensory pit or elevation in the middle line of the dorsal surface near the posterior end.

In the Placophora (Fig. 567, D) there is an oesophageal nerve-ring consisting of a thicker dorsal cerebral portion not differentiated into ganglia, and a thinner ventral buccal commissure. The cerebral part sends off nerves to the labial palps, the lips, and the buccal apparatus. Two pairs of longitudinal nerve cords, pedal and pallial, are given off posteriorly. The former, which give off nerves to the foot, are joined by numerous commissures passing beneath the enteric canal. The latter, which send off nerves chiefly
to the mantle and the ctenidia, are united together by a suprrectal commissure at the posterior end of the body. Just behind its origin each pallial cord gives off a slender visceral commissure, which unites with its fellow of the opposite side: two small ganglia lie in this visceral commissure near the middle line. The large cords contain nerve-cells throughout their length.

The conspicuous organs of special sense, present on the head of Gastropods (vide infra), are absent in the Placophora, as in the Aplacophora. A pair of processes situated in front, at the sides of the mouth, have the character of labial palps. In the buccal cavity there are cup-shaped gustatory organs supplied with nerves from the cerebral commissures, and in front of the odontophore is a thickening of the epithelium—the subradular organ—containing nerve-endings. Remarkable sensory organs, the microæsthetes and the megalæsthetes, lie in the canals already mentioned as occurring in the superficial layer of the shell valves. The megalæsthetes may take the form of eyes, with cornea, lens, pigment layer with iris, and retina; in some cases the lens is absent.

Reproductive and Renal Organs.—In the Placophora the sexes are distinct: in the Aplacophora, with the exception of Cladodermata, they are united. In the Aplacophora (Fig. 568), with the exception of Cladodermata, the gonads are paired. The sexual products pass into the pericardial cavity and thence are carried to the exterior by a pair of ducts (which may be of the nature of nephridia) opening into the cloaca.

In the Placophora (Fig. 569) there are two symmetrical nephridia opening internally into the pericardium by a ciliated funnel-like opening (a. peri. ap), and opening on the exterior (neph. ap) between two of the posterior ctenidia. Each consists of a looped main tube, into which open numerous minute tubules which ramify among the viscera. The testis and ovary (gon) are similar in appearance, differing only in colour when the
products are mature. Each is an unpaired sac marked by a series of slight lateral constrictions.

Little is known of the development of the Aplacophora. The eggs undergo complete segmentation, and give rise to a gastrula by invagination. This develops into a form of trochosphere with a ciliated ring called the prototroch or velum.

The eggs of Chiton are fertilised in the mantle-cavity, where in one species they are retained until the embryos are fully developed. At first the segmentation is tolerably equal—the ovum becoming divided into four approximately equal blastomeres; but at the stage of eight cells four on one side are to be distinguished as larger than the other four. These two sets undergo further divisions, and arrange themselves in such a way as to form a somewhat flattened blastula, one side of which (vegetal pole) is composed of a comparatively small number of large cells. Then follows the invagination of the cells of the vegetal side and the resulting formation of a gastrula. This soon becomes elongated in the direction of the future long axis. Two endoderm cells of specially large size in the neighbourhood of the blastopore, with several others in their proximity, constitute the rudiments of the mesoderm (Fig. 570, B, mes.) ; these pass into the segmentation-cavity, and speedily assume a bilateral arrangement.

Two rings of cells surrounding the embryo develop cilia (cil.), and by the double circle thus formed the larva becomes divided into an anterior and a posterior region. The blastopore becomes
shifted from its original posterior position forwards on the ventral surface, until it comes to be situated just behind the circket of cilia; it becomes elongated, and an invagination of ectoderm round its anterior end forms the mouth (mo.) and stomodæum. A ventral diverticulum of this forms the rudiment of the radular sac (rd.). By greater relative growth of the post-oral part the embryo assumes the form of a pear; and in this trochosphere stage with a pre-oral circket and a bunch of cilia in the middle of the apical area, it becomes free in the case of certain of the species, while in others it remains enclosed in the egg up to a later stage of development. As yet there is no anus, that aperture, with the proctodæum, being formed by invagination at a later stage. The apical plate is not present in the early larva; but the rudiments of the cerebral ganglia (C, cer. g.), which appear at the apical pole at a later stage, probably represent it. Primitive nephridia, such as occur in Annulate and many Molluscan trochospheres, are not present.

The post-oral region now becomes greatly elongated; the mesoderm increases greatly in extent, and forms two well-defined streaks, which afterwards become divided into parietal and visceral layers with a coelomic space between them. The post-oral part of the embryo now presents an appearance resembling rudimentary segmentation. This is due to the development of a series of rudiments of the eight pieces of the shell (B, calc.), each of which becomes formed independently after the fashion of the entire shell of other Mollusca.

Ethology, Distribution, &c.—All the Amphineura are marine. The Placophora occur at all depths, though most abundant
on the shores between tidal limits. The Aplacophora, on the other hand, are rare in very shallow water, and absent altogether from the littoral zone; some have been found at considerable depths (down to 1,250 fathoms). The Placophora are all vegetable feeders, their food consisting of minute algae and diatoms. The Aplacophora subsist on small animals. The Placophora when at rest adhere firmly to the surface of a rock or a block of coral by means of the sucker-like foot. When forcibly detached the animal curls itself up into a ball, and will only after a considerable time slowly extend itself again. All their movements are extremely sluggish. The Aplacophora are unable to fix themselves in this way; many of them occur twined round the stems of zoophytes, sometimes attached by a thread of viscid mucus.

The Aplacophora have no hard parts that would be recognisable in the fossil condition; but numerous fossil Placophora are known from Silurian formations onwards. The valves of the Silurian genera differ from those of recent forms in the absence of the articulations.

CLASS III.—GASTROPODA.

The Gastropoda, including the Snails and Slugs, Limpets, Whelks, Periwinkles, Sea-hares, and the like, are Mollusca in which there is, as a rule, a shell composed of a single piece, and in which the mantle is not divided into two lateral folds as in the Pelecypoda. The body is inequilateral, owing to the one-sided development of the visceral mass. There is a well-developed ventral foot, usually with a broad flat surface on which the animal creeps. A head-region bearing eyes and tentacles is distinguishable in front of the foot. The alimentary canal is characterised by the presence in the buccal region of a peculiar organ, the odontophore, present also in some of the Amphineura, bearing rows of minute chitinous teeth. Plume-like ctenidia are usually present. A metamorphosis occurs in the development, during which the young Gastropod passes successively through Trochosphere and Veliger stages. The majority of the families of Gastropoda are marine, a few of these being pelagic; but some inhabit fresh water and others are terrestrial.

I. Example of the Class.—The Triton (Triton nodiferus).

Triton is a marine Gastropod living in shallow water, usually close in shore. The species to which the following description specially applies has a very wide range, from the English Channel to the South Pacific, and occurs as a fossil as far back as the Miocene. In most respects the English Whelk (Buccinum undatum) will be found to conform to the description.
The **shell** (Fig. 571) is a very hard and dense calcareous structure, presenting no trace of division into the valves composing the shell of the fresh-water Mussel, and lacking also its bilateral symmetry. It is in the form of an elongated hollow cone closely wound round a central axis. The apex of the cone is the organic apex of the shell, corresponding to the umbo of the fresh-water Mussel, and is the point from which the growth of the shell has proceeded; the base is represented by the wide oblique opening—the mouth or peristome of the shell. Starting from the apex along the internal cavity of the spirally wound cone, in order to reach the mouth in an adult shell, we have to pass completely round the central axis five times—*i.e.* the spiral consists of five turns. In following the turns, the direction taken is to the right, that is to say, the spiral of the shell is a right-handed or dextral one. The axis (Fig. 572) is in the shape of a twisted shelly rod—the *columella*—containing a narrow lumen; it is formed by the close union of the axial portions of the wall of the spiral. The windings of the spiral are marked on the outer surface of the shell by a narrow impressed spiral line or *suture*, parallel with which are numerous fine ridges and depressions—the *lines of growth*; the increase in size of the shell takes place in the direction of these lines, not at right angles to them as in the shell of the fresh-water Mussel, and the lines that more strictly correspond to the lines of growth of the latter are excessively fine striae which run transversely to the stronger lines. At certain points, usually three in a full-grown shell, the spiral is interrupted by a transversely directed edge which appears to overlap the succeeding portion; this edge marks the position which the mouth of the shell has occupied.

Fig. 571.—Shell of *Triton nodiferus.*
Natural size.
during regularly recurring periods of arrest of growth, probably
annual.

The mouth of the shell is bordered on the side turned away
from the columella by a prominent rim or outer lip of the
peristome; this is produced at the extremity farthest from the apex
of the shell into a spout-like process—the siphonal process. The
prominent edge of the peristome is in relation to the dorsal
surface of the body of the animal; the opposite side has no prominent edge,
but is rounded off to form a smooth inner lip; a
couple of ridges on this inner lip towards the apical
end aid the animal in
drawing itself out after it
has become retracted into
the interior of the shell.
The outer lip is in relation to the dorsal surface
of the body of the animal,
the inner lip in relation to the ventral surface:
the siphonal process is for the
lodgment of a spout-like
process of the edge of the
mantle—the siphon.

When removed from the
water, or disturbed in any
other way, the animal be-
comes completely with-
drawn into the interior of
the shell, when the latter
is observed to become
closed by a plate—the oper-
culum (Fig. 573)—which
fits accurately across the
passage some distance in-
ternal to the peristome. The operculum is an oval plate of
chitinoid material hardened by calcareous deposits; like the
shell itself, it exhibits lines of growth marking what has been
its edge at successive stages in the development of the shell.

The minute structure of the shell is in the main similar to that
of the fresh-water Mussel (p. 634). The outer surface of the
shell is covered with a thin layer of uncalcified chitinoid material
the periostaeum; beneath which is a thick prismatic layer, and,
lining the inner surface, a layer of nacre.

Vol. 1
External features of soft parts.—The Triton is able to extend itself to a considerable degree beyond the mouth of the shell; but a portion of the body always remains concealed in the interior, even when the animal has extended itself to its utmost, the body being, like that of the fresh-water Mussel (and of nearly all the Mollusca), organically connected with the shell. In Triton the connection is by means of a strong muscle—the *columellar muscle* (Fig. 574, col. m.)—which extends from the concave right side of the animal to the columella, into which it is inserted; it is by means of this muscle that the anterior portion of the body, capable of being thrust out through the mouth of the shell, may again be withdrawn.

If the Triton be examined in the extended condition (Fig. 574) it will be found to present a distinct head, which bears dorsally a pair of appendages—the *tentacles* (*tent*)—of a sub-cylindrical shape, slightly compressed towards their bases, and narrowing somewhat towards their free extremities; these are capable of being extended and contracted, but not of being completely retracted. Each bears on its outer side some little distance from the base a prominent *eye*. At the anterior end of the head on its ventral aspect is the opening of the mouth. When the animal is feeding, an elongated cylindrical *introvert* (Fig. 575), comparable to that of Sipunculus (p. 451), is extended forwards, bearing the mouth at its anterior end; at other times the introvert is completely involuted within the head and anterior portion of the body. In the male on the right-hand side of the body, some little distance behind the head, is a long narrow fleshy process, broader at the base than at the free end, and deeply grooved
longitudinally; this is the penis. Running back from its base is a narrow groove with prominent lips—the sperm groove, continuous with that on the penis; in the female these parts are not represented.

Foot.—On the side of the body (ventral) which the animal applies to the surface of the ground when it extends from the shell is a flat surface elongated in the antero-posterior direction; the wall of the body in this region is composed of a dense mass of muscular fibres; this is the principal part of the foot (propodium and mesopodium combined); the posterior portion (metapodium) is a thick process projecting behind this and bearing the operculum on its surface. The foot is highly contractile, and it is by means of contractions passing over it in a succession of undulations that the animal creeps along, dragging after it the rest of the body enclosed in the shell. In the middle line of its flat surface, nearer the anterior than the posterior end, is a slit-like aperture leading into a cavity lined with unicellular glands—the pedal gland.

When the remainder of the body has been removed from the shell, it is found to be twisted up into a coil—the visceral spiral, corresponding to the spire of the shell within which it was lodged. This is unsymmetrical, the axis of the spiral being directed, not straight backwards, but backwards, upwards, and to the right. The external asymmetry of the body is not strongly marked in the part which is capable of being protruded from the shell, but is still recognisable, and an examination of the internal organs shows a marked excess of development on the left-hand side, i.e. the side which corresponds with the longer outer side of the spiral of the shell. The surface of the part of the animal which is capable of being pushed out from the shell is covered with a thick integument, which is darkly pigmented, except on the lower surface of the foot. Over the visceral spiral the mantle forms a thin, delicate, colourless layer. Anteriorly this becomes thickened and pigmented, and at the posterior limit of the protrusible part gives rise to a thickened ridge, the collar (Fig. 574, coll.), forming a semi-circle over the dorsal and lateral regions. In the middle this is not in close contact with the body, but leaves a large cleft, leading into a very wide space extending backwards for a considerable distance. This space, which is formed by an infolding of the mantle, is termed the mantle or pallial cavity. In it are to be found the ctenidium, the osphradium, and the anal, excretory,
and reproductive apertures. The wall of the cavity is much folded and plaited, and contains a quantity of glandular tissue, the plaits being most numerous on the right-hand side in front of the anus.

The ctenidium or gill (Fig. 576, ćten.) is closely applied to the wall of the mantle-cavity to the left of the middle. It consists of a main stem, with which are connected a row of delicate flexible lamellae set at right angles to it; these are broadest in the middle, becoming smaller towards the ends.

The osphradium (osp.ļ.) lies close to the ctenidium on its right-hand side, i.e. nearer to the middle of the body. It presents a central axis, connected with which are two rows of close-set delicate lamellae placed at right angles to it. Like the ctenidium, it is closely applied to the wall of the mantle-cavity throughout its length. The lamellae of the osphradium are supplied with nerves which ramify over them; and its function seems to be to ascertain the condition of the water that enters the mantle-cavity.

Digestive System.—The mouth, situated at the anterior end of the introvert, leads into a large chamber with muscular walls, the buccal cavity (buc.). At the sides of the entrance to this cavity the investing cuticle is thickened to form two distinct horny plates—the jaws (Figs. 576, 577, and 578, jaw). The jaws are flexible, and on examination under the microscope are found to be composed of numerous rows of minute bodies, the denticles; the anterior edge is minutely denticulated. From the floor of the cavity rises an elevation, the odontophore (Fig. 576, od., Fig. 577, odont.), which is somewhat elongated in the direction of the long axis of the body and compressed laterally. Over the summit of the odontophore runs longitudinally a narrow strap-like body, the radula or lingual ribbon (Figs. 577 and 578, rad.), beset with numerous minute horny teeth arranged in transverse rows. Posteriorly this toothed ribbon extends into a narrow curved pouch—the radular sac (Fig. 576, rad. s, Fig. 578, rad. sac.)—extending backwards from the posterior and lower aspect of the buccal cavity. Anteriorly it does not extend beyond the odontophore prominence. The latter contains cartilages (Fig. 578, cart.) serving for the support of the whole apparatus, and is capable of being extended, with the radula which it bears, through the opening of the mouth by the contraction of sets of protractor muscular fibres. Inserted into the radula itself are sets of bands of muscular fibres by which it can be drawn backwards and forwards over the odontophore as over a pulley, the effect being a rasping of any hard substance against which it is pressed. The entire buccal cavity is capable of being drawn forwards towards the mouth opening, or backwards into the introvert by the contraction of strands of muscular fibres passing from its wall to the wall of the body.
Fig. 576.—Triton nodiferus. Dissection of the internal organs of a female, viewed from the dorsal side. The roof of the mantle-cavity has been divided by a longitudinal incision and the flaps laid out, that on the left bearing the ctenidium and osphradium, and that on the right the rectum and terminal part of the oviduct. The muscular dorsal wall of the body and the introvert have been divided so as to bring into view the anterior part of the alimentary canal and a portion of the nervous system. The buccal cavity has been tilted up and opened so as to show the odontophore, and the esophagus has been cut through near the anterior end. A portion of the ventral wall of the crop has been removed so as to bring the internal folds into view, and the interior of the nephridium with the contained portion of the intestine has been exposed. The stomach is not seen, being hidden by the nephridium, and the ovary is not represented. \(\text{an.} \) anus; \(\text{ante.} \) anterior aorta; \(\text{aur.} \) auricle; \(\text{buc.} \) buccal cavity; \(\text{cerebro-buccal connective; cerebro-ganglia; crop; cten.} \) ctenidium; \(\text{int.} \) intestine; \(\text{jaw;} \) l. buc. g. left buccal ganglion; l. sal. gl. left salivary gland; \(\text{neph.} \) nephridium; \(\text{nephi. ap.} \) nephridial aperture; \(\text{ns.} \) osphradium; \(\text{osph.} \) osphradial aperture; \(\text{post.} \) posterior aorta; \(\text{post. ante.} \) posterior osphradium; \(\text{post.} \) posterior osphradium; \(\text{rad.} \) radula sac; \(\text{rect.} \) rectum; \(\text{sal. duct; siph.} \) siphon; \(\text{supra-cesophageal} \) visceral ganglion; \(\text{tent.} \) tentacle; \(\text{tent.} \) tentacular nerve; \(\text{vent.} \) ventricle.
From the buccal cavity runs backwards a long narrow tube with sacculated walls—the oesophagus (Figs. 576 and 578, oes.). Posteriorly this opens into a large ovoid sac—the crop (Fig. 576, crop). The outer surface of the crop appears marked with numerous close-set fine lines, transverse or oblique in direction, and, when the cavity of the organ is opened, it is found that these correspond to numerous delicate folds which extend to near the middle, and almost completely block up the lumen. On either side of the crop is a large gland—the salivary gland (Fig. 576, l. sal. gl., Fig. 580, r. sal. gl.)—partly composed of a compact glandular substance, partly of spongy tissue in which the secretion collects. The two salivary glands are unlike in size and shape, that on the left-hand side being much longer than that on the right. Each has a narrow duct (sal. du.) which runs forwards and inwards to the dorsal aspect of the oesophagus, where the two come into close apposition, becoming embedded in the wall of the oesophagus, along which they run forwards to open into the buccal cavity.

From the crop leads backwards and to the left a narrow cylindrical tube—the posterior oesophagus. On this follows a stomach (Fig. 574, stom.) which is in the form of a U-shaped tube partly embedded in the substance of the liver, the hepatic ducts from which open into it. The tubular
PHYLUM MOLLUSCA

stomach is followed by a somewhat narrower tube—the intestine (Fig. 576, int.). This enters the cavity of the nephridium, round the interior of which it bends, and, leaving it at its right-hand side, runs forwards in a straight course as the rectum (rect.) embedded in the glandular wall of the mantle-cavity, to near the anterior end, where it terminates in a short, freely projecting, spout-like portion, with the anus (an.) at its extremity.

The liver forms a mass of reddish-brown glandular follicles which compose the greater part of the bulk of the visceral coil.

Vascular system.—Close to the base of the ctenidium, behind it and a little to the right, is the heart, lodged, like that of the fresh-water Mussel, in a cavity, the pericardium, lined by a transparent membrane—the pericardial membrane. The heart consists of two chambers, an auricle (Fig. 576, aur.) and a ventricle. The auricle, which is the smaller of the two, is situated somewhat in front of the ventricle, close to the ctenidium, from the main central vessel of which it receives the blood. The ventricle (vent.) is of somewhat pyramidal shape, but with the edges rounded off. Its wall is extremely thick and muscular. Passing out from the ventricle towards the right is a thick artery, which soon divides into two, one running forwards, the other backwards—the anterior (ant. aort.) and posterior (post. aort.) aorta. The former is a very large trunk which runs forwards below the posterior oesophagus, crop, and anterior oesophagus, giving off branches as it goes, to the region of the head. The posterior aorta, narrower than the anterior, passes into the visceral spiral, where it breaks up into branches for the supply of the various parts. The blood-system consists in large measure of sinuses, as in the fresh-water Mussel, and the general course of the circulation is similar to what has already been described in that Mollusc (p. 640).

Excretory System.—There is only one meso-nephridium (neph.), a large organ situated dorsally behind the pericardium. It is a sac with thick, glandular, and highly vascular walls, the inner surface of which is thrown into numerous complex folds. In front it communicates directly by a large aperture (neph. ap.) with the mantle-cavity, and by a narrower passage with the pericardium.

The nervous system (Figs. 579 and 580) is more highly elaborated than in the fresh-water Mussel. Two pairs of nerve-ganglia—the cerebral (cer. g.) and the pleural (pl. g.)—lie close together over the posterior part of the oesophagus, just where it passes into the crop. The right and left ganglia of each pair are fused together in the middle line, though separated by a constriction, and the ganglia of the two pairs are placed very close together, though quite distinct. From each cerebral ganglion there passes forwards a stout cerebro-bucal connective (cer. buc. con.) to a buccal ganglion situated on the posterior surface of the
Fig. 579.—Triton nodiferus. Nervous system, from the dorsal side. *cer. buc. con.* cerebro-buccal connective; *cer. g.* cerebral ganglion; *col. n.* nerves to the colurnellar muscle; *infra. g.* infra-oesophageal visceral ganglion; *l. abd. g.* left abdominal ganglion; *l. br. n.* left branchial nerve; *l. hr. n.* nerves to branchia and osphradium; *l. mant. n.* left mantle nerve; *ped. con.* cerebro-pedal and pleuro-pedal connectives; *ped. g.* pedal ganglia; *pl. g.* pleural ganglion; *r. abd. g.* right abdominal ganglion; *r. br. n.* right branchial nerve; *r. mant. n.* right mantle nerve; *supra. g.* supra-intestinal visceral ganglion; *visc. n.* visceral nerve branches.
buccal chamber. Also given off anteriorly from the cerebral ganglia are optic nerves to the eye, and tentacular nerves to the tentacles. From each cerebral ganglion passes downwards and forwards a stout cerebral-pedal connective, and from each pleural ganglion a pleuro-pedal connective, to a large pair of closely-joined pedal ganglia (Figs. 579 and 580, ped. g.) embedded in the upper layers of the muscles of the foot, to which they give off numerous nerves. The right pleural ganglion gives off behind a supra-intestinal visceral connective, which bends across to the left, over the oesophagus, and, some distance to the left of the alimentary canal, expands into a triangular supra-intestinal visceral ganglion (supra. g.), situated below the superficial layer of muscular fibres. The left pleural ganglion gives off an infra-intestinal visceral connective, which passes obliquely backwards and to the right, below the alimentary canal, to a ganglion situated a little to the right of the middle line—the infra-intestinal visceral ganglion (infra. g.). The supra-intestinal ganglion gives off a nerve which runs towards the osphradium and ctenidium, which it supplies with branch nerves, and unites with a stout mantle nerve (l. mant. n.), which is given off from the left pleural ganglion. The right pleural also gives off a stout connecting nerve to the infra-intestinal ganglion. From the supra- and infra-intestinal ganglia the left and right visceral connectives are continued backwards and unite behind in the neighbourhood of the stomach; each ends in a triangular abdominal ganglion (l. abd. g.; r. abd. g.), and these are joined by a transverse commissure, from which a number of visceral nerves are given off. A remarkable torsion of the nerve connectives is here to be observed, the two visceral connectives becoming twisted into the form of the figure 8.

Fig. 580.—Triton nodiferus. Lateral view of nerve-ganglia and related parts. Letters as in Fig. 579: cr. aorta; cr. crop; cr. oesophagus; sal. du. salivary ducts; r. sal. gl. salivary gland.
The organs of special sense of Triton, in addition to the tentacles and the osphradium, which have been already referred to, are the eyes and the otoysts. The eye (Fig. 581) is a rounded invagination of the epidermis with an inner wall or retina (ret.) composed of pigmented and sensory cells. The latter (retinophores) are elongated cells narrowed at their central free ends, and produced at the opposite extremity to become continuous with nerve-fibres of the optic nerve. The former (retinulae) have their free extremities much enlarged, and surround the slender ends of the retinophores. A layer of short rods (rds.) lies within the retina proper. The outer wall is thin, and, with the overlying epidermis, forms a transparent cornea. In the interior of the eye is a clear rounded lens (l.) of dense cuticular matter secreted by the cells of the retina; this is surrounded by a less dense body—the vitreous.

The sexes are distinct. There is a single gonad—ovary or testis as the case may be—lodged in the visceral spiral. The sperm-duct is a white tube, thickish and much convoluted where it leaves the testis, narrower and straight distally; it opens in front in the mantle-cavity into the proximal end of the sperm-groove, which, as already mentioned, runs forwards along the right side, and becomes continuous with the groove traversing the penis. The oviduct (Fig. 576, ovid.) is proximally a very delicate tube with colourless transparent walls. This runs forwards to the right side of the mantle-cavity, where it assumes the character of a stout tube (ovid.) with thickened glandular walls, which passes forwards close to and parallel with the rectum, and opens on the exterior near the anus.

2. Distinctive Characters and Classification.

The Gastropoda are unsymmetrical Mollusca, with a mantle which is not divided into two lateral portions; and with a shell which does not consist of two lateral valves, but of a single, unsymmetrical, usually spirally coiled, valve, enclosing a visceral mass of corresponding form. There are, typically, two plume-like ctenidia enclosed in a mantle-cavity, but there may be only one: and in air-breathing forms ctenidia are not developed, respiration
taking place through the wall of the mantle-cavity itself. A distinct head bearing eyes and tentacles is present in the majority. The foot is situated behind the head, and usually has an extensive flattened ventral surface. The buccal cavity contains an odontophore. The nephridium is usually single. The nervous system contains distinct cerebral and pleural, besides pedal, visceral, abdominal, and buccal ganglia. The sexes are sometimes separate, sometimes united. The larva passes through trochosphere and veliger stages.

Sub-Class I.—Streptoneura.

Gastropoda in which the visceral commissures are twisted into a figure of 8, and in which the sexes are distinct.

Order 1.—Aspidobranchia.

Streptoneura with the nervous system but little concentrated: the pedal ganglia produced into long cords with the anterior ends of which the pleural ganglia are fused, the cerebral ganglia wide apart, the osphradium little developed. The ctenidia, nearly always present, are plume-like and free distally. The auricles and the nephridia are paired.

Sub-Order 1.—Decoglossa.

Aspidobranchia in which the pleural ganglia are not connected with the opposite visceral commissure. The eye is, in the form of an open pit, without lens. There are two osphradia, a single jaw, and no operculum. The visceral mass is conical.

This section includes the Limpets (Patellidae).

Sub-Order 2.—Rhipidoglossa.

Aspidobranchia in which each pleural ganglion is connected with the opposite visceral commissure. The eye is a closed sac and contains a lens. There is nearly always a single osphradium (the primitive left), a pair of jaws, and two auricles in the heart.

This sub-order includes the Ear-shells (Haliotidae), Trochus, Turbo, and others.

Order 2.—Pectinibranchia.

Streptoneura with a somewhat concentrated nervous system. There is a single osphradium which is often pectinate. The primarily left ctenidium and nephridium are alone developed. The heart has a single auricle. The ctenidium consists of a stem with a single row of lamellae, attached throughout its length to the wall of the mantle-cavity.
Sub-Order 1.—*Platypoda*.

Pectinibranchia with the foot flattened ventrally, at least in front. Jaws are nearly always present. This sub-order includes the Cowries, the Vermetes, the Tritons, the Whelks, the Cones, and a number of other groups.

Sub-Order 2.—*Heteropoda*.

Pelagic Pectinibranchia with the foot laterally compressed and bearing, at least in the male, a ventral sucker. The visceral sac and mantle form only a small part of the mass of the body. Jaws are absent.

Sub-Class II.—*Euthyneura*.

Gastropoda in which the visceral commissures are not twisted into a figure of 8, and in which the sexes are united.

Order 1.—*Opisthobranchia*.

Marine Euthyneura with aquatic respiration, the auricle of the heart usually posterior to the ventricle. The mantle-cavity, when present, opens by a wide aperture.

Sub-Order 1.—*Tectibranchia*.

Opisthobranchs provided in nearly all cases with a mantle and a shell, nearly always with a true ctenidium, and an osphradium. This section includes the *Aplysiidae*, or Sea-hares, and several other families, including certain pelagic Gastropoda, some shell-bearing, some shell-less, formerly regarded as constituting a distinct class—the *Pteropoda*.

Sub-Order 2.—*Nudibranchia*.

Opisthobranchs, which are devoid of shell in the adult condition, and have no true ctenidia or osphradium, respiration being carried on by means of secondary branchia usually arranged in a circle around the anus or in rows on the dorsal surface, or laterally under the edge of the mantle. This sub-order includes *Doris*, *Eolis*, *Tethys*, and other shell-less forms.

Order 2.—*Pulmonata*.

Euthyneura devoid of ctenidia, respiration being carried on through the walls of the mantle-cavity, which has a narrow contractile aperture. This sub-order includes the Land Snails and Slugs.
Systematic Position of the Example.

Triton nodiferus is one of several species of the genus *Triton*, which is the only member of the family *Tritoniidae*, belonging to the sub-order *Platypoda*. The family *Tritoniidae* differs from the other families of the sub-order in the possession of a proboscis, of a well-developed, but not greatly elongated, siphon, and of a short foot.

External Features, Symmetry, &c.—All the Gastropoda are to a greater or less extent asymmetrical. In the young animal the mouth is situated at the anterior and the anus at the posterior extremity of the body. But, as a result of one-sided growth, a great distortion of the parts takes place, leading to a more or less pronounced asymmetry. Usually it is the left side which grows a good deal more rapidly than the right. On the right-hand side the space between mouth and anus increases relatively little, while the left side develops rapidly. The result is the shifting of the posterior parts—the anus, the ctendia, and the nephridial openings, together with the mantle-cavity in which these are enclosed—over to the right side of the body, so that those parts come to be situated sometimes far forwards on that side, sometimes close behind, sometimes even above (dorsal to) the mouth. Sometimes the ctendia, originally situated to the right and left of the anus, retain this arrangement after the anus has become displaced forwards, only that the originally right ctendium is now on the left and the originally left on the right; but in a large number of Gastropoda the originally right ctendium aborts; and, as will be more particularly described later on, the same holds good of the nephridia and their apertures. This displacement of the anus takes place pari passu with the great development of the foot, and at the same time with the outgrowth of the dorsal region of the body into a great prominence—the visceral prominence—consequent on the great enlargement of certain of the internal organs, more especially the liver and reproductive organs. This visceral prominence is asymmetrically developed, projecting towards the right side; sometimes, as in the limpets (*Patella*), it is simply conical; usually it is coiled into a spiral of few or many turns enclosed in the shell.
The shell in the adult limpets (Patella and allied genera) is in the form of a short cone. In most of the Gastropoda it is in the shape of a spiral with the turns usually in close contact with one another; the inner walls of the turns coalescing to form an axial, hollow or solid column—the columella. The portion of the shell projecting inwards between the turns of the spiral sometimes becomes absorbed. In certain cases, on the other hand, the cavity of the apical portion of the spiral may become cut off from the cavity of the rest of the shell by the formation of a transverse partition, the animal then becoming restricted to the basal portion. By far the greater number of such spiral shells are dextral, i.e., if we begin at the apex of the spiral, to reach the opening of the shell we have to pass from left to right with the columella always on our right-hand side; in a few cases, however, the spiral is sinistral, taking the opposite direction from that of the ordinary dextral shell. The form of the shell varies with the degree of obliquity with which the whorls are set on the axis. When the obliquity is very slight (Fig. 582) the spiral is nearly flat; when the obliquity is great, an elongated tapering shell such as that represented in Fig. 583 is the result. Sometimes the later whorls completely cover over the earlier ones, so that the spiral form of the shell is concealed. Sometimes only the apical portion of the shell is spiral, the remainder being a straight or sinuous cylinder. The mouth of the shell has usually a prominent margin or peristome, which is sometimes entire and continuous, sometimes is broken by a deep notch or a spout-like process or canal, formed in connection with the development of a spout-like prolongation of the mantle, the siphon, which lies in it. The mouth of the shell in many Gastropoda is capable of being closed by means of an operculum borne on the foot. In some terrestrial forms in which an operculum is absent, the opening may be closed up during winter by a layer of hardened mucous matter to which the name of epiphragm is applied. The margin of the mantle in some cases bears a series of tentacles. Lateral folds of the mantle are in some of the Gastropoda (Fig. 584) reflected over the shell and may completely cover it. In some cases these folds unite by their edge, so that the shell
comes to be enclosed in a complete sac of the mantle; such enclosed shells are always imperfectly developed and incapable of covering the body. Thus in _Aplysia_ and some other Opisthobranchs the shell is greatly reduced, thin and horny, and concealed within the mantle, while in the nudibranch (Fig. 585) members of the same sub-order it is entirely absent. The shell is also completely absent in some of the pelagic forms (_Heteropoda_ and _Pteropoda_); in others, though present and external, it is too small to enclose the animal (Fig. 586). In the slugs, among the Pulmonata, the shell is vestigial and concealed by the mantle (Fig. 587).

The foot varies in the extent of its development in the different families of the class. It usually presents an elongated flat ventral surface on which the animal creeps by wave-like contractions of the muscular tissue. In the typical Gastropods the foot is usually distinguishable into three parts, a middle
part or mesopodium, which is the most important, with a smaller anterior propodium and posterior metapodium. In many burrowing forms (Fig. 588) the propodium is well developed and sharply marked off to act as a burrowing organ. In a few cases a pair of tentacles—the pedal tentacles—are situated at the anterior end of the foot; still rarer is a pair of similar appendages at the posterior end. The whole foot becomes reduced in the few Gastropods that remain fixed. The metapodium very usually in the Streptoneura bears a disc or stopper—the operculum—usually horny, rarely completely calcified, more commonly horny with a thin calcareous investment—by means of which the aperture of the shell is closed when the animal is retracted.

In some forms, such as the Sea-hares (Aplysia) (Fig. 589), the foot develops a pair of lateral lobes—the epipodia—which act as fins; and in the Pteropods (Fig. 590), which are specially modified for a pelagic existence, these constitute the largest part of the foot. In the Heteropoda (Figs. 591, 592) which are also pelagic, the foot is also modified to act as a swimming organ. In one family of this sub-order (Fig. 591) all three parts of the foot are well-developed, the mesopodium bears a sucker, and the metapodium an operculum; in the rest the mesopodium is alone well developed and forms a laterally-compressed, vertically-elongated fin.

A pedal gland is present in the majority; it is a simple or branched invagination of the integument, lined by mucus-secreting cells. Very commonly, as in Triton, it opens on the exterior in the middle line of the ventral surface of the foot.
The Gastropoda have a well-marked head, separated from the body by a constriction or neck. The mouth, situated at the anterior end of the head on its ventral aspect, is in many instances provided with a protrusable proboscis or introvert, sometimes of considerable length. On the dorsal surface of the head are a pair of tentacles which vary a good deal in shape, but are usually cylindrical or club-shaped. In most cases the eyes are situated on tubercles at the bases of the tentacles, or elevated towards the middle; but in the snails and slugs (Pulmonata) (Fig. 593) the eyes are elevated on the extremities of a second, longer, pair of tentacles (oc. tent) placed behind the first.

The mantle is usually developed into a fold—the mantle flap—
originally posterior, but subsequently becoming shifted round, in the course of the displacement already referred to, to the right-hand side. This covers over a cavity—the mantle cavity—

![Diagram](image)

Fig. 592. *Pterotrachea scutata.* *ali.* alimentary canal; *cten.* gills; *eye.* eye; *fl.* float; *mo.* mouth; *prob.* proboscis; *repr.* reproductive gland; *sh.* shield covering a portion of the dorsal surface; *su.* sucker.

situated anteriorly, in which are situated the anal and nephridial apertures and the ctenidia. The edges of the mantle-flap may become united together in such a way as to form a chamber opening on the exterior by a comparatively narrow opening. In many of the Prosobranchia the edges of this aperture are drawn out into a spout-like prolongation open ventrally—the siphon—which lies in the corresponding prolongation of the peristome of the shell, and serves as a channel for the ingress and egress of water. In some Gastropods, however, there is no definite mantle-cavity, the anus, nephridial apertures, and ctenidia merely lying under cover of a comparatively slightly-developed lateral mantle-flap. Usually there is on the inner surface of the mantle a glandular area—the pallial mucus gland.

Respiratory Organs.—There are normally two ctenidia, one on the right side and the other on the left, contained in the mantle—

![Diagram](image)

Fig. 593. *Helix nemoralis.* *an.* anus; *gen. ap.* genital aperture; *oc. tent.* posterior eye-bearing tentacles; *pulm.* opening of pulmonary sac; *tent.* anterior tentacles. (After Pelseneer.)
cavity; but in the majority of the Streptoneura and branchiate Enthyneura the primitively left (actually right) ctenidium alone is retained. In those Gastropoda that possess two ctenidia, and in many forms with only one, the axis of the ctenidium bears two rows of compressed filaments, and is attached only towards its base. But in the majority of those with one ctenidium there is, as in Triton, only a single row of filaments retained, and the organ is attached throughout its length.

In the Nudibranchs true ctenidia are absent, but their place as breathing organs is taken by a number of secondary branchiae, sometimes simple, sometimes branched or pinnate processes, which are distributed over the dorsal surface, as in Eolis, or, as in Doris (Fig. 585), form a circle surrounding the anus, or, as in Pleurophyllidia (Fig. 594), a row on each side beneath the mantle-flap.

In the limpets (Patella and its allies) (Fig. 595) the true ctenidia are represented only by a pair of vestiges, and respiration is carried on by a number of secondary branchiae (g.l.) in the form of lamellae situated between the short lateral fold of the mantle and the foot. In the Pulmonata, and in some members of other groups, ctenidia are absent, and the mantle-cavity, completely enclosed except for a small rounded opening, has the function of a pulmonary sac or lung (Fig. 596), its roof being richly supplied
with blood-vessels; in the aquatic forms its function is apparently as much hydrostatic as respiratory. In some of the Pulmonata there is a return to a completely aquatic mode of respiration accompanied by the development of secondary gills—vascular processes of the wall of the mantle-cavity.

Near the base of each ctenidium is an elevation—the osphradium—corresponding to the body of that name in other Mollusca and having a similar function.

Digestive Organs. — In many Streptoneura there is a long introvert capable of being everted and retracted, at the extremity of which the mouth is placed. A single curved horny jaw lies on the roof of the buccal cavity in the Pulmonata; in most Streptoneura (as in Triton) the place of this is taken by two lateral pieces.

A characteristic feature of the alimentary canal of the Gastropoda, which, however, they share with some Amphineura and with the Cephalopoda, is the possession of an odontophore and radula, a typical example of which has been described in that of Triton. In the different groups differences are observable in the odontophore as regards the proportions of the parts, and the size, form, and arrangement of the teeth. The arrangement of the alimentary canal is similar to what has already been described in Triton, and salivary glands and liver (hepato-pancreas) are always present. The former may be tubular, but are usually botryoidal. The latter varies in its extent and the arrangement of its lobes in different forms.

In some Opisthobranchia the stomach contains a series of teeth which are sometimes sharp and chitinous, sometimes plate-like and calcified. Frequently a special development of a cuticular lining of the stomach forms a hard rod—the crystalline style—lodged in a cæcum and comparable to the body of the same name in the Pelecypoda (p. 655). A pyloric cæcum is frequently appended to the stomach. The intestine is long and thrown into folds in the vegetable-feeding forms, short and straight in the carnivorous.

Fig. 596.—Pulmonary cavity and related parts in a slug (Limax). aort. aorta; aur. auricle; neph. nephridium; peric. pericardium, laid open; pul. ap. pulmonary aperture; pul. v. pulmonary vein with its ramifications; rect. rectum; ur. ureter; vent. ventricle. (After Pelseneer.)
In some cases, e.g., Haliotis, it traverses the ventricle, in others the pericardium; in others it passes through the nephridium. In Eolis (Nudibranchia) the stomach gives off a number of glandular coeca which penetrate into the interior of the secondary branchiae or cerata on the dorsal surface; these coeca take the place of the liver of other Gastropoda. In some of the Pectinibranchia there is a peculiar adrectal gland situated at the side of the rectum secreting a colourless fluid which in Murice and Purpura turns purple on exposure to the air, and was anciently used as a dye—the "Tyrian purple."

The heart is as in other molluscs enclosed in a special cavity—the pericardium—a specialised part of the coelome, communicating with the cavity of the nephridia. It consists usually, as in Triton, of two chambers—auricle and ventricle—but in some, e.g., Haliotis, there are two auricles and a ventricle. In the Opisthobranchia, as already mentioned, it lies in front of the ctenidia; in the Streptoneura at the side or behind. Given off from the apex of the ventricle is a large vessel which soon bifurcates to form anterior and posterior aortae. These are the main trunks of the arterial system, which is more highly developed than in the Pelecypoda; the finest branches terminate in sinuses as in the latter class.

The nervous system varies considerably in the different groups in regard to the arrangement of the ganglia and their commissures.

In the majority the arrangement is nearly that which has been described as occurring in Triton. There is a pair of cerebral ganglia usually closely united, but in Patella (Fig. 597) widely separated, placed over the gullet, and giving off behind a pair of nerve-cords—the visceral nerve-cords—in the course of which there is placed laterally a pair of pleural ganglia, and which are united together behind in a median abdominal ganglion (or two as in Triton). In the course of these visceral cords there is a pair of visceral ganglia. A pair of pedal ganglia united together by a transverse commissure and joined to the cerebral ganglia by connectives, give off behind one or two pairs of pedal nerves as already

![Diagram](image-url)
mentioned. A pair of buccal ganglia are connected by slender nerves with the cerebral. At the base of each osphradium is usually a small osphradial ganglion connected by a slender nerve with the visceral. In all the Streptoneura (Fig. 598), in accordance with the displacement of the anus and the coiling of the visceral mass, the visceral cords are twisted, as already described in the case of Triton, into a figure of 8.

In Patella (Fig. 597) the pedal ganglia give origin to a pair of elongated pedal nerve-cords. In Haliotis and Fissurella there is a similar pair of pedal cords which are connected together by
transverse commissures, and, in the latter genus, join together posteriorly.

In the Euthyneura (Fig. 599) except in Actaeon and Chilina, the visceral cords are not caught up in the twist of the visceral mass, and the crossing of the cords does not occur.

In the Snails and other Pulmonata (Fig. 600) the ganglia of the nervous system are more closely aggregated together. A pair of cerebral ganglia overlie the oesophagus, and below it is a mass of ganglia in which are to be made out a pair of pedal and at least two pairs of ganglia representing the visceral and pleural. A pair of small buccal ganglia are connected with the cerebral by means of slender nerves.

The **organs of special sense** are the eyes, the otocysts, and the osphradia. In nearly all cases there are two cephalic eyes (Fig. 601), the position of which has already been referred to in the account given of the external characters. In structure they are the simplest in Patella (A), where each consists of a pit-like depression, lined by pigmented cells connected with nerve-fibres. In the majority they have the structure described in the case of Triton. In certain species of Onchidium, a littoral Pulmonate, there are numerous eyes of a simple type scattered over the dorsal surface. In this case the optic nerve pierces the retina and the cells of the latter have their free ends directed away from the centre of the eye, as in Pecten (see p. 658) and the Vertebrata, instead of towards it, as in other Mollusca. The internal cavity of the eye is occupied by a refractive body composed of a few large transparent cells. The otocysts are usually placed in close relation to the pedal ganglia, but are always innervated from the cerebral. An olfactory
organ is present in the shape of groups of cells, in which the fibres of an olfactory nerve terminate, situated on the tentacles.

Fig. 601.—Eyes of Gastropoda. A, Patella; B, Trochus; C, Turbo; D, Murex. ep. epidermis; l. lens; op. n. optic nerve; r. retina; v. h. vitreous humour. (From the Cambridge Natural History, after Helger.)

The osphradia are prominences, usually of simple form, situated close to the base of the ctenidium. In many of the branchiate Streptoneura (Fig. 602), as already mentioned in the case of Triton (see p. 676, Fig. 576), the right osphradium, which is alone developed, assumes the form of a pectinate body with a central ridge, on either side of which is a row of close-set lateral laminae, and is commonly termed the parabranchia from its resemblance in appearance to a gill. In some cases it is of even more complicated shape than in Triton, owing to the branching of the lateral ridges.

Fig. 602.—Transverse section of osphradium of Murex. br. n. branch nerve passing to lamina; lam. laminae; osphr. n. main osphradial nerve. (After Spengel.)
The **nephridia** of the Gastropoda are dorsally placed glandular tubes or chambers, which communicate internally with the pericardium, and open on the exterior close to the anus, either directly or through a duct—the **ureter**. Both right and left nephridia may be present, though unequal in size, the one situated to the right of the anus being larger than that situated to the left; or the former may alone be developed (Euthyneura). In a very limited number of Gastropoda the gonad opens into the nephridium.

The **sexes** are separate in nearly all the Streptoneura, united in the Euthyneura. Special gonoducts are present, except in one or two forms in which the nephridia perform that function. In the unisexual forms the reproductive apparatus is of a comparatively simple character, consisting merely of a racemose reproductive organ, ovary or testis, as the case may be, situated dorsally in the visceral spiral, with the gonoduct opening far forwards on the right-hand side, and, in the male a penis, which is grooved longitudinally and non-retractile. In the **hermaphrodite forms**, such as the Pulmonata (Fig. 603), on the other hand, a considerable degree of complexity is observable. There is a **hermaphrodite gland** (herm. gl., Fig. 604, A), some of the follicles of which produce ova, while others produce sperms, a convoluted **hermaphrodite duct** (herm. d.), an albumen gland, in which the albumen of the relatively large eggs is formed, separate oviduct and spermiduct leading to a common genital opening. In addition there is a **receptaculum seminis** (rec. sem.) connected...
with the oviduct, a number of narrow accessory oviducal glands (muc. gl.), frequently a gland termed prostate connected with the spermiduct, an eversible sac—the sac of the dart (d. s.)—containing a crystalline stylet, and a penis (pen.), which is perforated by a canal, and is capable of being retracted by a special muscle. The duct may be simple or may be incompletely divided longitudinally into two parts. In the Pulmonata the first part (hermaphrodite duct proper) is simple, and serves for the passage of both ova and sperms; the middle part is incompletely divided internally into two passages, one serving as oviduct, the other as spermiduct. In the distal part oviduct and spermiduct are completely separate. Where the spermiduct enters the penis, there is given off a long, slender, tapering diverticulum, the flagellum (flag.), in which the sperms are made up into elongated masses or spermatophores.

Development.—The limpets (Patella) are exceptional in laying the eggs one by one and unfertilised—impregnation taking place in the water after they have been discharged. In almost all the Gastropoda fertilisation is internal, and the eggs are laid in great masses, embedded in jelly—each egg having its own hyaline envelope. Very often the mass of spawn consisting of the jelly-like substance, with the eggs embedded in it, attains a relatively considerable size. In form it varies greatly; very often it is in the shape of long strings which are cylindrical or band-like; sometimes several such strings are twisted together into a cord. Sometimes the spawn is fixed to sea-weed or other objects; sometimes it is unattached, and may float about freely. In the Streptoneura (Fig. 605), instead of a jelly-like mass, the eggs are enclosed in a firm parchment-like capsule, in which is contained, in addition to the eggs, a quantity of an albuminous fluid, serving to nourish the developing embryos. The shape of the capsule (Fig. 605) varies greatly in the different genera; sometimes it is stalked, sometimes sessile; in some cases there is a lid or operculum, the opening of which permits of the escape of the embryos. Very commonly large numbers of these capsules are aggregated together, and usually they are attached to a rock or a sea-weed, or similar object. In many cases only a limited number, some-
times only one, of the embryos contained in the capsule become developed—the rest serving as nutriment for the survivors.

In the land Pulmonata each ovum is sometimes embedded in gelatinous matter enclosed in a firmer envelope, and a number of them are arranged in a string; sometimes a large number are embedded in a rounded gelatinous mass. Usually, as in Helix and other genera, the outer layers of the albumen-like substance enclosing the egg become toughened and impregnated with salts of lime, so as to assume the character of a calcareous shell; a number of such eggs, which are of relatively considerable size, are laid in holes excavated in the earth.

In a few marine and fresh-water Gastropoda the ova undergo their development in the body of the mother, enclosed in an enlargement of the oviduct which serves as a uterus.

The egg contains a considerable quantity of food-yolk, which may be evenly distributed, or a clear protoplasmic and an opaque yolk-laden segment may be distinguishable. There is a fairly close agreement throughout the class in the nature of the segmentation (Fig. 606). In all cases it is total, sometimes equal at first, but soon afterwards becoming unequal. The first four blastomeres are usually equal or nearly so; they are so arranged that two of them are in contact in the middle, and thus separate the other two; the line of contact of the former pair becomes the transverse axis of the embryo.

From the four first-formed cells four small cells—micromeres—become constricted off, the larger cells being the megameres; then four more micromeres are constricted off, and again the same process is repeated. The embryo now consists of the four megameres and twelve micromeres. The latter then increase by division and form a cap of small cells (ectoderm) on the surface of the megameres. The whole process, as will be noticed, has a

Fig. 605.—Forms of egg cases in Gastropoda. A and B, Pyrula or Busycon; C, Conus; D, Voluta musica; E, Ampullaria. (From the Cambridge Natural History.)
remarkably close resemblance to the process of segmentation of the ovum of a Polyclad as described on p. 257.

The megameres then give off internally four small endoderm cells, and from one of these (endomesoderm cell) are formed two primitive mesoderm cells, from which the cells of the mesoderm are developed. The megameres themselves eventually become converted into endoderm cells. A segmentation-cavity is developed between the micromeres and the megameres, and the result is the formation of the blastula, one side of which (vegetal pole) is greatly thickened owing to its consisting of the large megameres, the opposite side (animal pole) being made up of the micromeres. This may become a gastrula by epiboly or overgrowth of the ectoderm over the megameres, or, if the segmentation-cavity is of considerable size, an invagination takes place.

The two larval stages, the trochosphere and the veliger, are characteristic of the development of the Gastropoda. The former

Fig. 606.—Diagram of the segmentation and formation of the germinal layers of the Gastropoda. A and B, lateral view; C–F, viewed from the animal pole; H, from the vegetal pole; G, in optical section; ect, ectoderm; end, endoderm; mes, mesoderm; pol, polar bodies. (After Korschelt and Heider.)
is most typically developed in Patella; in other Gastropods it undergoes more or less modification. In Patella (Fig. 607) there is a ciliated blastula (A) which has on one side the large megameres. The latter become enclosed by the micromeres, and the foundation of the mesoderm is laid in the manner already described. The blastopore is situated at the vegetal pole, destined to become the hinder end of the larva. The blastopore soon changes its position and extends forwards on the ventral side, and a ciliated ring—the prototroch or future velum—becomes formed. Subsequently the position of the blastopore becomes still further shifted; it becomes U-shaped and then slit-like. It undergoes
elongation (Fig. 608, A) and eventually becomes partly closed up, the closure taking place from behind forwards; the most anterior part remains open to form the mouth, or, perhaps more correctly, there is in the position of the anterior part a sinking-in of the ectoderm, which pushes the blastopore inwards and forms the rudiment of the stomodaeum. The originally solid mass of endoderm develops a lumen, and its cells become arranged to form the enteric epithelium. From the posterior end, where the mesoderm cells are situated, proceed two very regularly formed mesoderm streaks (Fig. 608, B). On the dorsal surface the shell-gland has already appeared as a pit lined by elongated ectoderm cells; on the surface of this appears the embryonic shell. The rudiment of the foot (Fig. 608, A) appears at a remarkably early stage as two protuberances lying on the ventral side of the posterior end of the larva at the sides of the blastopore; these coalesce to form the median foot.

The larva (Fig. 609) has now assumed the trochosphere form. The pra-oral part is large and convex, with an apical plate on which is borne a bunch of long cilia, and near it two small ciliated elevations, each consisting of a single cell. The pra-oral part of the larva then becomes much flattened, and the apical plate (ap. pl.) increases in size and importance. At the posterior end is a bunch of cilia which are borne on two special large cells, the anal cells (an. c.). The embryonic shell becomes saucer-shaped. A slight ridge in the neighbourhood of the shell represents the border of the mantle. The mid-gut (mesent) has become considerably widened: a
diverticulum from it becomes recognisable, this afterwards opens on the exterior to form the anus. A diverticulum of the fore-gut (rad.) at the same time forms the rudiment of the radular sac. The otolith-sacs appear as depressions of the ectoderm at the sides of the mouth; these grow inwards and become sac-like, subsequently lying at the sides of the foot, which has meantime attained a considerable size.

The trochosphere stage, which is so well marked in the case of Patella, occurs in other Gastropods, though, as a rule, presenting modifications perhaps traceable to the enclosure of the embryo in an egg-shell and to the presence of much food-yolk. The history of the blastopore is not the same in all cases; in some, the mouth is developed from its anterior portion; in others the stomodæal invagination arises after its complete closure. In most of the Gastropoda the pre-oral circele or velum (Fig. 610, vel.) undergoes a development not observable in the Pelecypod embryo, and becomes greatly extended as a bilobed flap, the strong cilia with which it is bordered rendering it a very efficient organ of locomotion for the larva. With the full development of the velum the larva passes into the Veliger stage (Fig. 610). In this stage the shell (sh.) increases in size, loses its simple form, and begins to develop a spiral. A cleft-like depression in the border of the mantle on the right-hand side forms the rudiment of the mantle-cavity in which, later, the gills are developed. The anus when it first appears is symmetrically placed, but later becomes shifted to the right side and forwards as well as dorsally. The foot (f.) may attain a considerable development during the Veliger stage. On its posterior and dorsal part appears the operculum. Two little processes on the velar area develop into the tentacles (tent.), and the eyes (ey.) appear at their bases. As the foot and other
organs advance in development the velum decreases in size and gradually aborts. In some cases a portion of it persists as the subtentacular lobes or labial tentacles in the neighbourhood of the mouth.

In the Pulmonata the velum is not well developed, except in Onchidium, though the trochosphere stage is well marked.

The young Gastropod is at first bilaterally symmetrical; the prevailing asymmetry is the result of unequal growth of the two sides of the body. In the majority of cases it is the left side that grows more actively than the right, a result of which is that the posterior parts—the anus and the parts surrounding it—are displaced forwards towards the right, the space between the anus and

![Fig. 610.—Veliger stage of Vermetus.](image)

the mouth on that side undergoing little or no increase in length. In the Opisthobranchia and the Pulmonata the anus with the mantle-cavity and its contents become displaced forwards to the neighbourhood of the anterior end; in the Streptoneura the anus, etc., in their displacement forward pass beyond the middle line, one of the most striking effects of which is the crossing of the pleuro-visceral commissures, already referred to (p. 694).

Ethology and Distribution.—Only a few aberrant families of Gastropoda are parasites. Most are aquatic, all the most primitive forms being inhabitants of the sea. Of the marine families the majority move by creeping over the sea-bottom, some burrowing in mud or sand, some in solid rock; some are able to float in a reversed position, adhering to frothy mucus secreted by the
glands of the foot: certain exceptional forms such as *Vermetus* are fixed in the adult condition by the substance of the shell. A few families—the Heteropoda and the Pteropoda—are specially modified for a pelagic mode of existence, and swim through the water by flapping movements of the lobes of the foot, which act as fins. Gastropods are found at considerable depths—up to nearly 3,000 fathoms—in the ocean. Many forms, however, are inhabitants of fresh water, while many Pulmonata are terrestrial, and occur even towards the summits of the highest mountains.

Fossil Gastropoda are known from almost the earliest fossil-bearing rocks, and all the major divisions of the class are represented in formations of Paleozoic age.

The mutual relationships of the various groups of Gastropoda are shown in the following diagram (Fig. 611):

![Diagram](image)

APPENDIX TO THE GASTROPODA.

A. CLASS IV.—SCAPHOPODA.

The Scaphopoda or Elephant’s tusk shells are aberrant marine Molluscs comprising only three genera—*Dentalium*, *Siphodontalum*, and *Pulsilla*. The body is elongated, so as to be almost worm-like, with complete bilateral symmetry. The mantle-folds are almost completely united to form a cylindrical tube enclosed by the shell (Fig. 612), which is in the form of a delicate, curved tube, open at both ends and wider at one end—the anterior or oral—than at the other.

The foot (Fig. 613, f) is narrow, trilobed at the extremity, capable of being protruded through the oral opening of the shell, and used for burrowing in sand. The mouth is situated on a short oral proboscis, and is sometimes surrounded by

Fig. 612.—Dentalium, longitudinal section of shell. (After Keferstein.)

Fig. 611.—Diagram to illustrate the relationships of the Gastropoda.
lobed processes or pinnate palpi. Further back are a pair of tentaculiferous lobes, each bearing a large number of filiform tentacles, which are probably respiratory in function. The mouth leads into a buccal cavity containing an odontophore. Connected with the mesentery is a large bilobed liver (l). The anus is situated ventrally behind the base of the foot. The vascular system is extremely simple, consisting of sinuses without definite walls, and there is no distinct heart, though in the neighbourhood of the rectum there is a specially contractile part of the principal sinuses. Two nephridia open near the anus, the right one acting as a gonoduct, the left (k) entirely renal in function. The sexes are distinct. There is an elongated unpaired gonad (g), divided by lateral incisions into a number of lobes, occupying all the posterior and dorsal parts of the body. Anteriorly it narrows to form a duct opening into the right nephridium.

The nervous system consists of paired cerebral, pleural, pedal, and visceral ganglia; the cerebral ganglia are situated close together. There are no eyes or otocysts.

In the gastrula stage the embryo, which is provided with cilia, becomes free. The ciliated cells are arranged in a characteristic manner in three rows which, at first situated close together about the middle of the body, become shifted at a later stage nearer the apical pole, and amalgamated into a broad band representing the pre-oral circle of other molluscan larva; at the same time a bunch of cilia previously developed at the apical pole becomes more conspicuous, and a considerable part of the general surface becomes covered with more delicate cilia. The blastopore, at first terminal, becomes shifted forwards on the ventral surface until it comes to be immediately behind the ciliated circle. At its anterior end an invagination gives rise to the mouth and stomodeum.

The larva (Fig. 614) is now attaining the stage of a trochosphere, in which, however, both apical plate and primitive nephridia are wanting. A shell-gland

Fig. 613.— *Dentalium*, anatomy. a, anterior aperture of mantle; f, foot; g, gonad; k, nephridium; l, liver. (From the *Cambridge Natural History*, after Lacaze-Duthiers.)

Fig. 614.— Veliger of *Dentalium*. A, longitudinal section of a larva 14 hours old; B, larva of 37 hours; C, longitudinal section of larva of 34 hours; m, mouth; v, v. velum. (From Cooke, after Kowalevsky.)

is developed, and soon the rudiment of the shell. The post-oral region, at first inconsiderable in size, soon undergoes an increase, until it forms eventually by
far the longest part of the body, while the pre-oral region almost completely aborts. When the post-oral region has attained a certain size, there are developed on it two lateral folds, the rudiments of the mantle (B), which grow inwards towards the middle ventral line, and later on unite by their free margins. The pre-oral cirect or velum changes its form, at first it is conical, later it becomes plate-like, and then gradually becomes reduced, the larva sinking to the bottom, and though still occasionally swimming with the aid of the velum, coming to use the foot as a creeping organ. The shell now increases in size step by step with the growth of the mantle, and bends round the body of the larva until its edges meet and coalesce in the ventral median line. Later it assumes the elongated conical form, curved towards the dorsal side, characteristic of the adult. The foot at the same time elongates and takes on the characteristic three-lobed shape.

B. RHODOPE.

Rhodope (Fig. 614, bis) is a minute, elongated, fusiform animal, ciliated externally with complete (external) bilateral symmetry. There is no shell, but within the body-wall, in the parenchyma between it and the enteric canal, are numerous irregularly shaped calcareous spicules. There are no jaws or odontophore. The enteric canal, which is a narrow tube, consisting of buccal cavity, with salivary glands, oesophagus, mid-gut, with a cecum, and rectum, opens in an anal aperture situated to the right of the posterior extremity of the body. A liver is absent. The central part of the nervous system consists of two ganglia situated close together above the oesophagus, and a single ganglion below. A pair of lateral nerve cords run backwards from the posterior of the two upper pairs of ganglia. There are a pair of eyes and a pair of otoceysts situated close to the posterior upper ganglia.

The nereidial system consists of a chamber opening on the right side in front of the anus; into this open nine or ten flask-shaped flame-cells similar to those of the Flat-worms.

There are no blood-vessels, and specialised organs of respiration are also absent.

The sexes are united. The gonads consist of about twenty ventrally situated masses of cells, the anterior being ovaries and the posterior testes. There is a common duct receiving the products of all the gonads: anteriorly this divides into spermiduct and oviduct with separate apertures situated on the right side, the spermiduct with a muscular penis, the oviduct with a receptaculum seminis and an accessory gland.

There is no metamorphosis, and the larva is not provided at any stage with any representatives of either shell-gland or foot.

Though the occurrence of flame-cells is unique there can be little doubt that Rhodope is best regarded as a degenerate member of the Mollusca, and probably finds its nearest relatives among the Gastropoda.
Class V.—CEPHALOPODA.

The Cephalopoda, including the Cuttle-fishes, Squids, Octopi, and Nautili, are marine Mollusca of a high grade of organisation. There is a very definitely-formed head, bearing a pair of highly-developed eyes, and surrounded by the anterior portion of the foot, modified into arms or tentacles. The body is bilaterally symmetrical. The posterior part of the foot is modified to form a funnel leading out from the large mantle-cavity. A shell is sometimes present, sometimes absent. When present it is usually internal, but sometimes external and in the Nautili is capable of containing the body of the animal.

1. Examples of the Class.

i. The Cuttle-Fish (Sepia ¹).

Cuttle-fishes are marine Molluscs, which live usually at a depth of a few fathoms, but often come into shallower water, and are frequently caught in the trawl or the seine. The animal arrests attention when compared with Unio or Triton by the strength, and more particularly by the rapidity, of its movements; by the possession of a pair of eyes resembling in size and complexity those of a Fish; and by various other features, all pointing to a higher grade of organisation than is attained by the members of the classes of Mollusca dealt with in the preceding pages.

External Features.—The Cuttle-fish (Fig. 615) has a distinct head, bearing ten long arms, and a pair of large, highly-developed eyes. The head is connected with the body by a constricted region or neck. The trunk is elongated and shield-shaped, the base of the shield being towards the head. The long axes of head and trunk are in line with one another. Not only the head, but also the trunk, are completely equilateral, in which respect there is a marked contrast to Triton; and this symmetry extends to most of the systems of internal organs. The free extremity of the head bears the mouth, and is termed, accordingly, the oral extremity, the opposite extremity, the apex of the shield-shaped body, is the aboral end. The surfaces of the shield are anterior or antero-dorsal and posterior or postero-ventral, its borders right and left. The anterior surface is to be distinguished by its darker colour, and by the firmness of the body-wall, due to the presence in this position of a hard internal shell.

¹ Most of the figures have reference to a common Australian species—S. cultrata—but the differences between the various species of the genus are slight and unimportant, and the description given will apply fairly well to any other species.
The aperture of the mouth is surrounded by the bases of the ten arms. These are in pairs, situated to the right and left of the median plane. All of them, with the exception of the fourth pair (the most anteriorly situated pair being reckoned as the first), are stout at the base and taper towards the extremity. When extended they are about two-thirds of the length of the body. The outer surface of each (i.e. that turned away from the mouth) is strongly convex, the inner flat, and beset throughout its length with a number of suckers (Fig. 616), which are arranged in four longitudinal rows. Each sucker is in the form of a shallow cup, supported on a short, thick stalk (st.). The lip of the cup is membranous, and immediately within it is a narrow, horny rim (dent.). In the middle of the bottom of the cup is a thick plug or piston (pl.), which is capable of being drawn downwards by the contraction of muscular fibres inserted into it, the effect, when the rim of the sucker is in contact with some solid object, being to create a partial vacuum in the cavity, resulting in firm adhesion, owing to the pressure of the surrounding water. The fourth pair of arms, usually known as the tentacles, are comparatively long and narrow, and provided with suckers only towards their free ends, which are somewhat thickened and clublike. In the male the fifth arm on the left side presents a slight modification, some of the suckers being absent. This is an indication of a change termed hectocotylisation, which, as will be pointed out in the general account of the class, assumes in some cases a very remarkable character. From their nerve-supply the arms of Sepia prove to be the equivalents of the fore-foot of Triton, which here becomes extended to the region of the head, and divided into a series of processes or arms encircling the mouth.
The trunk is covered over by the thick integument of the mantle, which terminates toward the oral end in a ridge round the neck. Anteriorly this ridge projects as a prominent rounded lobe under cover of which the head can be partially retracted. Posteriorly it forms the posterior lip of the opening of a large cavity bounded by the mantle—the mantle-cavity—which extends along the entire posterior face of the body almost to the apex. The wide cleft between the oral edge of the mantle and the posterior surface of the body is not the only aperture leading into the mantle-cavity. On the oral side of this cleft is a large tube—the funnel (Fig. 621, inf.)—opening on the exterior behind the neck, and internally communicating by a wide aperture with the mantle-cavity. The cleft is capable of being almost completely closed by the apposition of a pair of oval projections (mant. cart.) of the inner surface of the posterior mantle wall near its oral border, and a pair of concave depressions (inf. cart.) on the opposite

![Diagram](image-url)

Fig. 616.—Sucker of Sepia. A, oblique view of a sucker magnified; cav. cavity; circ. mus. circular muscle; dent. denticulated border; pl. muscular plug; st. stalk; B, vertical section. (After Vogt and Jung.)

(posterior) face of the funnel. The funnel is thus, under ordinary circumstances, the main outlet of the mantle-cavity. As such it not only carries to the exterior the effete water of respiration, the fecal matters from the intestine, and the products of the excretory and reproductive organs, but also takes an important part in locomotion, the most important movements of the Cuttle-fish, by which it darts rapidly through the water in the direction of the aboral pointed end of the body, being effected by rhythmical contractions of the muscular walls of the mantle-cavity causing jets of water to be forced in the oral direction through the funnel. The free passage of water inwards through the funnel is prevented by the presence in its interior of a flap-like valve opening outwards. The water required for respiration and in locomotion is thus drawn in, not through the funnel, but through the partially-closed slit-like pallial aperture previously referred to. The funnel seems, from the source of the
nerves which supply it, to be, like the arms, a specially modified part of the foot; it corresponds, perhaps, to the metapodium of Triton.

Fringing each lateral margin of the body is a thin muscular fold—the fin—which is used as a swimming organ.

The anterior wall of the body exhibits, as already mentioned, a hard and resistant character owing to the presence of the internal shell (Fig. 617). This is completely enclosed in a sac of the mantle. Like the body itself, it is bilaterally symmetrical. In shape it may be described as leaf-like, with a rounded and comparatively broad oral end, and a narrower aboral, provided with a sharp, anteriorly-projecting spine. The posterior surface is convex, the anterior convex towards its oral end, but deeply concave aborally, and bounded laterally by thin prominent wing-like ridges which converge to meet at the aboral extremity. The main mass of the shell consists of numerous, closely-arranged, thin laminae of calcareous composition, between which are interspaces containing gas. On the surface is a thin layer of chitinoid material, and slightly thicker strips of similar composition run along the margins.

The living Cuttle-fish will be observed to undergo frequent changes of colour, and blushes of different hues are to be observed passing over the surface. These are due to the presence of numerous contractile pigment-containing cells or chromatophores (Fig. 618) situated in the deeper layers of the integument over the entire surface. The chromatophores have elastic walls, the contracting tendency of which is capable of being counteracted by the action of bundles of muscular fibres radiating outwards from the wall of the sac into the surrounding tissues. When these radiating fibres are in action the wall of the chromatophore is drawn outwards in different directions, and as a result its cavity is dilated.
and the pigment becomes more widely diffused. When the fibres are relaxed the elasticity of the wall comes into play, and the chromatophore contracts, the contained pigment thus assuming a more condensed form. A peculiar iridescence which, in addition to the play of colours, is recognisable in the integument of Sepia, is due to the presence of a number of cells, the iridocysts.

When the mantle-cavity is laid open (Fig. 621) there is seen on each side of it one of the two plume-shaped ctenidia (cten.). In the middle line of the posterior surface, close to the internal opening of the funnel, is the anal aperture (an.), situated at the oral extremity of a longitudinal tube—the rectum. On either side of the rectum is a much narrower projecting tube with a terminal opening—the nephridial aperture (neph.). On the left-hand side is the opening of the spermiduct or oviduct (ovid.) as the case may be.

In addition to the shell, which is an important protective structure, and gives support to the muscles of the fins, Sepia also has a remarkably well developed internal skeleton composed of cartilage. An important part of this—the cranial cartilage (Fig. 619)—protects the principal nerve centres, encloses the auditory organ, and gives support to the eyes. Other cartilages support the bases of the arms. A thin shield-shaped plate—the nuchal cartilage (Fig. 620)—lies on the posterior surface of the neck. The pair of elevations on the posterior wall of the funnel and the corresponding depressions on the anterior surface of the body are borne each on a thin plate of cartilage, and thin cartilages support the bases of the fins.

Alimentary System.—The mouth is surrounded by a thin peristomial membrane, within which is a circular lip beset with numerous minute elevations. Lodged within the circular lip is a pair of powerful horny jaws (Fig. 622, Fig. 623, jaw¹, jaw²; Fig. 624, j.; Fig. 626, jaw). These have somewhat the appearance of the jaws of a parrot, with one, the posterior, larger and more strongly bent than the other, which it partly encloses. The mouth leads into a thick-walled buccal cavity, which contains an odontophore bearing numerous minute horny teeth. The oesophagus (Figs. 623 and 624, œ.:
Fig. 626, (es.), following on the buccal cavity, is a narrow straight tube, which runs between the halves of the liver towards the aboral end of the body. It opens into a rounded thick-walled stomach (st.), and, close to the pyloric aperture leading from the latter into the intestine opens a wide cecum (c.). The alimentary canal at this point bends sharply round upon itself, and the intestine runs nearly parallel with the oesophagus to open into the mantle-cavity as already described.

A pair of glands (Fig. 624, s. g.; Fig. 626, sal.), which are
commonly termed salivary, though their functional correspondence with salivary glands has not been proved, are situated in the head behind the cranial cartilage. The ducts of these two glands run inwards and unite to form a median duct, which opens into the buccal cavity. The name of liver (Fig. 624, l.l.; Fig. 626, lir.) or digestive gland is given to a large brown glandular mass which extends from the neighbourhood of the salivary glands nearly to the aboral end of the body. It consists of two completely independent right and left portions, each of which has a bile duct opening into the cavity of the alimentary canal opposite the point where stomach, caecum, and intestine meet. Surrounding the bile-ducts and opening into them are masses of minute vesicles (Fig. 624, b.d.); the secretion of these has the property of converting starchy matters into sugar; they sometimes, though without sufficient reason, receive the name of pancreas.

Immediately below the thin integument of the anterior wall of the mantle-cavity lies a characteristic organ—the ink-sac (Fig. 626, ink s.; Fig. 627). This is a pear-shaped body, a portion of the interior of which is glandular and secretes a black substance—the ink or sepia—which collects in the main cavity of the sac and is discharged by a cylindrical duct opening into the rectum close to the anal aperture.

When the Cuttle-fish is startled it discharges the ink, which, mixing with the water in the mantle-cavity, is ejected through the funnel as a black cloud, under cover of which the animal may escape from a threatened attack.

Vascular System.—The heart (Figs. 625, 626, and 628) of the Cuttle-fish consists of a ventricle and two auricles. The ventricle (cent.), which is divided into two lobes by a constriction, is somewhat obliquely placed, but the rest of the vascular system is almost completely equilateral. At its oral end the ventricle gives off a large vessel—the oral aorta (aort.): aborally
it gives origin to a much smaller aboral aorta (aort.), which bends over the ink-sac and supplies the aboral portions of the body. The arteries which lead off from the aorta communicate by their ultimate branches with a system of capillaries, and these with a system of sinuses and veins. A large median vein, the vena cava (v. cava), runs from the head to the neighbourhood of the rectum, in front of which it bifurcates to form to right and left afferent branchial veins (l. aff. br. v., r. aff. br. v.), each running through the cavity of the corresponding

renal organ to the base of the gill, where it is joined by veins from the aboral region. At the base of the gill the afferent branchial vein becomes dilated to form a contractile sac—the branchial heart (r. br. ht.)—appended to which is a rounded body of a glandular character—the appendage of the branchial heart. The afferent branchial vein runs through the axis of the branchia giving off branches as it goes. The blood is carried back to the ventricle by a dilated contractile vessel, the auricle or efferent branchial vein (l. aur., r. aur.).

Phylum Mollusca

Fig. 623.—Sepia, median section through the buccal mass. g. buc, buccal ganglia; g. stom, stomatogastric ganglion; gust, supposed gustatory organ; perist, posterior jaw; jaw 1, anterior jaw; m. esophagus; perist, peristomial membrane; rad, radula. (After Keferstein.)

Fig. 624.—Sepia officinalis, enteric canal. a. anus; b, d, one of the bile ducts; b. m. buccal mass; c. cavum; c. ink sac; i. d. inoduct; j. jaws; l. l. liver lobes; n. esophagus; p. pancreatic appendages; r. rectum; s. g. salivary glands; st. stomach. (From the Cambridge Natural History.)
The coelome (Fig. 634) is a pouch of considerable size, divided by a constriction into oral and aboral parts. The former is the pericardium or cavity in which the heart is lodged; it gives off a pair of diverticula, right and left, each lodging the corresponding branchial heart. The aboral part of the coelome forms the capsule which encloses the ovary or testis.

The paired, plume-shaped ctenidium lies parallel with the long axis of the body. It is attached throughout the greater part of its length to the wall of the mantle-cavity by a thin muscular fold. It consists of numerous pairs of delicate lamellae, the surface of which is increased by the presence of a complex system of foldings.
Internally the lamellae are not completely in contact an axial canal being left through which the water penetrates freely to all parts of the gill. The blood carried to the gill by the afferent branchial vessel passes in a system of minute branches through the lamellae, and is gathered up again into vessels which open into the main efferent vessel leading to the auricle.

Nervous system.—Though parts homologous with those of the nervous system of Triton are recognisable in that of Sepia their proportions and arrangement indicate a higher grade of organisation.
The cerebral, pedal, and pleuro-visceral ganglia (Fig. 629), all of relatively large size, are closely aggregated together around the oesophagus, supported and protected by the cranial cartilage. The cerebral ganglia (cer. g.) are fused together into a single rounded mass, lodged in a hollow of the cranial cartilage, and covered over anteriorly by a strong fibrous membrane. Laterally are given off a pair of short thick processes—the optic nerves or optic stalks (opt. st.)—which expand almost immediately into large masses—the optic ganglia (opt. g.)—in immediate contact with the eyes. At the sides and posteriorly a pair of very thick commissural bands of nerve matter pass round the oesophagus to unite with the pedal and pleuro-visceral ganglia, which lie behind. The pedal ganglia (Fig. 630) are, like the cerebral, united into a single mass; orally this is prolonged forwards and expanded into a broad mass from which the ten brachial nerves (br. n.) are given off to the arms. The pleuro-visceral ganglia, also united into one, are in immediate contact with the pedal behind the oesophagus.

Besides the optic nerves the cerebral ganglia also give off a pair of slender nerves which join a smaller pair of closely united buccal ganglia (Fig. 629, buc.), situated close to the buccal cavity on the anterior aspect of the oesophagus. The buccal ganglia again (which are sometimes looked upon as separated portions of the cerebral) are connected by slender commissures with a pair of ganglia, the stomatogastric (Fig. 623, g. stom.), also closely united, situated on the posterior aspect of the oesophagus. Besides the ten brachial nerves, each of which, expanding at the base of the arm into a brachial ganglion, runs along the axis of the arm to its extremity, the pedal ganglia also give off nerves to the funnel, and also a pair to the otocysts; but the latter are found, when their fibres are traced to their origin, to be derived from the cerebral ganglia. The pleuro-visceral ganglia give off two visceral nerves (Fig. 630, vis. n.) supplying the various internal organs, one pair of branches, the branchials, expanded into
PHYLUM MOLLUSCA

a branchial ganglion at the base of the ctenidium, and running along its axis to its extremity. Two other ganglia of considerable size—

![Diagram of Sepia cultrata](image)

Fig. 628. *Sepia cultrata*, heart and main blood-vessels from the posterior aspect. *aort.* aorta; *aort.* aboral aorta; *app.* appendage of right branchial heart; *eff.*, *br.* v. right efferent branchial vessel; *int.* v. artery to ink-sac; *int.* v. vein from ink-sac; *l. aff.*, *br.* v. left afferent branchial vessel; *l. aor.* left aorticle; *or.* v. deep ovarian vein; *ov.* v. superficial ovarian vein; *pall.* v. pallial vein; *r. abd.* v. right abdominal vein; *r. aff.*, v. right afferent branchial vein; *r. cten.* right ctenidium; *r. br.* br. right branchial heart; *r. ccr.* vena cava; *r. app.* venous appendages; *vent.* ventricle.

Fig. 629. *Sepia cultrata*, cephalic ganglia from the anterior aspect. *ao.* aorta; *buc.* buccal ganglion; *cbr.* cerebro-buccal connective; *cerebr.* cerebral ganglion; *opt.* v. optic ganglion (removed on the left side); *opt. st.* optic stalk; *ply.* p. palhal nerve; *plg.* p. pleural ganglion; *vis. n.* visceral nerves.

Fig. 630. *Sepia cultrata*, anterior view of pedal and pleuro-visceral ganglia after removal of the cerebral and optic; *br.* v. branchial nerves; *conn.* connectives between the cerebral and the pedal and pleuro-visceral ganglia (cut across); *inf.* n. nerve to funnel; *pall.* n. pallial nerves; *vis. n.* visceral nerves.

the visceral and the gastric—occur in the course of this system. The pleuro-visceral ganglia also give off two very stout *pallial nerves* (*pall. n.*) which run through the neck to the inner surface of the
mantle-cavity, where each expands into a large, flat, pallial or stellate ganglion (Fig. 621, l. st. g.) which is visible in front of the ctenidium when the mantle-cavity is opened. From the outer edge of this are given off a number of nerves supplying the various parts of the mantle.

The organs of special sense of the Cuttle-fish are much more highly developed than those of Triton. The eyes (Fig. 631) are supported by curved plates of cartilage connected with the cranial cartilage. The significance of the various parts of the eye will not be fully understood till the structure of that of the Vertebrata has been studied. A transparent portion of the integument covering the exposed face of the eye is termed the cornea (corn.). This is perforated by a minute aperture placing the internal cavity of the eye in communication with the exterior. The eye-ball has a firm wall, or sclerotic, strengthened by plates of cartilage (scl. cart.). Externally, i.e., on the side turned towards the surface of the head, this presents a large opening—the pupil. The part of the sclerotic which immediately bounds the pupil is termed the iris (ir.); it contains muscular fibres by whose action the size of the pupil can, to a limited extent, be increased or diminished. Just internal to the iris and projecting slightly through the pupil is the lens—a dense glassy-

Fig. 631.—Sepia, section of eye. cil. proc. ciliary processes; corn. cornea; ir. iris; lens, lens; opt. g. optic ganglion; orb. cart. orbital cartilage; rds. rods; ret. retina; scl. cart. sclerotic cartilage. (From Vogt and Jung, after Hensen.)
looking body of a spherical shape. The lens consists of two plano-convex lenses in close apposition; it is supported by an annular process—the ciliary process (cil. proc)—projecting inwards from the sclerotic. The lens with the ciliary process divides the cavity of the eye into two cavities, a smaller outer—the cavity of the aqueous humour—containing water, and a larger inner, containing a gelatinous substance—the vitreous humour. Over the wall of this inner chamber extends the retina (ret), the sensitive part of the eye, in which the optic nerve-fibres derived from the optic ganglion terminate. The retina is of somewhat complicated structure, consisting of a number of layers; of these that which immediately bounds the internal cavity of the eye is a layer of short narrow prismatic bodies—the layer of rods (rd), while the outermost is a layer of optic nerve-fibres connected with the nerve-cells of the optic ganglion on the one hand, and with the other elements of the retina on the other.

In immediate contact with the eye, in addition to the optic ganglion, is a large soft body of unknown function, the so-called optic gland or white body. Bundles of muscular fibres bring about limited movements of the eyeball in various directions. A pair of integumentary folds of the character of eyelids are capable of being drawn over the cornea.

The otocyst (Fig. 619), though not of such complicated structure as the eye, is very much more highly developed than that of the Pelecypoda or Gastropoda. The two otocysts are embedded in the cartilage of the posterior portion of the cranium close to the pleuro-visceral ganglion. The cavities of the two organs, which are about 3 mm. in diameter, are separated by a median cartilaginous septum. The inner surface is raised up into a number of rounded and pear-shaped elevations. The surface is lined with a flattened epithelium raised up on the posterior surface into a ridge composed of large cylindrical cells provided at their free extremities with short cilia, and produced at their bases into processes continuous with nerve-fibres derived from the otocyst nerve. Enclosed in the cavity of the otocyst is a large otolith (Fig. 632) of dense composition and complicated form. The function of the otocysts as organs of hearing is quite unproved; it has been shown by experiment that their removal leads to a loss of the power of co-ordinating the movements in such a way as to maintain the equilibrium.

Supposed to be olfactory in function is a pair of ciliated pits, which open by slits on the surface behind each eye: among the ciliated cells lining the pit are numerous narrow sensory cells connected at their bases with the fibres of
a nerve derived from a small ganglion situated close to the optic ganglion. A small elevation, covered with papillae, on the floor of the buccal cavity, just in front of the odontophore, is perhaps an organ of taste.

The excretory organs of Sepia (Figs. 633 and 634) are a pair of thin-walled sacs, which open into the mantle-cavity by the conspicuous excretory apertures already described. On either side is an aperture (ap.1) placing the cavity of the sac in communication with the pericardium. The right and left sacs communicate with one another anteriorly and posteriorly. From their posterior junction is given off a median diverticulum (Fig. 634, med. s), into which the pancreatic follicles (pane.) project. Through each excretory sac runs the corresponding afferent branchial vein, formed by the bifurcation of the vena cava. Surrounding the vessel are masses of glandular tissue (Fig. 633, ven. app.), by whose agency the process of renal excretion, the products of which, in the shape of urates, are to be detected in the internal cavity, is carried on.

![Diagram of Sepia officinalis, renal organs](image-url)
Reproductive system.—In the male the testis (Fig. 635, te) forms a compact mass of minute tubules situated in the aboral region of the body and enclosed in a capsule. The single spermiduct (r. def) is a greatly convoluted tube which leads from the cavity of the capsule towards the right; it opens into an elongated vesicula seminalis (res.), to which is appended a glandular body, the prostate (pr.). In the interior of the vesicula seminalis

the sperms are rolled up by the action of a system of grooves and ridges into long narrow bundles of about 2 cm. in length, each of which becomes enclosed by a chitinoid capsule of a narrow cylindrical shape, forming a spermatophore (Fig. 636, B); at one end of the spermatophore is a complicated apparatus of the nature of a spring for causing the rupture of the wall and the discharge of the sperms. The vesicula seminalis expands into a wide sac—the spermatophoral sac or Needham’s sac (Fig. 635, sp. s)—in the
interior of which the spermatophores are stored. This opens into the mantle-cavity by the aperture already described at the extremity of the penis to the left of the middle line.

In the female the ovary (Fig. 621, ov) occupies a position exactly corresponding to that of the testis in the male, and is enclosed in a similar capsule, with the cavity of which the lumen of the oviduct is continuous. An axial swelling bears numerous follicles, each containing a single ovum at various stages of development, and supported on a long slender stalk. At the breeding season the ovary becomes a compact mass of ova, which assume a polygonal shape owing to mutual pressure. The oviduct (ovid) is a wide tube, opening, as already described, into the mantle-cavity to the left of the rectum.

Near its external opening are situated a pair of small accessory glands (ac, nid). Occupying a conspicuous position on the anterior wall of the mantle-cavity of the female is a pair of large flattened glands of somewhat oval outline, the nidamental glands (nid), situated to the right and left of the ink duct. In the long axis of each is a median canal, on either side of which is a range of closely-set delicate lamellae; the median canal opens into the mantle-cavity by a slit bounded by a number of plaits situated at the narrower oral end. The nidamental glands secrete the viscid
material by means of which the eggs when deposited adhere together in masses. A glandular mass of unknown function, known as the accessory nidamental glands, lies at the sides and around the oral ends of the nidamental glands proper.

ii. The Pearly Nautilus (*Nautilus pompilius*).

The three living species of *Nautilus*, of which *N. pompilius* is the best known, are inhabitants of moderately shallow water about the shores and coral-reefs of the South Pacific, usually creeping on the bottom at the depth of a few fathoms, and probably never coming voluntarily to the surface. The body is enclosed in a calcareous, spirally-coiled shell (Fig. 637), into which the entire animal can be withdrawn for protection. The cavity of the shell is divided by a system of septa into a series of chambers, the last and largest of which, opening widely on the exterior, alone lodges the body of the animal. Between the animal and its shell there is a direct organic connection through the intermediation of a narrow tubular prolongation of the visceral region, which perforates the entire series of the septa to the apex of the spiral. This tube, which is termed the *siphuncle* (*si*), has its wall supported by scattered spicules of carbonate of lime; but, in addition, as it passes through each septum, there is produced over it for some distance a shelly tube—the *septal neck*—(*s. n*) continuous with the substance of the septum. The apical or initial chamber presents a small scar, the *cieatrice*, which may indicate the original presence of the larval shell, or *protoconch*, which has fallen off in the course of development.

When the shell of the Nautilus is compared with that of Triton some points of resemblance, together with important points of difference, will be at once recognised. In both the growth of the shell has taken place in such a way as to produce a gradual and regular increase in the width of the internal cavity, from the apex to the mouth, the result being a form of shell which, if it were straightened out, would be a long cone. In both the growth has not taken place in a straight line, but in a spiral, and a spiral of
so close a character that successive turns are in immediate contact and their walls fused together. But in Nautilus all the turns of the spiral are in the same plane; the spiral, in other words, is a flat one, as has already been found to be the case in certain of the Gastropoda (p. 686), whereas in Triton the spiral is an elongated helix; in other words, the spiral of Nautilus is that of a watch-spring, that of Triton that of a corkscrew. The possession by Nautilus of the series of septa marking the position which the animal has occupied at successive stages in its growth is another striking difference. Moreover the relations of the soft parts of the shell are radically different in the two cases. In Triton the

![Diagram](image)

Fig. 637.—Section of the shell of *Nautilus pompilius*, showing the septa (s, s), the septal necks (s, n, s, n), the siphuncle, si, (represented by dotted lines), and the large body-chamber (ch). (From the *Cambridge Natural History*.)

body is attached to the shell by the columellar muscle; in Nautilus the main organic connection is by means of the siphuncle, for, though it is chiefly through the pressure exerted by the lateral masses of muscle that the Nautilus retains its hold of the shell, the muscular fibres are not attached to the latter in the same intimate way as those of the columellar muscle of Triton. Again, while the curvature of the body of Triton with the enclosing shell is towards the ventral side, in Nautilus it is towards the dorsal.

When the animal is removed from the shell it is found to possess two regions, a distinct and relatively large, obtusely
conical head, bearing eyes and a system of tentacles, and a rounded sac-like trunk. Both head and trunk are very slightly compressed, the direction of the compression being, as in Sepia, from the antero-dorsal towards the postero-ventral side, and are almost completely bilaterally symmetrical, only a very slight disturbance of the symmetry being discernible. The mouth, situated at the free extremity, is provided with a pair of relatively enormous, partly calcified jaws (Fig. 638). Surrounding the mouth is a series of bilaterally arranged lobes which represent the fore-foot of other Molluscs. These are beset with numerous slender tentacles, each provided with an elongated tubular sheath, in the interior of which the greater part of the tentacle in the retracted condition lies enclosed, only a small portion protruding. Minute ring-like markings on the tentacle are due to the presence of circular bands of muscular fibres. There are no
suckers; but it is supposed that each tentacle represents not one of the arms of Sepia, but one of the suckers. The tentacles are arranged in two series, an outer and an inner. The outer, which are borne on an annular muscular ridge of the fore-foot, are nineteen on each side in both sexes. Anteriorly this muscular ridge is thickened to form a massive lobe—the hood (hd.)—in which there is a concavity for the reception of the coil of the shell. The hood bears two tentacles and has the appearance of being composed of the immensely developed sheaths of these, completely fused together in the middle line; on each side the enlarged sheaths of a second pair of tentacles are closely applied to, though not completely coalescent with, the hood, being separated from the latter by a narrow groove. The hood, with these two enlarged sheaths, is covered with a thickened tuberculated skin, and acts after the manner of an operculum for protecting the tentacles and other soft parts about the head. Altogether there are forty-two tentacles of this outer series, including one situated on the oral and another on the aboral side of each eye. The tentacles of the inner series differ strikingly in number and arrangement in the two sexes. In the female there are two inner lateral lobes, right and left, quite symmetrically developed, and each bearing twelve tentacles, and an inner posterior lobe divided by a deep median notch into two, each half bearing fourteen tentacles. On the middle of the oral surface of the latter, close to the median notch, is an oval patch raised up into numerous closely set ridges. In some individuals, however, the whole of this posterior lobe is represented by a vestige (or rudiment) with only slight indications of the tentacles.

In the male the inner posterior lobe with its ridged organ is only represented by a median posterior body consisting of two oval elevations each divided into a number of folds. The internal lateral lobes are greatly modified, four of the tentacles on either the right side or the left, usually the latter, being modified to form a structure termed the spadix (Fig. 630), which is supposed to represent the hectocotylised arm of the male Sepia. It has the form of a large compressed cone formed by the union of the enlarged sheaths of three of the tentacles. The corresponding tentacles

![Image](image_url)
themselves are in the adult male enormously thickened, and the outer surface of the most posterior (β) is covered with regularly arranged rows of minute pits. A fourth tentacle much smaller than the others is closely applied to the outer surface of the organ. In the internal lateral lobe, right or left as the case may be, opposite that bearing the spadix, the latter is represented by a group of four tentacles forming what is termed the anti-spadix.

A further difference between the male and the female with regard to the foot is the presence in the latter, but not in the former, on the inner surface of the outer ridge, close to the inner posterior lobe on either side, of an area thickly beset with delicate membranous ridges.

On the posterior side of the head is a funnel corresponding with that of Sepia, but extending further forwards; this, however, does not form a complete closed tube, the edges of its right and left moieties being simply in apposition posteriorly without being united together. Near the oral end is a large, somewhat triangular, valve arranged like that of Sepia.

An internal skeleton of cartilage, as in Sepia, protects the nerve-centres and supports the basal parts of the foot (Fig. 640).

Mantle and Mantle-Cavity.—The mantle is produced around the head into a free flap, longer and looser than the mantle-flap of Sepia. Dorsally this splits into two layers reflected over the convexity of the shell which fits into a hollow behind the hood. Ventrally and posteriorly the mantle encloses a large mantle-cavity (Fig. 641) corresponding to that of Sepia. In this are lodged two pairs of ctenidia (cten.), having the same general structure as the single pair present in Sepia. Between the bases of the ctenidia of each side is a small knob-like elevation, the oral osphradium (ant. os.), and behind the bases of the more aborally situated pair are two compressed bilobed projections, more or less completely united in the middle so as to form a transverse ridge; these are the aboral osphradia (post. os.). In the middle line of the mantle-cavity is the anus (an.), a large aperture with minutely lobed margin, situated on a slight elevation, but by no

1 As in Sepia it is convenient to use the term oral for parts towards the mouth end, and aboral for those situated towards the opposite extremity, the same terms being also used to indicate relative position of different parts. The relative position of the parts is, however, for the sake of simplicity given here as they lie when the mantle-cavity is opened by turning back its thin postero-ventral wall.
means so prominent as in Sepia. On each side are two apertures, the oral and aboral nephridial apertures (a. l. neph. ap., p. l. neph. ap., p. r. neph. ap.), corresponding to the single pair of Sepia, but not elevated on papillae. Close to each posterior nephridial aperture is an opening—the viscro-pericardial (l. visc. ap., r. visc. ap.)—leading into the viscro-pericardial section of the body-cavity; these are not represented in Sepia. In both sexes there are two reproductive ducts, right and left; but in both the right alone appears to be functional, and the left is much smaller. The opening of the right spermiduct of the male (pen.) is situated on a cylindrical prominence—the penis—placed close to the middle line. In the female the nidamental glands are, as in Sepia, conspicuous objects, when the mantle-cavity is exposed; but they are mainly situated on its posterior instead of its anterior wall.

Enteric Canal.—The mouth is surrounded by a peristomial membrane beset with numerous papillae. There is a pair of jaws (Fig. 642, jaw) of similar shape to those of Sepia, but much more powerful, and calcified towards the tips. The buccal mass is a large rounded body with thick muscular walls. On the floor of the contained cavity is a large and prominent odontophore (odont.) with long and pointed curved teeth. In front of the odontophore is a large bilobed soft prominence, the tongue (tong.). Behind the odontophore, between it and the opening of the oesophagus, are one large median and two lateral tongue-like prominences beset with papillae; on the inner surface of the latter

Fig. 641.—*Nautilus pompilius*, interior of mantle-cavity of a male specimen with the postero-ventral wall reflected. *a. l. neph. ap.* oral left nephridial aperture; *an.* anus; *cten.* ctenidia; *l. & ap.* left reproductive aperture; *l. ant. os.* left oral ophrurium; *l. visc. ap.* left viscro-pericardial aperture; *mant.* flaps of mantle; *pen.* penis; *p. l. neph. ap.* aboral left nephridial aperture; *p. r. neph. ap.* aboral right nephridial aperture; *post. os.* aboral ophrurium; *r. visc. ap.* right viscro-pericardial aperture.
Nautilus pompilius, dissection of the internal organs of a male, from the left side. The funnel and the hood have been divided by a longitudinal median section. A portion of the wall of the buccal cavity has been removed to show the odontophore and the tongue. *ann. anus; aort. oral aorta; aort. pedal, posterior pedal artery; b. duc. bila ducts; buc. n. buccal nerves; buc. pap. papilla of peristomial membrane; c. c. cerebral ganglion; cec. cecum; ce. crop; hd. head; inf. funnel; inf. a. infundibular nerve; int. 1 part of intestine between stomach and cecum; int. 2 part of intestine following cecum; jaw, larger (posterior) jaw; l. eff. br. c. left efferent branchial vessels; l. tent. int. left internal tentacular lobe; Needham's sac; odont. odontophore; style passed from buccal cavity into the opening of the oesophagus; oes. oesophagus; olf. n. olfactory nerve; opt. n. optic nerve; otocyst; pall. n. pallial nerves; pal. a. pedal ganglion; pl. a. pleural ganglion; r. eff. br. v. right efferent branchial vessel; ree. retractor muscle of the buccal mass; stom. stomach; test. testis; tong. tongue-shaped elevation of the floor of the mouth; va. valve of funnel; vena. vena cava; vent. ventricle.
are apertures which may be the openings of salivary ducts, but the existence of salivary glands has not been proved.

The oesophagus \((oes.)\) becomes dilated aborally into a very spacious \(crop \,(or.)\) for the storage of the food, consisting of small prawn-like Crustaceans and small Fishes broken up by the jaws and radula. This opens into a rounded stomach \((stom.)\) having very much the appearance of the gizzard-like \(caecum\) of Sepia. The intestine \((int.)\) shortly after it leaves the stomach, develops a rounded \(caecum \,(v.\, caec.)\) with complexly folded walls, into which the ducts of the liver open. The intestine does not pass straight to the anus as in Sepia, but first bends round in a short coil. The ink-sac and duct of Sepia are not represented. There is a very large liver divided into four main portions or lobes, each of which is made up of a number of lobules. The bile-ducts \((b.\, dv.)\), opening as above mentioned into the \(caecum\), have a series of small diverticula which may represent the pancreatic appendages of Sepia.

Heart and Circulation.—The ventricle (Figs. 642 and 643 \(ven.\, l.\)) is a bilobed, transversely placed, muscular sac, very similar to that of Sepia. On either side there open into it two auricles or efferent branchial vessels \((a.\, ev.)\), one from each of the four ctenidia. The ventricle gives off a large main \(aorta \,(aort.)\), which passes to the head after giving off arteries to the stomach, the crop, the liver, and the mantle. From the aboral surface of the ventricle is given an smaller artery, the \(lesser\, aorta\), which immediately bifurcates. One of its branches— the \(posterior\, pallial\, artery\) \(\text{(Fig. 642 \(bis,\, post.\, pall.\, a.\))}\)—passes to the area of the mantle applied to the septum, bifurcates to supply this area, and gives off a branch to the siphuncle. The other— the \(anterior\, pallial\, artery\) \(\text{(ant.\, pall.\, a.\))}\)—after giving off arteries to the intestine and rectum, and to the branchiae and osphradia passes to the muscular edge of the mantle, bifurcating anteriorly. Three \(genital\, arteries\) \(\text{(gen.\, a.\, 1, 2, 3)}\), supplying the various parts of the reproductive apparatus, are likewise given off directly from the ventricle.

A large \(vena\, cava\) (Figs. 642 and 643, \(ven.\, c.\)) occupies a position corresponding closely with that of Sepia. It presents the remarkable peculiarity of being in free communication by numerous \(valvular\), apertures with the visceropericardial cavity of the \(coelome\). At its aboral end it presents a dilatation from which four afferent branchial veins \(\text{(Fig. 643, \(a.\, l.\, of.\, f.,\, p.\, l.\, aff.,\, p.\, r.\, aff.,\, r.\, ant.\, aff.)}}\)—two right and two left—proceed to the corresponding ctenidia, at the bases of which veins from the aboral region join them. There are no branchial hearts.

The \(renal\, organs\) (Fig. 643) are, like the ctenidia and the afferent and efferent vessels, four in number, of instead of two as in Sepia. Each renal sac \(\text{(l.\, neph.\, s.,\, r.\, neph.\, s.,\, l.\, post.\, neph.\, s.,\, r.\, post.\, neph.\, s.)}\)
Phylum Mollusca

Fig. 642 bis.—*Nautilus pompilius* (male), origin of pallial and genital arteries; ant. pal. a., anterior pallial artery; e. brv. a., efferent branchial veins; v. sem. a., v. seminalis (e. sem.); post. pal. a., posterior pallial artery; test.rect. testis. (After Willey.)

Fig. 643.—*Nautilus pompilius*, renal sacs, with ctenidia and other related parts, as seen from the posterior aspect; the boundaries of the four renal sacs represented by dotted lines. a. l. aff. left oral afferent vessel; cten. right ctenidia; l. neph. s. left nephridial sac; l. neph. ap. left oral nephridial aperture; l. post. neph. s. left abdominal nephridial sac; l. post. neph. ap. left abdominal nephridial aperture; l. r. l. neph. s. left abdominal nephridial sac; p. r. aff. right oral afferent vessel; r. c. neph. right visceral-pericardial aperture; r. c. neph. s. right abdominal nephridial sac; r. c. p. right visceral-pericardial aperture; v. c. cava; v. ventricle.
opens into the mantle-cavity, as already stated, by an orifice which is not drawn out into a tube. There is no communication between the cavities of the different sacs, and thus no median chamber as in Sepia. The cavities are found to contain phosphate of lime. Into each projects, from the corresponding afferent branchial vein, a compact rounded group of venous appendages (ven. app.), consisting of two symmetrical portions. Internal to these, each afferent vein has connected with it a second group of glandular appendages, which are cylindrical or club-like in form; they project, not into the nephridial sac, but into the visceral-cardial compartment of the coelome. They have been compared with the appendages of the branchial heart of Sepia, but differ in their relations to the renal appendages.

Nervous system.—Nautilus differs strikingly from Sepia, and resembles Chiton (p. 667) in the form assumed by the central parts of the nervous system, distinct ganglia being absent. A very thick nerve-collar, the posterior portion of which is double, surrounds the oesophagus just behind the buccal mass. The anterior part of the collar (Fig. 642, cer. g.) represents the cerebral ganglia, the oral portion of the posterior part (ped. g.) the pedal, the aboral portion (pl. g.) the pleuro-visceral, while the lateral parts, not distinctly marked off from the rest, represent the cerebro-pedal and cerebro-pleural connectives. From the cerebral “ganglia” pass nerves to the buccal mass, to the olfactory organs (olf. n.) the otocysts, and a pair of very thick optic nerves (opt. n.) to the eyes. The pedal ganglion gives off numerous nerves to the tentacles and the funnel. The pleuro-visceral gives origin to pallial and visceral nerves.

Sense Organs.—The *otocysts* are a pair of sacs embedded in recesses close to the cerebral ganglia; each contains a number of small fusiform otoliths. An olfactory function is ascribed to a process having the appearance of a modified tentacle, situated on the aboral side of the eye. Various parts connected with the foot have also been supposed to be olfactory, but the marked sexual differences which they present render this improbable. The *osphradia* (p. 729) contain ganglion-cells and are undoubtedly organs of special sense.

The *eyes*, situated at the sides of the head, are very large, but extremely simple in structure, presenting a marked contrast to those of Sepia, and scarcely comparable to those of any other animal, with the exception perhaps of Patella (p. 694). Each is of the shape of a saucer attached to the head by its convex side through a short thick stalk, the mouth being closed in by a slightly convex disc, with a circular aperture about its centre. A slight, raised rim runs round close to the margin on the posterior half, and a narrow groove runs inwards from this to the central aperture. In the interior of the cup is neither lens, vitreous
humour, nor iris. The sea-water, passing in through the central aperture, directly bathes the retina, which is spread over the interior in a thick layer.

Reproductive Organs.—The testis (Fig. 644, *test.*) or ovary (Fig. 645, *or*.), like that of Sepia, is single and median, enclosed in a special sac towards the aboral end of the body. The ducts are paired in both sexes, but in both the right alone appears to be functional. In the male a large glandular *vesicula seminalis*, in which the spermatophores are formed (*acc.*) is connected with the right duct, and this appears to be represented on the left-hand side by a vestige—the so-called *pyriform sac* (*pyr.*), situated close to the ventricle. The distal part of the right duct dilates to form a receptacle, the spermatophoral sac (*sp. s.*), and opens, nearly in the middle line at the end of a prominence—the penis (Fig. 641, *pen.*). In the female the right oviduct has a glandular dilatation, which is supposed to be an albumen gland. The ova are of large size, greatly exceeding those of Sepia in dimensions, containing a large proportion of food-yolk. Nidamental glands are present, but are mainly situated on the posterior, instead of the anterior, wall of the mantle-cavity.
2. Distinctive Characters and Classification.

The Cephalopoda are bilaterally symmetrical Mollusca, which have the propodium displaced forwards to the neighbourhood of the mouth, and divided into a series of arms bearing suckers, or of lobes bearing tentacles, while the metapodium forms a funnel for the egress of water from the mantle-cavity. The visceral mass is symmetrical and not coiled. The mantle encloses posteriorly and ventrally a large mantle-cavity, in which are situated the ctenidia and the nephridial, reproductive, and anal apertures. The shell may be absent or rudimentary; when present and well developed, it may be internal or external, undivided or divided internally by septa into a series of chambers. There is an internal cartilaginous skeleton, supporting and protecting the nerve-centres, and giving attachment to muscles. The mouth is provided with a pair of horny jaws, and an odontophore is present. In the majority there is an ink-gland with a duct opening into the rectum. The ctenidia and nephridia are either two or four in number. The nervous system is highly developed; and the principal nerve-ganglia are aggregated together around the oesophagus. The sexes are separate; the segmentation of the ovum is meroblastic, and there is no metamorphosis.

Sub-Class I.—Dibranchiata.

Cephalopoda in which the propodium assumes the character of a circle of either eight or ten arms bearing suckers, surrounding the mouth. The funnel forms a complete tube. The shell is usually internal; when external its cavity is not divided by septa. There are two ctenidia, two nephridia, and two branchio-cardiac vessels or auricles. An ink-gland and duct are present.

Order 1.—Decapoda.

Dibranchiata possessing ten arms, with stalked suckers, provided with horny rims, and with a well-developed internal shell.

This order includes the Cuttle-fishes, Squids, Spirula, and others, as well as the extinct Belemnites.

Order 2.—Octopoda.

Dibranchiata provided with eight arms, the suckers on which are sessile and devoid of horny rims: with or without slight vestiges of an internal shell. An external shell, secreted by a specially-modified pair of arms, is present in the female Argonaut only.

This order includes the Octopi and the Argonauts.

Sub-Class II.—Tetrabranchiata.

Cephalopoda, in which the propodium has the character of lobes bearing numerous tentacles. The funnel does not form a com-
plete tube. There is an external, spiral, chambered shell. There are four ctenidia, four nephridia, and four auricles. The ink-gland is absent.

This sub-class includes only one living genus, *Nautilus*, but the *Ammonites* and other extinct forms are usually referred to it.

Systematic Position of the Examples.

The genus *Sepia* is a member of the family *Sepiidae* of the order Decapoda, which is distinguished from the seven other families of the order by the combination of the following features:—The body is compressed and comparatively broad; the fins are narrow and elongated; the internal shell consists almost entirely of calcareous material.

Nautilus is the sole living representative of the sub-class Tetrabranchiata.

3. **General Organisation.**

The uniformity of structure among the Dibranchiate Cephalopoda is very great, and, as already stated, *Nautilus* is the only living member of the Tetrabranchiata, so that comparatively little has to be said to supplement the descriptions of these two examples.

External Features.—The general external shape differs very little in the different members of the Dibranchiata: the body in some is more elongated, in others, less; the degree of compression

![Octopus vulgaris](image)
likewise varies. Fins may be absent, and the animal may progress entirely by creeping with the aid of the long arms, or by swimming by the movements of the arms, or under the propulsion of a current of water forcibly ejected through the funnel by the contraction of the muscular mantle. (Fig. 646.) When fins are present they may not take the form of a continuous lateral flap as in Sepia, but, more usually, are of the nature of flattened lobes situated towards the aboral extremity of the body (Fig. 647); in _Othenopteryx_ they have the character of fringes of filaments. The arms vary in length and proportions and in the form and arrangement of the suckers. Eight arms are present in the Octopoda and ten in the Decapoda. In the former group the Argonauts (Fig. 648) have, in the female, one of the pairs of arms (wa.), flattened and expanded at the extremities for the secretion and support of the shell (sh.). In the Decapoda one of the pairs of arms, the fourth, is always specially modified, as in Sepia, to act as prehensile appendages or _tentacles_ capable of being partly or entirely retracted within certain sacs situated at their bases. In nearly all one of the arms is specially modified (or _hectocotylised_) to act as an intromittent organ. This modification is only very slight in Sepia and confined to the base. It is most marked in certain of the Octopoda (Fig. 649), including the Argonauts. In the latter, before the breeding season, the third arm in the male is found to be represented by a rounded sac. This subsequently bursts and sets free the elongated hectocotylised arm. Spermatophores are taken by the arm from the genital opening, and in the act of copulation.
the entire arm is detached, and left in the mantle-cavity of the female. In other cases the arm is not detached. The suckers are sometimes stalked, sometimes sessile, sometimes armed with hooks, sometimes replaced by hooks. In many cases the arms are united by a web-like fold, the *interbrachial membrane* (Fig. 650), which may reach nearly to their extremities.

In the Tetrabranchiata the series of groups of slender, ringed, sheathed tentacles, situated on lobes of the foot surrounding the mouth, take the place of the arms, and suckers are not present. In the males the spadix probably represents, functionally at least, the hectocotylised arm of the Dibranchiata.

Nautilus is the only Cephalopod that has any head-appendages.
in addition to those formed by modification of foot; they consist of the two short tentacles situated on each side near the eye. In all the Dibranchiata the *funnel* is a complete tube. In the Nautilus, on the other hand, as we have seen, the folds which form the funnel have their edges merely in apposition, and not united. A valve, such as has been described in Sepia, occurs in most Decapoda and in Nautilus, but is absent in the Octopoda. *Chromatophores*, similar to those of Sepia, are universal in the Dibranchiata but absent in Nautilus.

Shell.—The shell of Nautilus is the most complete and yet in a certain sense the most primitive. As already stated, it is an external shell of a spiral character, divided internally by septa into a series of chambers. The last of the chambers is occupied by the body of the animal; the rest are filled with gas. Perforating the middle of all the septa in succession is a spiral tube—the *siphuncle*—continuous with the centro-dorsal region of the visceral prominence. In the course of its growth
the body of the Nautilus shifts forwards at intervals into a newly formed chamber, and a new septum is formed closing the latter off from the cavity last occupied.

Of existing Dibranchiata, Spirula alone has a shell (Fig. 651) comparable to that of Nautilus. The shell of Spirula is of spiral form, the turns of the spiral, however, not being in close contact. Internally it is divided into chambers by a series of septa, and these are perforated by a siphuncle. But the initial chamber (protoconch) instead of being, like the initial chamber in Nautilus, similar to the others though smaller, is dilated into a spherical shape, constricted off from the succeeding chamber, and has passing through it a tube—the prosiphon—not continuous with the siphuncle. Again, as will be seen by comparing Figs. 638 and 652, the relation of the soft parts to the shell is the reverse of what obtains in Nautilus, the shell of Spirula curving backwards, that of Nautilus forwards. Moreover the shell of Spirula (Fig. 652) is an internal structure, being almost completely covered by the mantle.

The shell of the extinct Ammonites (Fig. 653), which are usually referred to the Tetrabranchiata, resembles that of the Nautilus in many respects, being a chambered spiral shell with a large terminal chamber, and with a siphuncle. The chief external difference is in the form of the sutures, or lines of union of the edges of the septa with the side wall of the shell; these are more or less complexly lobed, instead of being entire as in Nautilus. But in one important respect the shell of an Ammonite differs from that of Nautilus and approaches that of the dibranchiate Spirula. At the apex of the spiral is an initial chamber or protoconch, which is dilated and separated from the first of the ordinary chambers by a constriction, and has passing into it a prosiphon not continuous with the siphuncle. The Ammonite was also characterised by the possession of a structure sometimes horny, sometimes calcareous, called the aptychus, not represented in any existing form. The aptychus,
which was composed of two parts, seems to have been of the nature of an operculum for closing the mouth of the shell. Young Ammonites, each with its aptychus, have been found within the shell of the parent, in which they must have remained protected during their development.

In the ordinary decapod Dibranchiata the shell may consist of three parts—a horny pen or pro-ostracum, a calcareous guard, and a part termed the phragmocone. The last, which alone represents the shell of Spirula, has the form of a cone divided internally by a series of septa perforated by a siphuncle. These parts are most completely developed in the extinct genus Belemnites, in which the shell (Fig. 654) consists of a straight, conical, chambered phragmocone (phr.), with a siphuncle, enclosed in a calcareous sheath, the guard, produced into a horny or calcareous plate, the pro-ostracum (pen.). In Sepia the spine-like projecting point represents the guard, and the main substance of the shell is to be looked upon as the pro-ostracum and phragmocone, the septa of the latter being represented by the calcareous lamellæ. In Loligo (the Squids) the shell (Fig. 647, B) is long, narrow, and completely horny; it corresponds to the pro-ostracum, the phragmocone being entirely absent.

In Octopus the shell is represented only by a pair of rudiments with which muscles are connected. In Argonauta there is no shell
in the male, but the female has an external shell (Fig. 655) of a remarkable character. This is a delicate spiral structure, the internal cavity of which is not divided into chambers. It is not secreted by the mantle like the shells of other Mollusca, but by the surfaces of a pair of the arms ending in expanded disc-like extremities, which become applied to its outer surface; its chief function is to carry the eggs.

An internal cartilaginous skeleton is present not only in Sepia and Nautilus, as already described, but in all the Cephalopoda. Such an internal skeleton occurs in other groups—some Chaetopoda (p. 433) and Arachnida (p. 618), but attains a much more elaborate character in the present group than in any other Invertebrates.

The plume-shaped gills, lodged in the mantle-cavity, are two in all the Dibranchiata, as in Sepia. In the Tetrabranchiata there are four gills, similar in general character to those of the Dibranchiata. Osphradia are present at the bases of the gills only in the former sub-class.

The celome in the Dibranchiata has the extent already indicated (p. 715) in the case of Sepia, except that in the Octopoda the oral part does not exist. In Nautilus it encloses, besides the heart and gonad, the vena cava and a part of the glandular appendages of the afferent branchial vessels. In the Dibranchiata the pericardial portion communicates with the nephridia; in Nautilus this communication is absent, but the celome opens on the exterior by two symmetrical orifices placed at the side of the openings of the aboral nephridia.

Alimentary Organs.—Jaws similar to those of Sepia are present in all the members of the class; in Nautilus, instead of being completely horny, they are partly calcified. Bucal cavity, oesophagus, stomach, intestine, salivary glands, and liver are all of the same general character throughout all the members of the class. In some of the Dibranchiata, such as Octopus, there are two pairs of salivary glands. In Nautilus the salivary glands are absent, so far as known, the oesophagus is dilated to form a sort of crop, and the stomach is gizzard-like. In that genus also the ink-gland, general in the Dibranchiata, is absent, and there is a caecal appendage to the intestine; the liver is four-lobed, each lobe having its duct. The so-called pancreas, described in Sepia, is similarly developed in all the Dibranchiata, and is present also, though only feebly developed, in the Tetrabranchiata.

Heart and vascular system are well developed in the Cephalopoda, and their structure and arrangement closely correspond with what has been described in Sepia, except that in Tetrabranchiata there are, as already stated, in accordance with the double number of gills, four auricles instead of two, and branchial hearts are absent.
Nervous system and sense organs.—The ganglia of the central nervous system are in all closely aggregated together round the oesophagus, as already stated to be the case in Sepia; and the general disposition is the same as that described. In Octopus the ganglia are much less sharply marked off. In Nautilus, as already stated, there is less concentration, and distinct ganglia are absent. All the Dibranchiata possess highly developed eyes similar to those of Sepia; but in Nautilus the eyes are of a much simpler character, each consisting of a sac opening on the exterior by a small rounded aperture, lined internally by a two-layered retina similar to that of Sepia, but without lens, vitreous humour, or cornea. In the embryo of the Dibranchiata, the eye passes through a stage in which it is in the condition of an open cup similar to the adult eye of Nautilus. Osphradia are present, as already mentioned, only in the Tetrabranchiata; but in both the Dibranchiata and the Tetrabranchiata certain sensory processes or depressions conjectured to possess an olfactory function are developed on the head. Otolarvae are universally present.

All the Dibranchiata have two nephridia similar in character to those of Sepia, and communicating with one another; in Octopus they are completely united. In the Tetrabranchiata there are four nephridia, each opening on the exterior.

The sexes are distinct in all the Cephalopoda, and in addition to the hectocotylised arm, there are frequently other external differences between male and female. In all the Dibranchiata the arrangement of the gonads and gonoducts is, as regards general features, similar to what we find in Sepia. In Octopus, however, there are two oviducts instead of one, and in one other member of the Octopoda (Eledone moschata) the same holds good of the spermiducts.

Development.—The development of the Dibranchiata alone is known. The eggs are very large, containing a relatively large amount of food-yolk. They are usually laid in masses or strings embedded in soft gelatinous, or tougher, more leathery substance, usually attached to some foreign body; in some cases each egg, enclosed in its gelatinous sheath, is attached by a longer or shorter stalk. A chorion or delicate transparent egg-membrane, in which there is an aperture—the micropyte—immediately invests the egg itself. In shape the egg is oval or spherical. The greater part of the comparatively small quantity of protoplasm lies as a disc-like elevation on the surface of the yolk on the side of the egg at which the micropyte is situated. Continuous with this germinal disc is a thin layer of protoplasm—the peripheral protoplasm—investing the entire ovum.

Segmentation (Figs. 656 and 657) is incomplete, being confined to the germinal disc. At an early stage in the process of division, the blastoderm exhibits a distinct bi-lateral symmetry. At first
it consists of a single layer of cells—the *ectoderm*. Later on a thickening is observable at the periphery, due to the development of a second layer, which by degrees extends inwards until it comes to underlie the entire ectoderm. This second layer is commonly termed the *mesoderm*, though it differs from the middle layer of other embryos in giving rise to the enteric epithelium of the mesenteron. The ectoderm now extends rapidly, and eventually encloses the entire yolk. Below the second layer extends a thin stratum derived from the peripheral protoplasm, containing nuclei which appear to have been previously scattered through the yolk; this is termed the *yolk epithelium* (Fig. 658). It serves the purpose of absorbing the yolk-substance for the benefit of the developing embryo. About the middle of the blastoderm appears a thickening of a cap-like shape, the edges of which become raised above the
general level of the blastoderm; this is the rudiment of the mantle. On the surface of this is developed a depression which subsequently forms a closed sac—the shell-gland (Fig. 659, sh. gl.). Below the mantle—i.e. nearer the vegetal pole—appear two elevations each with a pit-like depression, the rudiments of the eyes; and still nearer the vegetal pole a series of paired elevations, the rudiments of the arms.

After the complete enclosure of the yolk by the blastoderm, the mouth (mo.) is developed as an oval depression between the rudiments of the eyes. Immediately in front of the edge of the mantle appear two short ridges, the beginnings of the gills (eten.), and a pair of folds—the posterior funnel folds (post. f. f.)—which are formed between these and the eyes—are the first rudiments of the funnel;

the greater part of which, however, is formed from a second pair of folds—the anterior funnel folds (ant. f. f.)—developed further forwards. Behind the anterior funnel folds appear two pit-like depressions, which subsequently develop into the otocysts.

The elevations on which the eyes (eye) are situated become more and more prominent. The eyes themselves are formed from a part only of these elevations; each is a pit which subsequently becomes closed—to form a vesicle—the optic vesicle: later an ingrowth of the ectoderm over this gives rise to the lens.

The embryo covers only a part of the egg, and as it develops, it withdraws itself more towards the animal pole, at which the germinal disc was originally situated, a constriction, which soon becomes very deep, separating it off from the rest of the egg; the
latter, consisting of the greater part of the yolk enclosed in a thin layer of blastoderm, forms a rounded appendage of the embryo—the yolk-sac (yk. s.). The yolk-sac undergoes contractions, which are due to the action of contractile cells in the thin mesoderm lining it; and by this means the yolk is forced into the interior of the body of the embryo.

The anus appears as an aperture situated on a little papilla—the anal papilla. A row of cilia, which are developed in the neighbourhood of the mouth in some forms, perhaps represent the velum or pre-oral circle of other molluscan embryos. The mantle now increases in extent, and its margins become more prominent. The anterior funnel folds grow out, and become united in the
middle line; and these, with the posterior folds, go to form the completed funnel together with the "neck-muscles." For a time

Fig. 660.—Two later stages in the development of Loligo, A, from the funnel side. B, obliquely from above. Letters as in preceding figures; *nc. cart.* nuchal cartilage (After Korschelt and Heider.)

Fig. 661.—Two stages in the development of Loligo, later than those represented in Fig. 660. From the anal or funnel side. Letters as in preceding figure; in addition, *fin*, fins. (After Korschelt and Heider.)

the edges of the two folds which form the funnel remain free; eventually they coalesce to form a complete tube.
The edges of the mantle grow out into prominent folds to form the mantle-cavity, into which the gills are drawn. Lateral outgrowths have already formed the rudiments of the fins. The arms grow out into more and more prominent processes on which the suckers become developed, the second pair—the prehensile arms (ar. 2)—soon becoming distinguishable from the rest by its greater length.

As the embryo increases in size, the yolk becomes gradually absorbed, and the yolk-sac decreases in bulk, until, when the embryo leaves the egg, it has almost completely disappeared.

Fig. 662.—Two late stages in the development of Loligo, seen from the funnel side. Letters as in preceding figures. (After Korschelt and Heider.)

Distribution.—The Cephalopoda are all marine, and range from tidal limits to a considerable depth. A large number are pelagic. They are, nearly without exception, carnivorous. In length they range from an inch or two to as much as fifty feet—the gigantic members of the group such as Architeuthis, being by a long way the largest of invertebrate animals. Like the other classes of Mollusca they are most abundant in tropical and warm temperate seas.

If the Ammonites are to be included among the Tetrabranchiata, that sub-class was most abundantly represented during
the mesozoic period. The nautiloid Tetrabranchiata were most abundant in the palaeozoic epoch, during which there lived a great variety of forms of this group, some having the shell straight (Orthoceras), or curved (Phragmoceras), or in a flat spiral with the turns not in contact, or in a helix, or a flat close spiral (Nautilus, and others). The earliest representatives of the Nautiloids are found in rocks of Cambrian age; they are comparatively scarce in the mesozoic epoch and in the tertiary; and are represented at the present day only by the genus Nautilus itself. The Ammonites are mainly mesozoic, the representatives found in the earlier rocks (from the Upper Silurian onwards) being few in number and simpler in structure than the more typical later forms. The oldest fossil representatives of undoubted Dibranchiata belong to the extinct order of the Belemnites, which flourished in the mesozoic period from the Trias to the Cretaceous, and survived in scanty number into the Tertiary. Unlike the Tetrabranchiata, the Dibranchiata would appear to have reached their maximum at the present day.

The mutual relationship of the various groups of Cephalopoda are indicated, as nearly as the information at our disposal will allow, in the following diagram (Fig. 663).

![Diagram](image)

Fig. 663.—Diagram to illustrate the relationships of the groups of Cephalopoda.

General Remarks on the Mollusca.

The Mollusca, like the Arthropoda, form an extremely well-defined Phylum, none of the adult members of which approach the lower groups of animals in any marked degree. There are, however, clear indications of affinity with "Worms," especially in the frequent occurrence of a trochosphere stage in development, in the presence of nephridia, and in the occurrence, in Amphineura and some of the lower Gastropods, of a ladder-like nervous system resembling that of some Turbellaria and of the
most worm-like of Arthropods, Peripatus. Rhodope, moreover, shows certain affinities with Flat-Worms. The head-kidneys or primitive nephridia of the molluscan Worms are practically identical with those of the annelid trochosphere and are probably homologous with the various types of nephridial tubes found in worms from Platyhelminthes to Chaetopoda. From developmental considerations it appears, however, that the permanent renal organs of Mollusces correspond not with the actual nephridia of Worms but with their oviducts; in other words, that they are meso- and not ectonephridia.

The fact that there is usually a single pair of nephridia and of ctenidia seems to indicate derivation from a group in which metamery had not arisen; the segmental arrangement of the shells and gills of Placophora appears to be a specialised character of that group and of no phylogenetic importance.

The lowest members of the phylum are undoubtedly the Protobranchia among Pelecypods and the Aplacophora among Amphineura. The latter take the lowest rank in virtue of the absence of both foot and shell, but the possession of an odontophore indicates a comparatively high degree of specialisation. On the other hand, while there is no indication of an odontophore, even in a rudimentary condition, in the Pelecypoda, the foot and shell are well developed even in Nucula and its allies. There is no actual evidence to show that the foot and shell have been lost by degeneration in the Aplacophora or the odontophore in Pelecypoda, and it would appear, therefore, that the two groups are to be derived independently from some primitive form.

The facts that the pelecypod shell, at its first appearance, is univalve, that the foot of the Protobranchia is of the creeping type and their ctenidia plume-like, suggest the derivation of the class from a form resembling a simple type of Gastropod with no odontophore and with undisturbed bilateral symmetry. The Amphineura are also bilaterally symmetrical, with paired ctenidia, kidneys, and auricles, and the fact that these organs are also paired in the lower Gastropoda, seems to point to a common ancestor for Pelecypods, Amphineura, and Gastropods, which was bilaterally symmetrical, had a creeping foot, a simple shell, paired auricles, kidneys, and gills, and no odontophore.

While the leading feature in the evolution of the Pelecypoda has been the splitting of the mantle into two halves and the resulting bivalve shell, the most noticeable fact in that of Gastropoda, apart from the appearance of the odontophore, has been the torsion of the visceral mass, producing a characteristic asymmetry. In the Cephalopoda, on the other hand, the primitive bilateral symmetry is retained, and the most characteristic special feature of the group is the extraordinary modification of the foot into arms or tentacles and funnel. The class is raised far above the remain-
ing Mollusca by its wonderfully high organisation, especially in the nervous system and the eye, and there is nothing to indicate close relationship with any of the lower classes, beyond the general conformity to the molluscan plan of organisation, and the presence of an odontophore. The Cephalopods form, in fact, a singularly isolated group. Palaeontology has not hitherto given any indication of their origin, and embryology is equally silent, the absence of a free larva, and the profound modification in development produced by the enormous mass of food-yolk sharply separating them from all other members of the phylum.
INDEX

All numbers refer to pages: words in italics are names of families, genera and species: words in thick type are names of higher divisions: words in small capitals are names of examples. Numbers in thick type are numbers of pages on which there are figures: an asterisk after a number indicates a definition of the term or of the group.

A

A. BACTIAL, 347*
Abdomen, of *Apsi, 489; *Astacus, 498;
Periplaneta, 572, 574
Absorption, 32
Abyssal species, 8
Acanthoccephala, 275*: External characters,
290: Body-wall, 290: Body-cavity, 290: Proboscs, 290: Vessels,
291: Nervous system, 291: Excretory organs, 292: Reproductive organs,
291, 292: Development, 292
Acarida, 612*, 616, 618, 619, 620, 621
Achromatin, 15*
Acriculum, 49*
Actinacta, 90, 91, 92
Aeolus, 252
Aeolus, 175, 188
Acorn-scells, 534
Actina, 347*
Actinaria, 180, 214
Actinodactyla, 244, 245, 250
Actinometra, 392
Actinomma asteracanthion, 60
Actinophrys sol, 55
Actinoplastrum, 56
Actinostome, 347*
Actinotrocha, 330, 462
Actinozoa, 118*: Example, 172: Distinctive characters and classification,
180: Systematic position of example, 183: General organisation, 183: Builing,
184: Structure of polypes, 185: Enteric system, 188: Fixed and free
forms, 189: Dimorphism, 189*: Skeleton, 189: Colour, 195: Commensalism,
195: Distribution, 196

Adamsia palliata, 195, 196
Adductor impressions, 633, 634, 630
Adductor muscles, 635, 648, 645, 646,
647, 649
Adhesive cells, of *Horniphora, 292: of
Turbellaria, 248
Adipose tissue, 23*, 25
Adoradius, 129
Adrectal gland, 993
*Echinopsis, 144
*Eugia, 143
*Ephyra, 188: Addenda
*Equora, 133
Affinities—See Relationships
Agalma, 151
Agamobium, 130
Aggressive characters, in Crustacea, 555
Air-sacs, of Insects, 593, 594
Alberta, 309
*Acipipeda, 147
*Alcippe, 522, 534
Aleyonacea, 182*, 193
Aleyonaria, 182*, 187, 188, 197
*Aleyonidium, 320
*Aleyonium, 182, 190
Alecithal, 206*
Alimentary canal—See Digestive system
Alimentary system—See Digestive system
Alpheus, 556
Alpine forms, 8
Alternation of generations—See Metagenesis
Alveolus, of Sea-urchin, 366
Ambulacral grooves, 347*
Ambulacral ossicles, 349,
Ambulacral pores, 349
Ambulacral system, of *Asterias, 350:
*Echinus, 367: Sea-cucumber, 370, 371:
of Antedon, 375: of Echinodermata, 393

3 C 2

Asterina, 185, 194
Astrophor, 387
Astrosphere, 16*
Atlanta peronii, 689
Atrochal, 445
Attraction-sphere, 16*
Auditory organs, 37
Antactiium actinodromum, 60
Antostoma, 476, 481

Auricle, of heart, 34
Auricles, of sea-urchin, 366
Auricularia, 372, 397, 398
Aulobas cornutus, 446
Avicularium, 314, 315, 324
Axes, 40*
Axial fibre, 83
Axial sinus, 355
Axis-cylinder, 27, 28

Balanus, 522, 534
Barnacles, 522, 548
Barrier reef, 197
Basal plate, of coral, 192*, 193
Bedellia, 303*
Bedellonae, 264
Bear-animalcules, 626
Bee-parasites, 602
Bees, 587, 589, 598, 603
Beetles, 587, 591
Belennates, 736, 742
Benthos, 8
Beronice, 139
Berço, 211: Section, 214
Beroida, 208, 211
Bilateral symmetry, 39*, 41
Bile, 32
Bilharzia karmacobina, 263
Binomial nomenclature, 1*
Biology, 1*
Bionomics, 9
Bipalium, 240
Bipinnaria, 361, 397
Bird-lie, 602
INDEX

Birgus, 323, 549
Bivium, 348, 366; of Sea-cucumber, 369
Black coral, 182
Blastocele, 20
Blastoidea, 380
Blastomeres, 20
Blastopore, 21
Blastosphele, 20
Blastostyle, of Obelia, 119, 120; Septoline, 149; Peripatia, 153
Blastula, 20
Blatta—See Periplaneta
Bhattach, 587
Blood, 32
Blood-vascular system—See Vascular system
Blood-vessels, 32
Blow-flies, 586
Blue coral, 182
Body-cavity—See Ccelome
Body-wall, of Sea-anemone, 175: Hormiphora, 202; Liver-fluke, 226; Platymelmhins, 248; Nemertinea, 269; Aescaris, 276; Nematoda, 283; Chetognatha, 293: Brachiopoda rubra, 300: Bugula, 316; Ectoprocta, 323; Margellina, 335: Asterias, 351; Sea-cucumber, 370; Nereis, 498; Earthworm, 419; Chetopoda, 434; Sipunculus, 451; Gephyrea, 456; Hirudo, 467; Aplys, 489; Astacus, 504; Crustacea, 547; Peripatus, 561; Myriapoda, 569; Insects, 588
Bojanus, organs of, 640
Bohina hyalina, 211
Bone, 25, 26
Bone-corpuscles, 25
Bouallia, 455, 456, 458, 460
Book-gills, 621
Book-lungs, 608, 610, 621
Book-scorpions, 611
Boyarini, 546, 547
Bopyrus, 534
Bot-fly, 586
Bothrocephalus, 256, 259
Bothrocephalus latius, 265
Botryoidal tissue, of Leech, 467
Bougainvillea, 133, 134, 140
Brachial disc, of Discomedusae, 171
Brachioleira, 397
Brachionide, 304
Brachionus, 307
Brachionides reeens: External characters, 299, 300; Body-wall, 300; Digestive organs, 300, 301; Ccelome, 301; Excretory system, 301; Nervous system and sense organs, 301; Reproduction and development, 302; Systematic position, 304
Brachiopoda, 331: Example, 321; Distinctive characters and classification, 337; Systematic position of example, 338; General organisation, 338; Shell, 338, 339; Peduncle, 339; Lophophore, 339; Muscular system, 339; Enteric canal, 340: Heart, 340; Nephridia, 340; Nervous system, 341; Gonads, 341; Development, 341; Distribution, 342
Brachychirus, 523, 539
Brah, 489
Brain, 36
Branchellion, 475, 476, 477, 481
Branchie, 33: of Astacus, 347; Sea-urchin, 304; Polychaeta, 433, 434; Oligocheta, 434; Branchellion, 475, 477: Astacus, 507, 508; Crustacea, 548; Anodonta, 636, 637, 638; Pelecypoda, 653; Triton, 676, 677: Gastropoda, 690
Branchial formula, of Astacus, &c., 549
Branchiopas, 521, 526
Branchiura, 522, 528
Brine-shrimp, 528
Brood-ponch, 327
Buccal cavity, 30
Buccinum undatum, 671
Budding, 38:—See Asexual reproduction
Budding, in Turbellaria, 249
Buffon, 5
Bugs, 585, 591, 602
Bugula, 320
Bugula avicularia, 314, 315: Body-wall, 316: Ccelome, 316: Alimentary canal, 317; Nervous system; Reproductive organs; Development, 317, 318: Systematic position, 320
Bugula phunosa, 317
Bugyes, 699
Butus, 604: External features, 605: Digestive system, 607, 608, 609: Circulatory organs, 607, 608; Organs of respiration, 608; Nervous system, 608, 609: Organs of special sense, 609: Reproductive organs, 609: Development, 610
Butterflies, 587
Byssus, 645, 653
Byssus-gland, 645, 652
Byssus, provisional, 644

C
Caddis-flies, 585
Calcarea, 109, 111, 112, 115, 116
Calcareaous spicules, of Sponges, 98, 99, 111, 112
Calciferous glands, 421
Calendula, 209
Calidereia, 139
Calocerinae, 529
Calotte, 317
Calyx, of Radiolaria, 58
Calyptoblastea, 133
Cambrian, 7
Canalicule (bone), 25
Ciliated chambers, 109
Cincides, 175, 188
Circulation—See Vascular system
Circulatory system—See Vascular system
Cirri, 403*
Cirripedia. 522*, 534, 547, 550, 551, 552
Clisella, 339, 340, 341
Cladocera, 521, 526, 547
Class, 4*
Classification, 3*, 5: of Rhizopoda, 45:
Chlathrozoa, 136
Clathrinia, 57
Clavatella, 135
Cleaning foot, 336
Cladoceridae, 475, 476, 477, 479
Clione, 116
Clitellum, 417, 467
Clypeaster subdepressus, 390
Clypeastridae, 379
Clypeus, 572
Cnidoblast, 123*
Cnidocil, 124*
Codiera, 598
Coccidiidea, 76*: Characteristic features, 78
Coccidium, 78
Cockchafer, 394
Cockles, 651, 647, 661
Cockroach—See Periplaneta
Cockroaches, 584
Cocoa-nut crab, 549
Codonella, 85
Colome and body-cavity, of Ascaris, 279: Nematoidea, 284: Acanthocephala, 290: Chaetognatha, 294: Brugia, 316: Endoprocta, 326: Phoronis, 328:
Cephalopoda, 212, 266
Conchylina, 194*
Ctenosarc, 121*
Coleoptera, 587, 589, 596, 598, 602, 605
Collar of chaonoflagellata, 72
Collared cells, 98, 99, 100*
Collared monads, 73
Colleterial glands, 597
Collozoa, 59
Colony, 38*: of Foraminifera, 50:
Colpoda, 89
Columella, of Coral, 192*, 193: of Triton, 672
Comb-jellies, 118
Comb, of Horniphora, 200, 201
Complemental males, 551
Conchiolin, 634
Congylostoma, 85
Cones, 684
Conjugation of Ciliata, 90: of Flagellata, 70: of Paramecium, 81
Connective tissue, 23*: Gelatinous, 23, 24: Fibrous, 23: Retiform, 23, 24
Connective tissue cells of Sponges, 102
Contractile vacuole, 11, 44, 79
Contractility of muscles, 26, 35
Corals, 699
Corallula, 249, 250
Copepoda, 522*, 528, 531, 552
Coral limestones, 197
Coral reefs, 197
Corallite, 192*
Corallina, 184, 185, 190, 197
Corallum, 192*
Cordylophora, 155
Cornea, 720
Corona, of Polyzoa, 317: of Sea-urchin, 304
Corpuscles, 29: ameboid, 29
Cortex, of Paramoecium, 79: Sponges, 10, 110
Corynophora, 137
Coulps, 530
Covered-budded Hydroids, 133
Cowries, 684
Coxal glands, of Peripatus, 562: of Scorpion, 608: of Arachnida, 618
Crabs, 537, 540, 541, 549, 553, 556
Crane-fishes, 408
Crayfishes, 537, 550, 554
Cretaceous, 7
Crinoidae, example, 373: Distinctive characters and classification, 380:
 Modifications of form, 591: Ccelome, 392: Ambulacral system, 393: Blood-
 vascular system, 394: Enteric canal, 394: Nervous system, 395: Reproductive
 organs, 395: Development, 399: Ethology, 399
Criceris, 357
Crisis, 320
Cristatella, 321, 323
Crop, 30
Crustacea, 484: Example a, 484: Example b, 498: Distinctive characters and classification, 519: Systematic
 position of the examples, 524: General organisation, 525: External characters and structure of appendages, 525:
 Texture of the exoskeleton, 547: Bodycavity, 547: Enteric canal, 547: Respiratory organs, 548: Heart, 550: Excretory
 organs, 550: Nervous system, 550: Sense-organs, 551: Reproduction, 551: Development, 551:
 Ethology, 554: Affinities and mutual relationships, 556: Appendix, 558
Cryptomonads, 66
Cryptophyceae, 546, 547
Crystalline style, 636: of Gastropoda, 692
Ctenaria, 139
Ctenidium, 645, 646, 653, 664, 665: of Trilob, 676: of Gastropoda, 693
Ctenophora, 118*: Example, 198: Distinctive characters and classification, 207: Systematic position of the example, 208:
 General organisation, 209, 210, 211: Appendix, 212: Relationships, 214, 215
Ctenophyla, 212, 266
Ctenopithys, 738
Ctenostomata, 320*, 321
Cubomeduse, 164*, 166
Cummaridae—See Colochirus
Culex, 390
Cuma, 524
Cumacea, 524*, 543
Cumacea, 524*, 543
Cumacea, 143
Cunina, 153
Cunina parasitica, 144
Cup-coral, 192
Cuvier, 5
Cuvierian organs, 394
Cyamus, 521, 543, 546
Cyclas, 690
Cyclops, 522, 528, 529, 590, 591
Cyclostomata, 320
Cydippida, 208*, 209
Cyiento, 531
Cyiento, 524, 546
Cystidiole, 598
Cynips, 687
Cypris, 521, 527, 528, 550
Cypris stage, of Cirripedid, 552
Cyst, of Amoeba, 44: Euglena, 64
Cysticercoid, 260, 261
Cysticerus, 236, 261
Cystophagellata, definition, 65: Characteristic features, 74
Cystoidae, 380
Cythere, 521, 527, 528
Cytoplasm, 15

D
Dactylopoles, of Millepora, 145
Stylaster, 147
Dactylozooids, 138*, of Millepora, 146:
Stylaster, 147: Halistemma, 148, 149
Daddy long-legs, 586
Dahilla wartlet, 172, 173
Dallia, 508, 509
Dalvinella socialis, 558
Daphnia, 521, 526, 527
Darwin, 6
Dasyobra, 438
Daughter-cell, 18
Daughter-chromosomes, 16
Daughter-cysts, 262
Daughter-nucleus, 17
Daughter-segments, 16
Day-flies, 592
Dead men's fingers, 182
Decapoda, 529*, 537, 548, 550, 551
Decapoda (Cephalopoda), 736*, 738, 740
Degeneration, inCOPEPODA, 530: in Cirripedia, 534: in Isopoda, 547
Deipna, 209, 210
Dendropharynx—See Platyaria
Dentrocometes, 71
Dendrophyllia, 194
Dendrosmoa, 91, 92
Deutalom, 705, 706, 707
Derma (dermis), 218
Derma branchiae of Kehinoidea, 389
Derma branchia, 347, 393
Dermal cortex, 102*, 110
Dermal pores, 347
Dermaptera, 587
Desmoscolecida, 296
Desmoscolet, 297
Desmosporangia, 103*
Dentomere of Gregarina, 77
Development, of Sycon, 113, 114: Sponges, 113:
Obelia, 129, 130: Septithoe, 141:
Trachyclione, 144: Aurelia, 160, 161,
162: Sea-anemone, 170: Hornimphora,
207: Didemnidae, 217, 218: Rhopalaea,
219: Placocyst, 225: Liver-Fluke, 229,
230: Tanita, 236: Platytelminthes,
256: Nemertinea, 272, 273: Ascaris,
280: Nemaphoda, 286, 287: Chetognatha,
295: Branchiomus rubens, 302:
Rotifer, 309: Bopyrula, 317: Ectoprenota,
325: Phoronis, 329, 330:
Brachiopodi, 341: Asterina, 358, 359:
Sea-urchin, 368: Sea-cucumber, 372:
Antedon, 377, 396: Echinodermata,
396, 397: Nereis, 413, 414, 415: Lumbricis,
425, 426: Chetopoda, 442:
Gephyrea, 450, 460: Hirudo, 475:
Hirudinea, 479: Apus, 496: Ascaris,
515: Crustacea, 551: Peripatetus, 562,
563, 564, 565: Myriapoda, 570: Peripatidea,
580: Scorpion, 610: Anodonta,
643: Pelecypoda, 658: Amphiurea,
668: Gastropoda, 698: Scaphopoda,
706: Cephalopoda, 744, 755
Devolan, 7
Diastylis, 524, 543
Dibranchiata, 736*, 737, 738, 740, 743, 744
Dieracra, 651
Dichyodonta, 86
Dicyema, 216, 217, 218
Dicyemidae, 216, 217
Didinium, 85
Didymium difforme, 61, 62
Didymograpthus, 155
Differentiation, 21*
Diphyliga, 48
Digeneata, 238*, 250, 253, 256
Digestion, intracellular, 31
Digestive glands, 31
Digestive system, 30
Digestive system, of Paramecium, 86:
Aurelia, 157, 158, 159: Sea-anemone,
174, 175: Hornimphora, 199, 200, 201:
Planaria, 222, 223: Liver-Fluke, 227:
Platytelmintes, 250, 251, 252: Nemertinea,
265: Ascaris, 278, 279:
Nematoda, 283: Chetognatha, 283:
Branchiomus rubens, 300, 301: Rotifer,
307: Bopyrula, 315, 316: Ectoprenota,
325: Ectoprenota, 325: Phoronis, 329:
Magellana, 334: Ascaris, 353: Sea-
urchin, 367: Sea-cucumber, 371, 372:
Antedon, 375: Echinodermata, 394:
Nereis, 406, 407: Lumbricis, 420:
Chetopoda, 436: Stipulacidae, 452,
453: Gephyrea, 457: Hirudo, 468,
469: Hirudinea, 476: Apus, 489, 490:
Astacae, 506: Crustacea, 547: Peri
patetus, 561: Myriapoda, 569: Peri
planeta, 576: Insecta, 592: Scorpion,
607, 608: Arachnida, 618: Anodonta,
636: Pelecypoda, 655: Amphiurea,
655: Triton, 676, 677: Gastropoda,
692: Scaphopoda, 706: Sepia, 712:
713, 714, 715: Nematidae, 730, 731:
Cephalopoda, 743
Dimorphus, 66, 67
Dimorphic zooids, of Ciliata, 89
Dimorphism, sexual, 38*
Dinobryon, 66
Dinoflagellata, definition, 65: Characteristic features, 73
Dinophila, 310
Dinophysium, 482
Diecios, 38
Diaphrys, 83
Diphyes, 152, 153
Diploima, 66
Diplonephridia, 439*
Diploloa, 567, 569, 570
Diplococcus, 258
Diptera, 558, 559, 596, 598, 602, 605
Directive mesenteries, of Sea-anemone,
176
Discina, 337, 339
Discoidal segmentation, 610
Discemedusa, 164*, 169, 170
Discorbina, 53
Discosoma, 195, 197
Disseminations, 192*
Distinctive characters—See Classification
Distomum hepaticum, 226: General
features, 226: Body-wall, 226, 227:
Digestive system, 227: Water-vessels,
227: Nervous system, 228: Repro
ductive organs, 228, 229: Development,
229, 230: Systematic position, 238
Distomum hepaticum, 265
D. rathousi, 265
D. sincus, 265
Distribution, 8: of Sponges, 113: Hydro
coraline, 147: Scyphozoans, 171: Ac
tinouza, 196: Ctenophora, 211: Platytel
mintes, 263: Ectoprenota, 326:
Brachiopoda, 342: Gephyrea, 461:
Hirudinea, 481: Ochitophora, 566:
Pelecypoda, 601: Amphiurea, 679:
Gastropoda, 704: Cephalopoda, 749
Distribution, geographical, 8
Distribution, geological, 8: of Sponges,
113: Corals, 157: Brachiopoda, 342:
Chetopoda, 447: Insecta, 604: Arach
nida, 624: Cephalopoda, 749
Distribution, vertical, 8
Dochnium dioecelum, 284
Dorcoceras, 683
Doctrine of Descent, 6
Epistome, 312, 322, 324, 328, 329
Epistylis pollicata, 83, 85
Epitheca, 192, 193
Epithelia, 22: Non-stratified, 22:
Stratified, 22
Epithelium, enteric, 31
Eryngus, 522, 530, 531
Errantia, 427
Estheria, 521, 526
Ethiopian, 9
Ethology, 9: of Platynhematines, 263:
Rotifera, 309: Ectoprocta, 326: Echi-
nodermata, 339: Chaetopoda, 447:
Hirudinea, 450: Crustacea, 554: In-
secta, 662: Arachnida, 623: Pelecyp-
oda, 661: Amphineura, 670: Gastro-
poda, 704
Eucalanis, 304
Euchora, 209
Eucirripedia, 522, 532
Euce, development, 141
Euceopepoda, 522, 528, 530
Eudendrini, 130
Euglena viridis, 63, 64: Systematic
position, 65
Eunamalibranchiata, 647, 648, 662
Euphausia, 523, 549, 553
Euphyllopoda, 321, 326, 550, 552
Euryleptota, 112
Eusomatus, 445
Euryalida, 378
Eurypterida, 613, 617, 619
Euteclocdus—See Embieus
Eucoripus italicus, 610, 622, 623
Euspongia, 106
Euthyneura, 684, 691, 695, 697
Evolution, 6
Examples, of Rhizopoda, 44: Mastig-
ophora, 63: Sporozoa, 75: Infusoria,
79: Porifera, 90: Hydrozoa, 118:
Scyphozoa, 136: Actinioza, 172:
Ctenophora, 198: Platyhelminthes,
222, 226, 231: Nematoda, 275:
Rotifera, 299: Polypoda, 314: Brachi-
poda, 331: Asteroidea, 346, 356:
Echinoida, 363: Crinoidea, 373:
Chaeopoda, 404, 417: Gephyrea, 451:
Crustacea, 484, 498: Insecta, 571:
Arachnida, 604: Pelecypoda, 631:
Gastropoda, 671: Cephalopoda, 708,
725
Excretion, 14, 35
Excretory system, of Septolima, 138:
Planaria, 223, 224: Liver-Fluke, 227:
Trypa, 234: Platyhelminthes, 253:
Nemertinea, 270, 271: Asciaria, 279:
Echinorhynchus, 292: Brachiuranus,
300, 301: Rotifera, 308: Ectoprocta,
324: Endoprocta, 326: Phoronis, 328:
Magellania, 337: Brachiopoda, 340:
Nereis, 411, 412: Lumbricidae, 423:
Chaeopoda, 440: Sipunculus, 453,
454: Gephyrea, 458: Hirudo, 470,
INDEX

Pallium—See Mantle
Palpus, 405
Polychaeta, 320, 326
Palus, 192
Polythoe, 116, 184
Pancreas, 32
Pancreatic juice, 32
Parabionta, 67, 68, 69
Papula, 393, 347
Parabranchia, 680
Paragaster, 97
Paraglossa, 580
Paragnatha, 488, 506
Paranomida, 82
Paramorphism, 70, 80, 81: Systematic position, 82
Parastracan, 355
Paramitome, 15
Paramyllum, 64
Parapodium, 403, 404, 405, 430
Parechyma, 222, 249
Parthenogenesis, 38, 266
Parasitism, Parazoan, 90, 93
Parthenogonidium, 70
Parthenope, 541
Patella, 685, 686, 691, 693, 694, 695, 696, 698, 701
Patellida, 683
Pauropoda, 567, 570
Pauropus, 567
Paxilla, 386
Peachia, 189
Pearl-oyster, 647
Pecten, 647, 648, 658, 659, 661
Pectinibranchia, 683
Pedal gland, 688
Pedalion, 306, 307, 304, 491
Pedata, 379
Pedicellaria, 348, 357, 363, 383, 389
Podicellina, 320, 326, 327
Pedipalpida, 611, 613, 619, 621
Pelelaga, 171
Pelage, 18
Pelagic, 8
Peltogaster, 534
Pen, 742
Penaeus, 553
Pennatula, 185, 186, 191, 195
Pennatulacea, 182, 184, 191
Pentastomida—See Lingualtulida
Pentastomum turionides, 625
Peptone, 32
Perforate corals, 194
Pericardial sinuses, 509
Perichondrium, 25
Pericopha, 167
Periostracum, 26
Periostracum, 634
Peripatids, External features, 559, 560:
Periplaneta americana, 571, 572
Perisarce, 121
Peristaltic movements, 34
Peristomium, 404, 417, 432
Peromedusae, 164, 166, 167
Per-radius, 129
Petterca, 534
Phaeops fucundus, 558
Pheidium, 59
Phalangida, 612, 615, 621
Phanerozoia, 378
Pharynx—See Digestive system
Phasmdia, 587
Philodina, 363, 305, 309
Pholes, 647, 661
Phoronida, 313, 328
Phorosus, 328, 329, 330, 343, 344
Phraepocuta, 750
Phragmocene, 742
Phronima, 543, 546
Phrynus, 613
Phylactolemata, 320, 321, 322, 323, 324, 325, 326, 343, 344
Phyllocairda, 523, 535
Phyllopoda, 521
Phyllosoma, 553
Phylogeny, 8
Phylum, 5, 41
Physalia, 151, 152
Physiology, 9
Pieris, 586
Pilema, 170
Pilidium, 272, 273
Pill-bug, 624
Pinnia, 647, 663
Pinnotheres, 556
Pisicola, 476, 481
Placephora, 603, 751, 665, 666, 667, 668, 671
Planaria, 222: General features, 222, 226: Digestive system, 222, 228: Water vessels, 228, 224: Nervous system, 223, 224: Reproductive system, 224, 225: Systematic position, 228
Plankton, 8
Platychelid, 53
Plant-lice, 585
Plamula, 129, 130, 141, 161
INDEX

Plasmodium, 28*
Platynome, 51
Platypoda, 684*, 705
Pleopod, 500*
Pleurbranchia, 208
Pleuron, 408*
Plectronychida, 691
Ploiia, 304*, 305, 306
Plumatia, 138
Plumatella, 320, 322
Pluteus, 397, 398
Pneumotrochus, 257
Pore-membrane, 150
Polyzoa, 257
Polychaeta, 447
Poliomma, 440
Polyarthra, 534
Polycladida, 251, 252
Podyodora, 305, 305, 306
Polydora, 440, 443, 444, 446, 447, 448
Polycladiida, 237*, 240, 242, 248, 251, 252, 253, 256, 257
Polygordius, 447
Polygordiidae, 462
Polygordius lacteus, 463
Polygordius neapolitanus, 462, 463, 464, 482
Polykhros, 73, 74
Polymerism, 131*
Ponýne, 440
Polyne eximia, 434
Polyne stenosissima, 429, 431
Polyneidae, 429
Polyneca, 72, 73
Polyphaladnus, 438
Polyple, 118*, 119
Polyphora, 527
Polyphyltica, 266
Polyplodon, 155
Polyptome, 243
Polystromium, 243, 244
Polytrochial, 443*
Polyzoa, 313: Example, 314, 319*: See Ectoprocta and Endoprocta
Poronyma, 647, 655, 656
Poroila, 153, 154
Port-hole—See Cingelis
Portuguese Man-of-War, 151
Porifera, 541, 554
Post-abdomen of Scorpion, 606
Potamobiidae, 525
Poterium, 106
Pre-abdomen of Scorpion, 605
Prawns, 357, 538
Priapulidea, 455
Priapulus, 456, 457
Primary axis, 40*
Proneocentria, 663, 664, 667
Pronucleus, active and stationary, 82
Pronucleus, male and female, 18*, 19
Pro-ostacrum, 742*
Proreocentria, 73, 74
Prorodia, 85, 86
Proscocida, 237
Prosepion, 741*
Prosochrochia—See Streptoneura
Prosoxylane, 100*, 108
Prostomium, 404*, 417, 432
Protantheria, 47
Protandrous, 285
Protective characters, 555
Proteid, 15*
Protocoleps, 534
Protocorynex, 72, 73, 116
Protobranchia, 646*, 648, 649, 653, 656, 662, 752
Protesolith, 725*, 741
Protobranchia, 463, 482
Protobranchia, 137*
Protomerita, 77*
Protomyxa, 63
Protoplasm, 11*, 14, 15*
Protopolitide, 496*, 500
Prototroch, 416*, 501
Prototrochus, 354
Protozoa, 353
Proventriculus, 593
Psammocera, 106
Pseudo-lamellibranchia, 646*, 662
Pseudopilus, 10*
Pseudo-scorpionida, 611*, 613, 619, 621
Psilas, 390
Pteropoda, 684, 687, 688, 689, 705
Pterotricha, 690
Pitex, 586
Pulmonary sac, 691*, 692
Pulmonata, 684*, 689, 691, 705
Pulsum, 705
Pupa (of Cirripedia), 352
INDEX

Pupa (of Insects), 502
Purpura, 693
Pycnogonida, 624, 629
Pygidium, 559
Pyrida, 699

Q
QUADRADA, 47

R
Radial Canals, 100*, 125
Radial Symmetry, 40*
Radiata, 401
Radii, orders of, 128
Radiolaria, 46*: General structure, 58:
Central capsule, 58; Skeleton, 59;
Colonial forms, 59; Reproduction, 59:
Symbiosis, 61
Radiula, 676*, 678
Radiolar sac, 676*, 678
Rhopalophys, 57
Red coral, 182
Redia, 251, 259
Regularia, 370
Relationships, of Protozoa, 93: Sponges, 116:
Celenterata, 213; Platychel- minthes, 267; Nemathelminthes, 297;
Rotifera, 300; Dinophyceae, 311; Poly-
zoa, 328; Mollasscoha, 343; Echinoder-
matha, 401; Gephyrea, 459;
Anulata, 482; Crustacea, 556:
Air-breathing Arthropoda, 627;
Pelecypoda, 662; Gastropoda, 705:
Cephalopoda, 750; Mollusca, 751
Relationships, diagrams of, of Protozoa, 93:
Celenterata, 215; Platychelminthes, 267;
Echinodermata, 402; Anulata and Trochelminthes, 483;
Crustacea, 557; Arthropoda, 620;
Pelecypoda, 662; Gastropoda, 705:
Cephalopoda, 750
Renal organs—See Excretory system
Reproduction, Reproductive System, 14,
29, 37: Ameei, 14, 44; Foraminifera, 55:
Heliozoa, 58; Radiolaria, 59:
Myecozoa, 62; Eumela, 64; Flagel-
lata, 70; Choanoflagellata, 73; Dinoflagellata, 74; Cystoflagellata, 74;
Monocystis, 75; Gregariniida, 77:
Paramecium, 81; Ciliata, 88; Ten-
taculifera, 92; Porifera, 113; Obelia, 129;
Leptoleine, 140; Trachymela, 144;
Hydrocorallina, 147; Siphonophora, 149,
152, 154; Ameei, 158; Tealia, 179;
Hormiphora, 203; Mesozoa, 207, 219;
Planaria, 224, 225; Distomum, 228,
229; Trima, 234; Platychel-
minthes, 254; Nemertinea, 273; As-
caris, 279; Nematoda, 285; Acantho-
cepha, 292; Cheotogatha, 295;
Brachiura, 302; Rotifera, 309; Dino-
phyceae, 310; Bugula, 316; Ectoprocta,
325; Endopora, 372; Phoronis, 329;
Magellania, 337; Brachiopoda, 341;
Sturfish, 356; Sea-archi, 368; Hol-
thurius, 372; Antedon, 377; Echinoder-
matata, 394; Nereis, 412; Luminbric, 423,
424; Chetopoda, 441; Myzostomi-
da, 449; Sipunculids, 454; Gephyrea, 458;
Archi-annelida, 465; Hirudo, 473;
Hirudinea, 478; Aunts, 495; Astacus, 514;
Crustacea, 553; Peripatus, 562;
Myriapoda, 569; Periplaneta, 579;
Insects, 597, 598; Scorpion, 600;
Arachnida, 622; Musel, 642; Pelecypo-
da, 658; Amphineura, 668, 669;
Triton, 682; Gastropoda, 697; Scapho-
poda, 706; Rhodope, 707; Sepia, 723;
Nautilus, 755; Cephalopoda, 744
Requinia, 651, 652
Reservoir (Euglena), 63
Respiration, 13*, 33
Respiratory organs, 33*: Sturfish, 347:
Sea-archi, 364, 368; Holothurius, 372;
Chetopoda, 433; Hirudinea, 477; Aunts, 492; Astacus, 507, 508;
Crustacea, 548; Peripatus, 562;
Myriapoda, 569; Periplaneta, 575,
578; Insects, 593; Scorpion, 608;
Arachnida, 619; Musel, 639, 638;
Pelecypoda, 653; Triton, 676; Gas-
tropoda, 699; Sepia, 716; Nautilus, 729;
Cephalopoda, 743
Respiratory trees, 372*, 394
Retina, 37*
Reticinophore, 682*
Retinula, 494*, 495, 682
Rhabdites, 248
Rhabditis-form, 287
Rhabdocodium, 238*, 239, 240, 242, 248,
251, 252, 253, 254, 255, 256
Rhabdome, 494*, 495
Rhabo-type of Sponge, 109*
Rhipidodendron, 66, 68
Rhipidoglossa, 683*, 705
Rhipozoephala, 522*, 534
Rhipozoo, 43*: Example, 44: Classi-
sification and general organisation,
45
Rhinostome, 164*, 169, 170, 213
Rhizo, 303*, 305, 306, 308
Rhodope, 707, 751
Rhombogeneous, 217*
Rhodoura, 218, 219
Rhychohodellida, 475*, 476, 477, 478, 479
Rhychohelenae, 240
Rhychohelina, 340
Rhychoheta, 91
Rock-lobster, 523
INDEX

Rock systems, 7
Rocks, igneous and aqueous, 7
Rotalia, 52
Rotation, sense of, 37
Rotifer, 303
Round-worms, 275—See Neurathelminthes
Rugosa, 197*

S
Saccaumina, 53
Sacculina, 334, 535, 553
Sagitta, 293, 294, 295
Salinella, 219, 220
Saliva, 32*
Salivary glands, 32*
Salivary receptacle, 576
Salmarina, 446
Salpingea, 72
Saltatoria, 587
Sand-hopper, 524
Sarcocelestidae, 76*, 79
Sarcodocystis, 79
Sarcocoelemma, 26*
Sarcophyta, 595
Sarcoptes scabiei, 616
Sarsia, 135
Scale-insects, 585
Scallop, 647
Scaphopoda, 705
Schizonemertea, 274*
Schizopod-stage, 553
Schizopoda, 525*, 536
Scirtpodopa, 304*, 306, 307
Sclerite, 520*
Scleroblast, 101*, 111
Scellex, 231
Scelopendra, 568
Scolopendra, 567, 569
Scorpion—See Buturus.
Scorpioida, 611*, 613, 624
Scorpion-spiders, 612
Scrobichilaria piperita, 650
Sentigera, 567, 569
Scypharum, 537, 539
Scyphistoma—See Scyphula
Scyphozoa, 118, 156, 163*, 171
Scyphula, 161*, 162
Sea-anemones, 118, 181—See Tealia
Sea-blabbers, 169
Sea-cucumber, External features, 369: Structure of body-wall, 370: Ambu-
Sea-urchins, 346—See Echinoidae
Secondary axis, 40*
Secretion, 22*
Sedentaria, 427*
Segment, 41
Segmental organ—See Nephridium
Segmentation of oosperm, 20*
Segmentation-cavity—See Blastocoele
Segmentation-nucleus, 19
Sennet, 390
Scolopendra, 320
Scolopendra, 321, 324
Semosomiæ, 164*, 169, 213
Seplia, External features, 708, 709:
Shell, 711: Chromatophores, 711:
INDEX

V

Vas deferens—See Spermiduct
Vaso-peritoneal vesicle, 396
Velarium, 167
Vela, 154
Veliger, 650*, 703*, 704
Vehim, 125*, 126, 639*, 701
Ventricle, 41
Ventricle, 34
Venus gudia, 650
Venus's Flower-basket, 112
Venus's Girdle, 210
Vermes, 221
Vermes, 684
Vermilia, 430
Vibraena, 321, 324*
Virgula, 135*
Visceral spiral, of Triton, 675
Vitelline glands—See Yolk-glands
Viviparous, 38*
Volata, 699
Volvox, 67, 68, 70, 71
Vortex, 240
Vorticella, 83, 84, 86, 87, 88, 89
Vulicella, 649, 653

W
Wandering cells, 102
Wasps, 587
Water-bugs, 583
Water-flea, 522
Water-pores, 375*, 393
Water-tubes, 375*, 393
Water-vascular system, 222
Whale-louse, 524
Wheel-animalcules—See Rotifera
Whelks, 684
White substance of Schwann, 27*
Winter eggs, 551
Wood-lice, 524—See Oniscus

INDEX

Yoldia, 646
Yolk, 18*
Yolk-glands, 222

Z

Zoëa, 553*
Zoantharia, 181*, 214
Zoanthus, 183, 184, 187, 188
Zoecium, 314
Zoo-geographical Regions, 8
Zooid, 38*
Zoology, 1*
Zoophyte, 118*
Zoantharnium, 88
Zoanthrella, 61
Zygote, 70*

END OF VOL. I
<table>
<thead>
<tr>
<th>PARKER, T. Jeffery and Haswell, William A.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Department of Zoology of Toronto</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NAME OF BORROWER</th>
<th>ADDRESS OR PHONE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ZNOL. DEPT.

UNIVERSITY OF TORONTO