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PEEFACE.

The problems that arise in connection with the study of Aerial

Flight are so numerous and of so diverse a character that, except

for their relation to the title subject, they would scarcely find

place in one volume. In the present work an attempt is made,

it is believed for the first time, to treat the classification of the

phenomena associated with the study of Flight on a comprehensive

and scientific basis..

The origin of the present work may be said to date from some

experiments carried out in the year 1894. These experiments,

which were primarily directed as a test of certain theoretical

views which the author then advanced, resulted m the production

of flying models of remarkable stability, whose equilibrium was

not destroyed by an ordinary gale of wind.

As originally formulated the theory was incomplete and in

many ways imperfect, but it has been developed from time to

time during the last twelve years to an extent that to-day renders

the approximately correct proportioning of an aerodrome^ a

matter of straightforward calculation.

The author has found the question of publication one of some

difficulty. At first it was intended to arrange and publish the

investigations simply in order of date, theoretical work being

accompanied so far as possible by appropriate experimental

^ A word derived from the Greek, aepo-SpSfios (lit. ^'traversing the air^^

or " an air-runner ''), proposed by the late Prof. Langley to denote a gliding

appliance or flying machine ; hence also aerodromics, the science specifically

involved in the problems connected with free flight. The word aerodrome

has been grossly misapplied by Continental writers to denote a balloon shed.

The author considers that from its derivation the word aerodromics may
be given a more comprehensive meaning than that originallj' proposed,

perhaps even to include both the aerodynamics and aerodonetics of flight. The

question is merely one of terminologj^. (Compare Glossarj', p. 393.)
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demonstration. It soon became evident that there were consider-

able lacunae, and these were filled by subsequent investigations,

the scope of the work being greatly extended. Finally it was

decided to make the publication a complete treatise on Aerial

Flight, the main classification being as follows :

—

Vol. I. Aerodynamics, relating to the theory of aerodynamic

support and the resistance of bodies in motion in a fluid.

Vol. II. Aerodonetics^ or Aerodromics, dealing with the forms

of natural flight path, with the questions of equilibrium and

stability in flight, and with the phenomenon of " soaring."

So far as has been found possible the work has been

modelled on non-mathematical lines. The commonly distinctive

feature of a modern mathematical treatise, in any branch of

physics, is that the investigation of any problem is initially con-

ducted on the widest and most comprehensive basis, equations

being first obtained in their most general form, the simpler and

more obvious cases being allowed to follow naturally, the greater

including the less. The reader who is only moderately equipped

with mathematical knowledge is thus frequently at a loss to

comprehend the initial stages of the argument, and so has no

great chance of fully appreciating the conclusions.

It is impossible, in connection with the present subject, to

avoid the frequent use of mathematical reasoning, and occasion-

ally the non-mathematical reader may find himself out of his

depth. The author has endeavoured to minimise any difficulty

on this score by dealing initially with the simpler cases and

afterwards working up to the more general solutions ; and

further by the careful statement of all propositions apart from

mathematical expression, and by the re-statement of conclu-

sions in non-mathematical language. Wherever appropriate,

numerical examples are given in order to more completely

elucidate the methods employed and the results attained.^

^ Derived from the Greek, depoSo'urjToj (lit. " tossed in mid-air," " soaring").

2 A passage occurs in tlie preface to Poynting and Thomson's " Sound "

that may be quoted as being to the point :

—

" Even for the reader who is mathematically trained, there is some advan-

tage in the study of elementary methods compensating for their cumbrous
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Whenever the author has consciously derived assistance from

the work of previous investigators, due acknowledgment has been

made ; the present work is, however, in the main, a connected

series of personal investigations. Should the author inadvertently

have put forward as new, results that have been previously

published or methods that have been previously employed, he

can at least claim in mitigation of the offence that very many of

the present investigations were actually done more than ten

years ago ; the work has only been withheld to the present date

in order that publication might take the form of a complete and

connected account of the mechanical principles of flight such as

could be the better understood by, and be of the greater service

to, the Scientific and Engineering World.

In offering to the public the first instalment of the present

work, the author desires to record his conviction that the time is

near when the study of Aerial Flight will take its place as one

of the foremost of the applied sciences, one of which the under-

lying principles furnish some of the most beautiful and fasci-

nating problems in the whole domain of practical dynamics.

In order that real and consistent progress should be made in

Aerodynamics and Aerodonetics, apart from their application in

the engineering problem of mechanical flight, it is desirable, if

not essential, that provision should be made for the special and

systematic study of these subjects in one or more of our great

Universities, provision in the form of an adequate endowment with

proper scope for its employment under an effective and enlightened

administration.

The importance of this matter entitles it to rank almost as a

National obligation ; for the country in which facilities are given

for the proper theoretical and experimental study of flight will

inevitably find itself in the best position to take the lead in its

application and practical development. That this must be

form. Thej' bring before us more evidently the points at which the various

assumptions are made, and they render more prominent the conditions under

which the theory holds good."
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considered a vital question from a National point of view is

beyond dispute ; under the conditions of the near future the

command of the air must become at least as essential to the

safety of the Empire as will be our continued supremacy on

the high seas.

The present volume deals exclusively with the Aerodynamics

of Fhght ; the arrangement of this section is as follows :

—

Chapters I., II. and III, are devoted to the preliminary exposi-

tion of the underlying principles of fluid dynamics, examined

from different points of view. Chapter I, is of an introductory

character, and includes a discussion as to the nature of fluid

resistance, the theory of the Neictonian medium, and a preUminary

examination of the questions of discontinuous motion and stream-

lineform. Chapter 11. is devoted to the consideration of viscosity

and skin-friction, the argument being largely founded on dimen-

sional theory ; and Chapter III. consists in the main of an account

of the Eulerian hydrodynamic theory, in which the mathematical

demonstrations are in general taken for granted ;
^ this chapter

also includes some further discussion of the phenomenon of

discontinuous flow and a review of the controversy relating to

same.

Chapter IV. consists in most part of an investigation on

peripteral motion,^ dating from the year 1894-5 and offered to

the Physical Society of London in the year 1897, but rejected.^

^ The reader is referred to " Hydrodynamics" (Horace Lamb, Cambridge

University Press) for the complete mathematical treatment : a work to which

the author desires to acknowledge his indebtedness.

^ A term proposed and employed by the author to denote the type of fluid

motion generated in the vicinity of a bird's wing, or the suj^porting member
of an aerodrome essential to its supporting function (lit. " round about the

wing," Gr. irepi and imp6v). The term has an architectural signification

which can by no possibility clash with its present usage.

^ The rejection of this paper was probably due to an unfortunate selection

of the readers to whom it was submitted. The names of the Society's readers

are not disclosed, but from the wording of the reports (which the author is

not at liberty to quote), it would seem that the recognised application of the

Newtonian method (as in the theory of propulsion) was a thing unknown to

them

.
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The hydrodynamic interpretation included in the present work

has been added subsequently, and the latter portion of the

original paper has been revised and rewritten on the more secure

basis thus afforded.

Chapters V. and VI. constitute a resume of that which is known

concerning the aeroplane treated both from a theoretical and

experimental standpoint.

Chapters VII. and VIII. present, for the first time, a series of

investigations made by the author (dating from 1894, 1898, and

1902, but not previously published) of the principles governing

the economics of flight, and their application in the correct

proportioning of the supporting member ; these investigations

are based on the peripteral theory of Chapter IV. aided by

a hypothesis, being in the main an adaptation of Newtonian

method.^

Chapter IX. includes, with a discussion on the elementary

theory of propulsion, an original investigation on the theory of

the screw projjeller founded on the peripteral theory of Chapters

IV., VII., and VIII. This theory leads to results that are in

remarkable accord with experience, and enables a useful series of

rules to be laid down as a guide to design ; applied to the marine

propeller, the theory gives a form quite in harmony with modern

practice. The chapter concludes with a dissertation on the subject

of the expenditure ofpower inflight.

Chapter X., with which the present volume concludes, is of the

character of an appendix, being an account of the more important

of the experimental researches in aerodynamics published to

date, and to which references have been made in the body of the

work. This chapter also includes an account of some hitherto

* The essentially Newtonian character of all methods based on the prin-

ciple of the direct communication of momentum, in hydrodynamics, is not so

widely recognised as it ought to be. Thus the Eankine-Froude theory of

propulsion is a simple and legitimate application of the Newtonian theory

(see Chap. IX.). Newton was careful to specify the nature of the medium
essential to the rigid application of his method (prop, xxxiv., Book II.,

Enunciation) ; subsequent writers have unfortunately not been so careful, and
error has resulted.
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unpublished experiments by the author, and some criticism of

the conchisions formulated by earlier investigators.

A few terminological innovations have been made at one time

and another, as necessity has arisen. New words, or words bearing

a special or restricted meaning, are given in the glossary following

Chapter X., in addition to the usual footnote references.

Numerical work has been done by the aid of an ordinary

25 cm. slide rule, with a liability to error of about ^th of 1 per

cent., an amount which is quite unimportant.

The author desires to express his thanks to Mr. P. L. Gray

in connection with the preparation of the present volume for the

Press, in particular for his most welcome assistance in the

examination and correction of the proof sheets.

BIRMINGHAM,
October, 1907.
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CHAPTEE I.

FLUID EESISTANCE AND ITS ASSOCIATED PHENOMENA.

§ 1. Introductory.—A body in motion through a fluid of any

kind, whether liquid or gaseous, experiences resistance, and

work has to be done in its propulsion.

Such resistance is due to two clearly distinct causes, the

independent nature of which may be illustrated by considering

a few commonplace instances.

If a piece of cardboard be moved briskly through the air, the

resistance, though quite sensible, is very much less than that

experienced when a similar movement is attempted under water.

In this case the difference is evidently due to the very much

greater density of water, which at 10° C. is 800 times that

of air. If now we similarly compare water with any ordinary

grade of heavy lubricating oil, or with common treacle, we

again find a great difference, but this time the density is

approximately the same, and we recognise that the resistance is

due to an entirely different cause ; a certain stickiness of the

medium, otherwise riscosif^. All fluids are viscous to a greater or

lesser degree ; the viscosity of water is small, that of air still less,

whilst lubricating oil and treacle are highly viscous substances.

Now just as in the study of ordinary meclianics it is found

expedient initially to neglect the effects of friction, so, in

connection with the present subject, we can afford to ignore the

fluid friction to which the viscosity of the fluid gives rise, and in

the first instance deal with resistance as a function of density alone.

A.F. 1 B



§ 1 AERODYNAMICS.

The analogy here suggested is not complete. It frequently

happens in the case of fluids that the effects of viscosity have to

be talien into account as part of the general dynamic system
;

consequently it is sometimes necessary to devote some attention

to these effects even in the preliminary discussion.

The question of compressibility is one on which also it is desirable

to have some convention. It is popularly supposed that whereas

gases are compressible, liquids are "virtually incompressible; no

broad distinction of this kind is justified. The criterion of

compressibility in fluid dynamics involves the relative density of

the fluid, and on this basis air is only about eighteen times as

compressible as water, the ratio of the velocity of sound in water

and air being approximately in the proportion of VlS : 1. It

is shown later that the influence of compressibility only becomes

manifest as the velocity of motion approaches the velocity of

sound in the fluid in question, or if the pressures developed

involve a serious change in density.

The velocities and pressures ordinarily' involved in aerial

flight are such as will justify the initial assumption that the air

is incompressible, that is to say, that the influence of its com-

pressibiliti/ is negligible. The possibility of error resulting from

this hypothesis will be considered subsequently. (Appendix I.)

§ 2. Two Methods.—There are two ways in which problems in

fluid dynamics may be approached : (1) By the method of the

Newtonian medium ; this, though of great service in certain

special cases, is not strictly applicable to real fluids. (2) By the

methods of Euler and Lagrange, by which complete equations

of motion are obtained, defining the flow of the fluid in the three

co-ordinate dimensions of space. This is the method employed in

works on analytical hj^drodynamics, and discussed in Chap. III.

of the present work.

The basis of the Newtonian method is found in the principle

of the conservation of momentum, which maybe taken as corollary

to the third law of motion as written : Wlien force acts on a body

2

1A



FLUID EESISTANCE. §3

the momentum generated in unit time is proportional to the force.

This method is best studied in connection with a hypothetical

medium suggested by Newton, on which he based several of the

problems in the " Principia." This medium is defined as consisting

of a large number of material particles, equally distributed in

space, having no sensible magnitude, but possessing mass ; the

particles are not supposed to act upon or be connected to each

other in any way. Bodies traversing a region tilled with this

medium experience a resistance which is proportional to the

momentum communicated per second, and is a quantity that

can be calculated mathematically, provided that the velocity of

the body and the density of the medium be known, and the

surface in presentation of the body be defined.

The employment of this method and its deficiencies in the

case of a real fluid are illustrated in the case of the normal

plane (Chap. V.), where it is found to give a considerably greater

pressure value than actually obtains ; the general form of the

pressure law is, however, in approximate accord.

§ 3. The Newtonian Method.—Employing absolute units, let

F = the resistance, let m = mass acted upon during time t,

and V the velocity in the line of motion imparted to the mass m

;

then the fundamental equation is : F — — •

Now so long as we are dealing with a simple body of mass m,

and imparting to it a velocity r, the above equation is merely a

statement of the law of motion cited, any constant being elimi-

nated by the fact that we are employing absolute units. The

equation, however, holds good whatever the number of parts

into which the mass be divided, and however the velocities of

the different parts vary amongst themselves. In this case the

expression may be written : F = —'^
. The proof is as

V

follows :
—

Let us suppose that the mass acted on per second be divided

3 B 2



§ 3 AEEODYNAMICS.

into n i^arts, and that each part be acted on by the force F for

1/n th of a second. Then the momentum communicated to each

F
part = F/n, and the total momentum per second — n — = F,

n

which holds good when the number of parts becomes infinite

and the communication of momentum continuous. And since

the communication of momentum for each of the periods of 1/n th

second is independent of the masses of the individual parts, it is

in nowise essential that the n parts are of equal mass ; conse-

quentl}^ the velocities acquired by the different parts may vary

amongst themselves to any extent, without thereby affecting the

total quantity of momentum communicated.

This principle in its application to fluid dynamics has some-

times been termed the Doctrine of the Continuous Communication

of Momentum.

§ 4. Application of the Newtonian Method in the Case of the

Normal Plane.—To illustrate the method in the case of the

normal plane in motion in a region supposed filled with the

medium of Newton, we must first define the mode in which the

surface of plane the imparts velocity to the constituent

particles.^ If, on the one hand, the body and the particles be

supposed perfectly elastic, then the particles on colliding with

the surface will bounce off with a velocity equal and opposite

(relatively) to that with which tliey strike ; that is to say, if V be the

velocity of the plane, and v be the velocity given to the projected

particles, v will be double of V. If, on the other hand, we

suppose that the plane is inelastic, and that it eats up or absorbs

the particles on impact, then the velocity imparted to them will

be equal to that of the plane, or, v = V. It is thus of little

consequence which hypothesis we take, the one will give a result

exactly twice as great as the other. We will select the second

hypothesis, which will give the lesser value of the two.

Let us assume the medium as of the same density as air at

* Compare "Principia," prop, xxxv., Book II.
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L4° C, and 760 m.m. pressure, that is to say, let one cubic foot

3ontain rVth lb. mass. Let P represent the pressure per square

[oot, that is, the total force F divided by the area of the

plane. Then the mass dealt with per second to develop a force

V . .

P will be :r^ , and the velocity v being equal to V, we have :

—

-Li)

Momentum per second = P =—

.

But P here is in absolute nnits, jJounduls. Pieducing to pounds,

we have :

—

|-2
J/2 y2

Pressure = j^ =
^g ^ ^^.^

= ^ approximately. If the

72
velocity be expressed in miles jjer hour, this becomes —

^

(nearly). This may be recognised at once as a result often given

in text books as the pressure-velocity equation for air, and is

tacitly put forward as if founded on experiment. It is approxi-

mately 50 per cent, higher than the true value.

If, instead of introducing a value for the density, we denote

this by p, the expression (absolute units) is : P = pV^; the

experimental value is, in the case of air, P = '1 p F"-, or, in the

case of water, P = "55 p V^, as ascertained for flat plates of

compact outline. (See Chap. V.)

§ 5. Deficiency of the Newtonian Metliod.—It is evident from the

foregoing that the theory of the Newtonian medium is capable

of giving results within measure of the truth, when applied to

real fluids. The degree of accuracy varies with the circum-

stances, and the author will now endeavour to point out the

reasons why, and the manner in which, the method fails, and

indicate the circumstances under which the Newtonian theory

is applicable and those under which it is not.

At the outset it may be set down that any defect in the theory

is due, not to any want of exactitude in the fundamental theory

—this rests definitely on the third law of motion and is abso-

lute—but rather to the difficulty and uncertainty as to its

manner of application in the case of real fluids.

5



§5 AEEODYNAMICS.

The nature of this difficulty is clearly demonstrated by the

following proposition :

—

Wlien a body,2)ropelled throiigh an mcompressiblefluid, contained

ivithin a fixed, enclosure, experiences resistance to its motion, the

force exerted hy the body on the fluid does not impart momentum

to the fluid, but is transmitted instantly to the confines of the fluid

honever remote, and is wholly borne by its boundary surfaces.

Let us suppose (Fig. 1) a body which we will take to be a

norrnal plane C, acted upon by a force F in an enclosure A,

Fig. 1.

filled with fluid B. The enclosure may be sujDposed as large as

we please, or, in the limit, infinite in its dimensions.

Then the condition that the enclosure is fixed denotes that the

force F applied to the plane is applied from the walls of the

enclosure ; for, if we suppose it applied from without we can

resolve the force into a force acting between the plane and the

enclosure F F, , and a force of equal magnitude acting from

without on the enclosure F,,, and since the enclosure is fixed the

latter can have no effect.

Now since the fluid is incompressible its density is constant

and uniform, therefore the mass centre of the contents cannot

move relatively to the enclosure ; and the enclosure itself is

fixed, consequently the fluid in sum does not receive momentum.

G
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If, in place of a real fluid possessing continuity, we had

supposed the enclosure filled with the medium of Newton, then

momentum would have been communicated in sum to the par-

ticles of the medium, and the resistance could be calculated in

the manner already demonstrated.

If we take away the condition that the enclosure is /z.rtY? and

suppose the force applied /ro??? witJiout, then the problem is not

essentially altered, for though the external force F will now

impart momentum to the system en hloc, its action in this respect

has no relation to phenomena in the interior, and does not provide

any data for the determination of the pressure-velocity relation.

The supposition that the body is a plane evades any question

relative to the density of the body itself, and thus simplifies the

argument. This question could also be eliminated by supposing

the body to possess the same density as the surrounding

fluid ; in any case a force applied to the body to overcome its

inertia is a matter external to, and without influence on, the

conditions.

The foregoing proposition cannot depend in any way upon the

viscosity or otherwise of the fluid ; the existence of viscosity can

affect the mode of transmission of the force and the velocit}^ of

the body that accompanies its transmission, but can have no

influence on the total force transmitted.

It is thus apparent that no momentum is imparted to an

actual fluid in the sense that it is imparted to the Newtonian

medium, and this is the real cause of the difiiculty in the

application of the Newtonian method.

The principle here demonstrated is referred to in the present

work as the " Principle of No Momenttim."

§ 6. Illustrations of the Principle of No Momentum.—The fore-

going proposition is of moment in connection with several

problems in fluid dynamics, and presents the subject in an

aspect that is somewhat unfamiliar. Its import may be pointed

by the following illustrations.

7



§ 6 AERODYNAMICS.

A body of apparent weight F, falls uniformly through a

column of inviscid or frictionless fluid, contained in a vertical

cylindrical or prismatic vessel, open at the top. Then the weight

of the body (F) will be carried as additional pressure on the base

of the vessel during the whole time of the descent ; and if the

vessel be tall and narrow the additional pressure will be approxi-

mately uniform and equivalent to an additional " head "
; if it be

wide, so that the walls are remote from the body, then the dis-

tribution on the pressure area will not be uniform, but will be

greatest at the point vertically beneath the body, and less at

points more remote. If the fluid possess viscosity, the whole of

the force F may not reach the base of the vessel, but will in part

be borne by its walls, but the total force carried by walls and

base will in any case be equal to F.

In the above illustration there is nothing that is strikingly

unfamiliar. If we suppose the vessel to be an ordinary jar of

liquid, placed in the scale pan of a balance, there is a certain

obviousness in the fact stated ; the weight of the whole will be

just the same whether the weight rests inert at the base of the

jar, or whether it be falling uniformly through the fluid. When,

however, the principle is applied to bodies aerodynamically sup-

ported in the free atmosphere the matter is not so self-evident

;

here, for example, we find that the weight of a parachutist is

borne by the earth's surface almost from the moment he leaves

the car, and his presence overhead, or the presence of a passing

flight of birds, could be detected barometrically if we possessed

an instrument of sufficient delicacy.

§ 7. Transmission of Force.—Comparison of Fluid and Solid.—We
know that we may look upon a solid in stress as communicating

momentum, since it transmits force, but a distinction must be

drawn. When the flow of momentum is equal and opposite,

as in the case of a soUd in stress, there is no displacement

of matter, and it is only when there is a displacement of matter

that the Newtonian method can be applied. The case of a gas

8
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under pressure is, according to the kinetic theory, an example

of the actual communication of momentum, and its pressure

and the mean velocity can be correlated on the Newtonian

principle ; but once lose sight of the transference of matter

(molecular motion), and we can only assert that the gas is

exerting and transmitting force.

As a whole, the fluid, in the previous section, does not gain

or lose momentum any more than does a cast-iron pillar

supporting a load. The stress is transmitted in part by viscosity

and in part dynamically ; the part that is transmitted dynami-

cally is transmitted by an actual transference of momentum from

certain parts of the fluid to certain other parts ; but this we cannot

follow without equating the motions of the fluid throughout the

whole of the enclosed space. The manner in which a portion of the

stress is transmitted by viscosity maj- be compared, if we adopt

a view put forward by Poisson and Maxwell, to its transfer-

ence by a solid continually giving way in shear ; or, on the

other hand, if the fluid is gaseous, we may, on the kinetic

theory, regard the viscous resistance as of purely dynamic

origin, but belonging to a system quite apart from that of the

aerodynamic disturbance.

§ 8. When the Newtonian Method is Applicable.—In the

case of the Newtonian medium the quantity of matter dealt

with, and momentum imparted i^er unit time, are defined

quantities ; but in the real fluid it has been shown that the

motion produced is a circulation of the fluid not accompanied

by any total change of momentum, and although parts of the

fluid receive momentum in the direction of the applied force,

other parts receive momentum in the opposite direction. In

spite of this difficult}', there are certain cases in which the

principle of the continuous communication of momentum can he.

applied. A most striking example is to be found in the theory of

marine propulsion founded by Eankine and Froude.

According to this theory the propeller (whether screw, paddle,

9
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or jet propulsion be employed) is taken as operating on a certain

mass of fluid j)er second, to which it imparts a certain sternward

velocity. It is assumed that the momentum per second so

imparted constitutes and accounts for the whole propulsive force,

an assum^Dtion that under practical conditions is doubtless very

close to the truth. In the case of the screw propeller the mass

of fluid i^er second is calculated from the volume of the cylin-

drical body of water defined by the track of an imaginary circle

drawn through the tips of the blades ; in other forms of propulsion

similar approximate methods of assessment are adopted.

The sternward velocity imparted to the fluid by the propeller

is, under proper conditions, small in comj)arison with the velocity

of travel, so that the lines of flow are not radically altered, and

instead of a circulation such as arises in the case of a normal

plane, there is merely a slight contraction of the stream at the

region in which the propeller operates, and a trifling readjustment

of the surrounding lines of flow to suit.

In general it would appear that the Newtonian method is

applicable in cases where the volume of the fluid handled is great,

but where the impressed velocity is small in comparison with the

velocity of motion, and where there are well-defined conditions

on which to compute the amount of fluid dealt with per second,

it is found to be entirely deficient in dealing with the resistance

of bodies of smooth contour, or " streamline form," such as may

now be discussed.

§ 9. On Streamline Form.—When a body of fish-shaj)ed or

ictlu/oid form travels in the direction of its axis through a

frictionless fluid there is no disturbance left in its wake. Now

we have seen that in any case the fluid as a whole receives no

momentum, so that it is perhaj)s scarcely legitimate to argae

that there is no resistance hccduse there is no communication of

momentum, although this is a common statement.^ It is clear,

1 This somewhat academic objection would cease to apply if any means

could be found to pruperly define the idea which undoubtedly is conveyed

to the mind by the argument in question.
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however, that if there is no residuary disturbance there is no

necessary expenditure of energy, and this equally implies that

the resistance is nil.

The fluid in the vicinity of a streamline body is of necessity in

a state of motion and contains energy, but this energy is con-

served, and accompanies the body in its travels, just as in the

case of the energy of a wave. It adds to the kinetic energy of the

body in motion just as would an addition to its mass.

According to the mathematical theory of Euler and Lagrange,

all bodies are of streamline form. This conclusion, which would

otherwise constitute a redactio ad ahsurdum, is usually explained

on the ground that the fluid of theory is inviscid, whereas real fluids

Fig. 2.

possess viscosity. It is questionable whether this explanation

alone is adequate.

§ 10. FroTide's Demonstration.—An explanation of the manner

of the conservation of kinetic energy, in the case of a stream-

line body, has been given by the late Mr. W. Froude.

Keferring to Fig. '2, A, B, C, D, E, represents a bent pipe,

through which a fluid is supposed to flow, say in the direction of

the lettering, the direction at A and at E being in the same

straight line ; it is assumed that the fluid is frictionless. Now

so long as the bends in the pipe are sufficiently gradual, we know

that they cause no sensible resistance to the motion of the fluid.

We have excluded viscous resistance by hypothesis, and if the

areas at the points A and E are equal there is no change in the

kinetic energy. Moreover, the sectional area of the pipe between

11
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the points A and E may vary so long as the variations are

gradual ; change of pressure will accompany change of area on

well-known hydrodynamic principles, but no net resistance is

introduced; consequently the motion of the fluid through the

pipe does not involve any energy expenditure whatever.

Let us now examine the forces exerted by the fluid on different

portions of the pipe in its passage. The path of the particles of

fluid in the length between the points A and B is such as

denotes upivard acceleration, and consequently the fluid here

must be acted on by an upward force supplied by the walls of

the pipe, and the reaction exerted by the fluid on the pipe is

equal and opposite. A shorter way is to regard this reaction

as the centrifugal component of the curvilinear path of the

flow, and as such it may be indicated by arrows as in the figure.

By assuming the bends in the pipe to be equal and a uniform

velocity throughout, it follows that these centrifugal components

exactly balance one another, each to each, and the pipe has no

unbalanced force tending to push it in one direction or the other.

The argument may be found presented in this form in White's

"Naval Architecture." The same net result follows, no matter

what the exact form of the bends, or whether or no the velocity

is uniform, provided the bends are smooth and the cross-section

(and therefore the velocity) is the same at E as at ^, for under

these circumstances the pressure at A will be the same as at E,

the applied forces thus being balanced, and there will be no

momentum communicated by the fluid in its passage.

"When a streamline body travels through a fluid the lines of

flow may be regarded as passing round it as if conveyed by a

number of pipes as in Fig. 2. It is convenient, and it in

nowise alters the problem, to look upon the body as stationary

in an infinite stream of fluid (Fig. 3) ; we are then able to show

clearly the lines of flow relatively to the surface of the body.

Now let us take first the fluid stream that skirts the surface

itself, and let us suppose this included between the walls of an

imaginary pipe, then forces will be developed in a manner

12
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represented in Fig. 2, and these forces may be taken as acting

on the surface of the body. It is not necessary to suppose that

there is actual tension in the tluid, as might be imagined from

Fig. 3, "^here the forces act outward from the body, this is

obviated by the general hydrostatic pressure that obtains in the

region ; the forces as drawn are those supplied by the motion of

the fluid, and can be looked upon as superposed on those due to

the static pressure.

If, similarly, we deal with the next surrounding layer of fluid,

we find that the pressure to which it gives rise acts to reinforce

that of the layer underneath {i.e., nearer the body), and so on,

just as in hj'drostatics the pressure is continually increased by

Fig. 3.

the addition of superincumbent laj'ers of fluid, and thus we find

that the body is subjected to increased pressure acting on its

front and rear, and diminished pressure over its middle portion.

Now it has been shown, in the case of the pipe, that the algebraic

sum of all forces in the line of motion is zero, so that in the stream-

line body the sum of the forces produced by the pressure on its

surfaces will be zero, that is to sa}', it will experience no resistance

in its motion through the fluid.

It may be taken as corollary to the above, that in a viscous

fluid the resistance of a body of streamline form will be repre-

sented approximately by the tangential resistance of its exposed

area as determined for a flat plate of the same general propor-

tions. This is the form of allowance suggested by Froude; a

more elaborate and accurate method has been given by Eankine,

in which allowance i§ made for the variation in the velocity of

13
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the fluid at different points on the surface of the body. Neither

of these methods includes any allowance for viscous loss owing to

the (Hstortion of the fluid in the vicinity of the body.

§ 11. The Transference of Energy by the Body.—It is of interest

to examine the question of the transference of energy through

the streamline body itself from one part of the fluid to the other.

For the purpose of reference the different portions of the body

have been named as in Fig. 4, the head, the shoulder, the buttock,

and the tail, the head and shoulder together being termed (as in

naval architecture) the entrance, and the buttock and tail the run.

The dividing line between the entrance and run is situated at the

point of maximum section, and the dividing line between the

Fig. 4.

head and shoulder on the one hand, and between the buttock

and tail on the other, is the line on the surface of the body

at which the pressure is that of the hydrostatic " head."

Now, as the body advances, the head, being subject to pressure

in excess of that due to the hydrostatic " head," is therefore doing

work on the fluid ; that is to say, transmitting encrf/y to the fluid

;

the shonlder also advancing towards the fluid is subject to j)ressure

less than that due to hydrostatic head, and is consequently

receiving energy from the fluid ; the buttock, " which is receding

from the fluid, is also a region of minus pressure and so does

7vork on the fluid ; and lastly, the tail is receding under excess

pressure and so receives energy. We thus see that there are

two regions, the head and buttock, that give up energy con-

tinuously to the fluid, and two regions, the shoulder and tail,

that continuously receive it back again. The condition of

14
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perfect streamline motion is that the energy account shall

balance.

§ 12. Need for Hydrostatic Pressure,—Cavitation.—The motion

impressed on the fluid hy the pressure region of the head is

compulsory, unless (as may happen in the case of a navigahle

balloon) deformation of the envelope can take place. The

motion impressed by the shoulder, on the contrary, depends upon

hydrostatic pressure, for otherwise there is no obligation on the

part of the fluid to follow the surface of the body ; hydrostatic

pressure is necessary to prevent the formation of a void. The

pressure measured from the real zero must everywhere be positive,

otherwise the fluid will become discontinuous and cease to follow

the surface. This is a difficulty that has been actually experienced

in connection with screw propellers, and termed cavitation.

§ 13. The Motion in the Fluid.—It has been shown that the

Jiead of a streamline form is surrounded by a region of increased

pressure. Consequently the fluid as it approaches this region will

have its velocity reduced, and the streamlines will widen out, as

shown in Fig. 3 (see also Figs. 42, 44, 45, etc.). This behaviour

of the fluid illustrates a point of considerable importance, which

is frequently overlooked. Whenever a body is moving in a

fluid, its influence becomes sensible considerably in advance of

the position it happens to occupy at any instant. The particles

of fluid commence to adjust themselves to the impending change

with just as much certainty as if the body acted directly on the

distant particles through some independent agency, and when

the body itself arrives on the scene the motion of the fluid is

already conformable to its surfaces. There is no impact, as is

the case with the Newtonian medium, and the pressure distribu-

tion is more often than not quite difl'erent from what might be

predicted on the Newtonian basis. This behaviour of a fluid is

due to its continuity.

It follows from elementary considerations that the fluid in

the " amidships " region possesses a velocity greater than the

15
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general velocity of the fluid (the body, as before, being reckoned

stationary). We know that at and about the region C, Fig. 3,

the fluid has a less area through which to pass than at other

points in the field of flow. It is in sum less than the normal area

of the stream by the area of cross-section of the body at the point

chosen. But the field of flow is made up of a vast number of

tubes of flow, so that in general each tube of flow wall be con-

tracted to a greater or less extent, the area of section of the tubes

being less at points where the area of the body section is greater.

We know that a contraction in a tube of flow denotes an increase

of velocity.

Thus on the whole the velocity of the fluid is augmented across

any normal plane that intersects the body itself, but the increase

of velocity is not in any sense uniform in its distribution. In fact,

towards the extremities of the body, and in its immediate neigh-

bourhood, we have already seen that the motion of the fluid is

actually shiver than the general stream.

The motion of the fluid is examined from a quantitative point

of view in a subsequent chapter (Chap. III.), where plottings are

given of the hydrodynamic solution in certain cases.

§ 14. A Question of Relative Motion.—The motion of the fluid

has so far been considered from the point of view of an observer

fixed relatively to the body ; it will be found instructive to

examine the same motions from the standpoint of the fluid

itself, that is to say, to treat the problem literally as a hodtj

moving through ajiuhl, instead of SiS a. Jiitidin motion round a fixed

body.

It is evident that the difference is merely one of relative

motion. The problems are identical : we require to consider

the motions as plotted on co-ordinates belonging to the fluid

instead of co-ordinates fixed to the body itself. The relation of

the streamlines (which we have so far discussed) to the paths of

motion (which we n(jw propose to examine) is analogous to that

of the cycloid or trochoid to its generating circle.
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§ 15. Displacement of the Fluid.—An unfamiliar effect of the

passage of a body through a fluid is a permanent displacement of

the fluid particles. This displacement may be readily demon-

strated. If a mass of fluid be moved from any one part of an

enclosure to any other part, the enclosure being supposed filled

with fluid, there is a circulation of fluid from one side to the

other during transit ; and if \Ye suppose it to be moved from

one side to the other of an imaginary barrier surface, then an

equal volume of fluid must cross the same barrier surface in the

opposite direction. Now it is of no importance whether the

thing we move be a volume of fluid or a solid body, so that

when a streamline body passes from one side to the other of a

surface composed of adjacent particles of fluid, that surface will

undergo displacement in the reverse direction to that in which

the body is moving, and the volume included between the

positions occupied before and after transit will be equal to the

volume of the body itself.

Moreover, since the actual transference of the fluid is due to

a circulation from the advancing to the receding side of the

body, it will take place principally in the immediate vicinity of

the body and less in regions more remote ; it is, therefore,

immaterial whether the fluid be contained within an enclosure or

whether one or more of its confines be free surfaces, provided

that continuity is maintained, and that the body is not in the

vicinity of a free surface.

§ 16. Orbital Motion of the Fluid Particles.—Since the motion

of the fluid results in a permanent displacement, the motion of a

particle does not, strictly speaking, constitute an orbit. It is,

however, convenient in cases such as the present to speak of the

motion as orbital.

If we could follow the path of a particle along any streamline,

and note its change of position relatively to an imaginary

particle moving in the path and with the velocity of the undis-

turbed stream, we should have data for plotting the orbital

A.F. 17 C
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motion corresponding to the particular streamline chosen. Thus

we know that the amplitude of the orbit of any particle, measured

at right angles to the direction of flight, is equal to that of the

corresponding streamline.

We further know that, in general, the particles have a retro-

grade motion—that is, their final position is astern of their initial

position—also that the maximum retrograde velocity is to be

found in the region of maximum amplitude. Beyond this we

know that the initial motion of any

particle is in the same direction as that

of the body, and that this initial motion

is greater for particles near the axis of

flight than for those far away.

Let b, b, b, etc.. Fig. 5, represent the

final position of a series of particles

originally situated in the plane a, a, a;

then the orbits of these particles will

originate on the plane a, a, a, and

terminate on the surface b, b, b, and

the motion will be of the character

shown.

The form of the surface b, b, b, will be

different for different forms of body. It

will evidently approach the plane a, a, a,

asymptotically, and generally will tend to

form a cusp pointing along the axis of

flight. The development of this cusp is greatest in cases

where the extreme entrance and run are of bluff form, as in

the Piankine Oval, Fig. 42, where the point of the cusp is

never reached, the surface approaching the axis of flight

asymptotically. In reckoning the displacement of the fluid

(§ 15), the volume included in the cusped surface forward

of the plane a, a, must be considered negative, since here

the fluid is displaced in the same direction as the motion of

the body.

18
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§ 17. Orbital Motion and Displacement,—Experimental Demon-

stration.—The displacement of the fluid and the form of the

orbit can be roughly demonstrated b}^ a simple smoke experi-

ment. If a smoke cloud be viewed against a dark background

during the passage of a body of streamline form in its vicinity,

the retrograde movement of the air is clearly visible. So long

as the surface of the body is not too close, the movement is clean

and precise, and the general character of the orbit form can be

clearly made out ; it is found to be, so far as the eye can judge,

in complete accord with the foregoing theory. The commence-

ment and end of the orbit, where the motion should be in the

same direction as the body, is most difficult to observe, though

even this detail is visible if the orbit selected be sufficientl}" near

to the axis of flight. The difliculty here is that the latter part of

the orbit is generally lost in consequence of the " frictional

wake,"^ i.e., the current set up by viscous stress in the immediate

neighbourhood of the body in motion. In all actual fluids a

wake current of this kind is set up, and the displacement surface

b, h, h, Fig. 5, is obliterated in the neighbourhood of its cusp

by a region of turbulence.

§ 18. OrWtal Motion,—Rankine's Investigation.—The form of the

orbits of the fluid particles has been investigated theoretically

for a certain class of body by Rankine (Phil. Trans., 1864).

Eankine closely studied the streamlines of a body of oval form,

generated by a certain method from two foci (§ 77), and by

calculation arrived at the equation to the orbit motion of the

particles. The result gives a curve whose general appearance is

given in Fig. 6 (actual plotting), in which the arrows represent

the motion of the particle, the direction of motion of the body

being from left to right.

Discussing the particular case in which the eccentricity of the

oval vanishes, and the form merges into that of a circle, Rankine

says,
—

" . . . The curvature of the orbit varies as the distance

* A term, used in naval architecture.
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of the particle from a line parallel to the axis of X, and midway

between that axis and the undisturbed position of the particle.

This is the property of the looped or coiled elastic curve ; there-

fore when the water-lines are cyclogenous the orbit of each

particle of water forms one loop of an elastic curve." Further,

he says—" The particle starts from a, is at first poshed forward,

then deviates outwards and turns backwards, moving directly

against the motion of the solid body as it passes the point of

greatest breadth, as shown. The particle then turns inwards,

and ends by following the body, coming to rest at h in advance of

its original j^osition."

This orbit in some respects resembles that arrived at by the

author, but differs in the one

very important point that,

whereas the author's method

gives a retrograde displace-

ment of the fluid as the net

consequence of the passage of

the body, Eankine's conclu-

sion is exactly the contrary.

^ „ As the author's result is
Fig. 6.

capable of experimental veri-

fication, it is evident that some subtle error must exist in Eankine's

argument, the exact nature of which it is difficult to ascertain.

§ 19. Bodies of Imperfect Streamline Form.—In an actual fluid,

bodies of other than streamline form experience resistance

apart from that directly due to viscosity.

In the practical shaping of a streamline body it is found

essential to avoid corners or sharp curves in the line of flow.

Bodies in which due precaution is not taken in this respect offer

considerable resistance to motion, and the regions of abrupt

curvature give rise to a discontinuity in the motion of the fluid.

Thus Fig. 7 represents a double cone moving axially, and it will

be noticed that the flow has not time to close in round the run,
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as it would do in a properly formed streamline body, but shoots

past the sharp edge, as indicated in the figure. The region in

the rear of the body, Z, is filled with fluid that does not partake

of the general flow, and which is termed dead-icater.

The resistance experienced by bodies of imperfect form is due

to the work done on the fluid, which is not subsequently given

back, as is the case with the streamline body. This resistance

can be traced to two causes, namely, excess pressure on the

surface in presentation and diminished pressure in the dead-w-ater

region. Tlie former is of dynamic origin, the energy being

expended in directly

impressing motion

on portions of the

fluid ; the latter is

due to the entrain-

mcnt or viscous drag

experienced by the

dead - water at the

surface bounded by

the live stream. It

is generally believed that, in a fluid whose viscosity is negligible,

the latter cause would be inoperative, the whole resistance being

then due to the excess pressure region in front of the body, the

dead-water or w'ake being at aj)proximately the hydrostatic

pressure of the fluid.

The surface separating the live stream and the dead-water

constitutes a discontlnuitij, since the velocity of the fluid, con-

sidered as a function of its position in space, is discontinuous.

This case is not one of a physical discontinuity, such as discussed

in § 12, for the region on either side of the surface is filled

with the same kind of fluid; it is rather a kinetic discontinuity,

that is to say a discontinuity of motion.

Fig. 7.

§ 20. The Doctrine of Kinetic Discontinuity.—The theory of

kinetic discontinuity is of modern origin, having been introduced
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and developed by Kirchhoff, Helmboltz, and others, to account

for the phenomenin of resistance in fluid motion. The analytical

theory, based on the hypothesis of continuity, does not in

geneial lead to results in harmony with experience. All

bodies, according to the Eulerian theory, are of streamline form,

j^rovided that the hydrostatic pressure of the fluid is sufficient to

prevent cavitation; we know that in practice this is not the case.

According to tbe teacliing of Helmboltz and Kirchhoff, a

kinetic discontinuity can be treated as if it w'ere a j)hysica]

discontinuity ; that is to say, the contents of the dead-water

region can be ignored ; and this method of treatment is now

generally recognised, although not universally so. The con-

troversial aspect of the subject is discussed at length at the

conclusion of Chap. III.

The principal objection to the theory of discontinuity is that

in an inviscid fluid a surface of discontinuity involves rotation,

and therefore, by a certain theorem of Lagrange, it is a condition

that cannot be generated.^ A further objection sometimes raised

is that such a condition as that contemplated would be unstable,

and that the surface of discontinuity, even if formed, would break

up into a multitude of eddies. Whether this is the case or not

in an inviscid fluid, it is certain that in a fluid possessed of

viscosity a surface of discontinuity does commence to break up

from the instant of its formation ; but as this breaking up does

not aff"ect the problem in any important degree, the objection in

the case of the inviscid fluid is probably also without weight.

In a real fluid a finite difference of velocity on opposite sides

of any surface would betoken an infinite tangential force. Con-

sequently the discontinuity becomes a stratum rather than a

surface, and the stratum will either be a region in which a

velocity gradient exists (§ 31), or it will become the seat of

turbulent motion (§ 37), the latter in all probability.

The conception of the discontinuity as a surface and the

method involving this conception are in no way affected by these

1 Chap. III. §§ 65—71.
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considerations. The term surface of discontinuity may be looked

upon as an abstraction of that which is essential in a somewhat

complex phenomenon.

§ 21. Experimental Demonstration of Kinetic Discontinuity.

—

The reality and importance of the discontinuous type of motion

can be demonstrated conclusively by experiment.

In Fig. 8, a, h, c, is a hollow spherical globe in which d is a

tube arranged to project in the manner shown. An ordinary

lamp globe and chimney will be found to answer the purpose

^GS^i^j^^'fc

Fig. 8.

the former having one of its apertures closed by a paper disc.

The whole is carefully filled with smoke and then moved through

the air in a direction from right to left, the relative direction of

the air being indicated by the arrow.

It will be found that the air will enter the tube and displace

the smoke through the annular aperture. The issuing smoke

follows the surface of the sphere in the most approved manner

as far as the " equator," but then passes away at a tangent, the

stratum of discontinuity, the dead-water region, and the turbulent

character of motion, being all clearly manifest. The discontinuity,

as may have been anticipated, does not appear as a clean-cut

surface ; it is marked almost from the commencement, as indi-

cated in the figure, by eddy motion ; but when we remember
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that, according to the Eulerian theory, the lines of flow should

carry the smoke along a symmetrical path to the opposite pole

of the sphere, as in Fig. 45 (Chap. III.), the conclusion is plain.

The author has succeeded in photographing the flow round a

cylinder in motion in a smoke-laden atmosphere (Fig. 9). In

this example it may be noticed that the surface or stratum of

discontinuity arises from a line some distance in front of the

plane of maximum section ; the difference in the behaviour of a

cylinder and sphere in this respect is due to the fact that in the

former case the lines of flow are cramped laterally, the motion

being confined to two dimensions, whereas in the latter case, the

motion being in three dimensions, the fluid can " get away " with

greater facility. This difference is reflected in the lower co-

efficient of resistance found experimentally for the sphere than

that ascertained for the cylinder. Thus in the experiments of

Dines (§ 226) the pressure joer square foot of maximum section

on a |-in. cylindrical rod was found to be more than double

that on a 6-in. sphere, though doubtless the difference in size in

the bodies compared may contribute something to the disparity.

The theory of discontinuity also receives support of the most

convincing description from the experiments of Hutton, 1788,

and Dines, 1889, by which it is shown that the pressure on a

solid hemisphere, or a hemispherical cup (such as used on the

Eobinson anemometer), both in spherical jiresentation , does not

differ from that on a complete sphere to an extent that experiment

will disclose. This not only disposes of the streamline sphere of

mathematical conception, but proves at the same time the

approximate constancy of wake pressure under variation of rear

body form. The same lesson is to be gleaned from experiments

in the ease of the hemisphere, cone, and circular plate (all in base

presentation), whose resistance is found to be approximately

equal (Fig. 17).

§ 22. Wake and Counterwake Currents.—Eeference has already

been made to the frictional wake current to which a streamline
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body gives rise owing to the viscous stress it exerts on the fluid

in its neighbourhood. With bodies of imperfect form there is,

in addition to the frictional wake, a wake current constituted by

the contents of the dead-water region, that is, the fluid contained

within the surface of discontinuity.

The general motion of the wake current is in the same direc-

tion as the body itself, but, owing to the viscous drag exerted on

it by the surrounding stream, this motion has superposed on it

one of circulation, which probably results in the central portion

of the wake travelling actually faster than the body^ and the

outer part slower, though Dines' experiments seem to point to

the disturbance being of so complex a character that it is impos-

sible to trace any clearly defined system.^

Now, since there can be no momentum communicated to the

fluid in sum (§ 5), there must be surrounding the dead-water

or wake current a counter- current in the ojjposite direction to

that of the wake, that is, in the reverse direction to the motion of

the body; and this counterwake current is being continuously

generated, just as the wake current itself, and contains

momentum equal and opposite to that of the wake. When in

a fluid possessing viscosity the wake and counterwake currents

intermingle by virtue of the viscous connection between them,

and become involved in a general turbulence, the plus and minus

momenta mutually cancel, and the final condition of the fluid at

all points is one of zero momentum.

We may regard the counterwake current as a survival of the

motion which, we have shown, must exist in the neighbourhood

of the maximum section of a streamline body (§ 13) opposite

in direction to its motion through the fluid. The failure of the

stream to close in behind the body means that this motion will

persist.

1 Since writing this passage the author has observed this "overtaking"

current photographed in Fig. 9. It may be faintly discerned in this Figure

in the central region of the "dead-water."
^ " On Wind Pressure upon an Inclined Sui-face," Proc. Royal Soc, 1890.
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The mingling of the wake and counterwake may be regarded

as a phenomenon quite apart from the initial disturbance, and

the turbulence or otherwise of the wake does not materially add

to or detract from the pressure on the front face of the body, but

concerns merely the ultimate disposal of the energy left behind

in the fluid.

No distinction is necessary between the frictional wake and

the dead-water wake so far as the production of a counterwake

current is concerned. The total wake current is the sum of the

two, and the total counterwake is equal and opposite to the total

wake.

§ 2 3. Streamline Motion in tlie Light of the Theory of Discon-

tinuity.—The theory of kinetic discontinuity presents the

subject of streamline motion in a new light, and enables us to

formulate a true definition of streamline form. Thus

—

A stream line body is one tJiat in its motion through a Jiuid does

not give rise to a surface of discontinuity.

In the previous discussion, § 9 e^ seq., no attempt has been

made to delineate streamline form, that is to say (according

to the present definition), the form of body that in its motion

through a fluid will not give rise to discontinuity. It has been

assumed that such a body is a possibility, and from the physical

requirements of the case the general character of the body form

has been taken for granted.

Under our definition, if, as in the mathematical (Eulerian)

theory, we assume continuity as hypothesis, then all bodies must

be streamline, which is the well-known consequence. If, on

the other hand, as in the Newtonian medium, u-e assume dis-

continuity, then it is evident by our definition that streamline

form can have no existence, which, again, is what we know to

be the case. It remains for us to demonstrate, on the assump-

tion of the properties of an ordinary fluid, the conditions which

govern the existence or otherwise of discontinuity, and so control

the form of a streamline body.
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In order that streamline motion should be possible such

motion must be a stable state, so that, if we suppose that by some

means a surface of discontinuity be initiated, the conditions must

be such that the form of motion so produced is unstable.

Let us suppose that we have (Fig. 10) a streamline body

made in two halves, and that the rear half, or run, be tempo-

rarily removed ; then a surface of discontinuity will be developed,

as indicated in the figure. Let now the detached portion be

replaced. Then the question arises, What are the changed con-

ditions that will interfere with the permanence of the discontinuous

system of flow, as depicted in the figure ?

If, in the first place, the fluid be taken as inviscid, and if,

Fig. 10.

for the purpose of argument, we assume that the system of

flow indicated in the figure is possible in an inviscid fluid,

then it is evident that when the run is replaced we shall not

have disturbed the conditions of flow, for our operations have

been confined to the dead water region, where the fluid is at

rest relatively to the body. Consequently the discontinuous

system of flow will persist. That is to say, under the snpjwsed

conditions streamline motion is either unstable or is at best

a condition of neutral equilibrium. Let us next introduce

viscosity as a factor. The conditions are now altered, for the

fluid in the dead-water region is no longer motionless, but is

in active circulation, and the introduction of the rear half of

the body obstructs the free path of the fluid, so that, as the

outer layers of the dead-water are carried away by the viscous
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drag, the fluid in the interior has difficulty in finding its way

back to take its place. This difficulty is greatest in the region

from which the discontinuity springs, where the dead-water runs

off to a " feather edge," and it is evident that some point of

attenuation is reached at which the return flow becomes impos-

sible, and the fluid will be " pumped out" or ejected from the

region forward of this point. This brings the discontinuity

further aft on the body, where the process can be supposed

repeated, so that eventually the whole dead-water has been

pumped away, and streamline motion supervenes. It is evident

that the process will not occur in stages, as above suggested, but

will be continuous.

It might be supposed from the foregoing argument that the

degree of curvature of the surface of the body would not be a

matter of importance, as in any case the feather edge of the dead-

water would be sufficiently fine to ensure the ejection of some

small amount of the fluid, and this process by continuous repeti-

tion would eventually clear the wake of its contents. If the

surface of the body were frictionless , doubtless this might be the

case, but it is established that there is continuity between the

surface of an immersed body and the surrounding fluid ; that is

to say, there is the same degree of viscous connection between

the fluid and the surface as there is between one layer of the

fluid and another. The consequence of this is that the dead-

water never fines off entirely, but extends forward as a sort of

sheath enveloping the whole surface of the body, and if the

curvature at any point is too rapid, the ejection may not prove

effective, and the discontinuity will persist. It is evident there-

fore that there will be some relation between the bluffness of

form permissible and the viscosity of the fluid, and, other things

being equal, the less the viscosity the finer will have to be the

lines of the body. The theory evidently also points to the

importance of smoothness of surface when the critical conditions

are approached.

The subject is not yet exhausted. We know that the thickness
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of the stratum of fluid infected by skin friction increases with the

distance from the" cut-water "
; that is to say, the factor on which

the curvature of the surface probably depends is relatively more

important on the buttock than on the shoulder. Hence we may

expect that the lines of entrance can with impunity be made less

fine than the lines of the run.

Again, all forces due to the inertia of tlie fluid vary as the

1
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§ 24. Streamline Form in Practice.—The practical aspect of

streamline form may be best studied from the bodies of fishes

and birds, the lines of which have been gradually evolved by

nature to meet the requirements of least resistance for motion

through a fluid, water or air, as the case may be.

Since all animals have functions to perform other than mere
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the salmon (Fig. 13) may be cited as typically fish-shaped

fish.

Beyond the lessons to be derived from these natural forms,

there is very little practical information available. The lines of

ships are governed by considerations foreign to the subject, the

question of wave-making, for example, being a matter of vital

importance. The submarine has not yet reached a stage of

development that would justify its form being taken as a fully

-/6S-

/J J

Fig. 14.

evolved model ; also, for obvious reasons, this type of vessel is

one of which but little information has been published.

In Figs. 11 and 12 curves are given whose ordinates represent

the area of cross-section at different points. This curve has been

obtained by differentiating a displacement curve plotted from a

series of immersion measurements. These measurements were

made by a method of displacement, the fish, suspended tail

downward, being lowered stage by stage into a vessel of water,

measurements being made of the overflow.

The area curves have been further translated into the form of

A.F. 33 »
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solids of revolution, which may be taken as the equivalent of the

original form in each case. Some doubt exists as to the exact

form in the region of the head, owing to the water entering the

gills. The effect of this is very evident in the case of the trout

(Fig. 12), where the form has been "made good" by a dotted

line.

For the purpose of comparison outline elevations are given in

Fig. 14 of three types of Whitehead torpedo. These are forms

that have been developed by long experience, but the shape is

largely dictated by special considerations. The bluff form of head,

for example, in models A and C is adopted in order to bring the

explosive charge into as close proximity as possible to the object

attacked. It probably also gives a form that is more easily

steered.

§ 25. Streamline Form.—Theory and Practice Compared.—Before a

rigid comparison can be instituted between the theoretical results

of § 23 and the actual forms found in nature considerable

further information is required. We do not know with accuracy

the speeds for which the different fish forms have been designed

or are best adapted. We also lack knowledge on certain other

important points. The present comparison must therefore be

confined to generalities.

In the first place, we may take it that the conclusion as to the

bluffer form being that suited to greater viscosity is fully borne

out in practice, though the whole of the considerations bearing

on this point are not here available. It is explained in Chap. II.

that the viscosity divided hy density (or kinematic viscosity) is the

proper criterion in such a case as that under discussion, and on

this basis air is far more viscous than water, so that we shall

exjDect to find aerial forms bluffer in their lines than aqueous

forms. Taking the solid of revolution as the basis of comparison,

we have in the case of the herring and the trout the length

approximately seven times the maximum diameter. The general

ratio found amongst bird forms is about three or four to one, the
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samples chosen for measurement being as far apart as the

albatros and the common sparrow. Consequently we find that

the theoretical conclusion receives substantial confirmation.

The relation of fineness to speed is not so easy of demonstra-

tion, owing to the absence of accurate data. It would, how^ever,

seem to be sufficiently obvious as a matter of general experience

that our conclusions hold good. It is almost certain that in

general the fish with the finer lines are the faster swimmers.

If this conclusion be accepted, the viscosity relation of the

preceding paragraph is emphasised, for there is no doubt that

the average speed of flight is greatly in excess of any ordinary

velocity attained by fish.

§ 26. Mutilation of the Streamline Form.—There are certain types

of body that may be regarded as mutilations of the streamline

form, and the consequences of such mutilation may now be

examined.

If, in the case of a body propelled at a constant velocity, the

entire run be removed, as in § 28, the consequence is a surface

of discontinuity emanating from the periphery of section. Under

these circumstances, if we neglect the influence of viscosity and

the consequent loss of wake pressure, the work done appears

wholly in the counterwake current, on the production of which

energy is being continuously expended. This performance of

work is otherwise represented by a resistance to motion, being

the diflerence between the excess pressure on the head and the

dimmished pressure on the shoulder, according to the principle

explained in § 11. If now we restore the buttock, so that the

mutilation is confined to the simple loss of the tail (Fig. 15), the

diminished pressure on the buttock acts as a drag upon the body,

and more work must be expended in propulsion. This additional

energy will appear in the fluid as a radial component in the

motion of the stream which does not exist if the whole nui is

removed. It is probable that some of this energy is restored

by an increase in the pressure of the dead water due to the
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converging stream, but we have no means of making a quantitative

computation.

An illustration of this principle may be cited in the type of

hull employed in a modern racing launch. The stern is cut off

square and clean, and may constitute the maximum immersed

section. There would seem in fact to be no logical compromise

between a boat with an ordinary well-proportioned entrance and

run, and one in which the latter is sacrificed entirely. In such a

form, when travelling at high speed the water quits the transom

entirely, and consequently sacrifice is made of the hydrostatic

pressure on the immersed transom area. The point at which

Fig. 15.

the front half of a boat thus takes less power for its propulsion

than the whole is probably about that speed at which the skin

friction on the run (the after-half), if present, exceeds the

hydrostatic pressure on the maximum immersed section. This

does not, however, determine the point at which it pays to make

the sacrifice, owing to the fact that for the same capacity the

truncated form has to be that of a larger model. The rating rule

also exerts an arbitrary influence. When, as is usual, the

length is penalised, an additional inducement is offered for the

designer to adopt the truncated type. When the truncated type

of hull is adopted it is advantageous to employ shalloiv draught,

for the hydrostatic pressure for a given displacement is less.

This form is also partly dictated by considerations relating to

propulsion.
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§ 27. Mutilation of the Streamline Form (continued).—In Fig. 16, A
and B, the consequences of truncating the fore body, or entrance,

of a streamline body are indicated diagrammatically. If, as in ^,

the mutilation be slight, the result may be merely a local dis-

turbance of the lines of flow. A surface of discontinuity will

probably arise, originating and terminating on the surface of the

body in the manner shown. It is possible that if the streamline

body be travelling at something approaching its critical velocity

(at which even in its complete form it is on the point of giving

Fig. 16.

rise to discontinuity), a minor mutilation such as here suggested

might have more serious consequences.

If the greater part of the entrance be removed, as shown at B,

the surface of discontinuity generated quits the body for good,

and the resistance becomes immediately as great as that of a

normal plane of area and form equal to that of the section.

This is in harmony with the experiments of Button and Dines,

to which reference has already been made (Fig. 17), the three

bodies shown being found to offer the same resistance within the

limits of experimental error.

It is evident that the dictum of the late Mr. Froude, that it is
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DIRECTION

" blunt tails rather than blunt noses that cause eddies " (and

therefore involve a loss of power), is applicable only to bodies

having already some approximation to streamline form. It is

obviously useless to provide a

nice sharp tail if previous

attention has not been given to

the shoulder and buttock lines.

Mr. Froude probably meant

that in a well-designed stream-

line form the tail should be

finer in form than the head, a

matter that up to his time had

presumably been neglected.

The primary importance of

easy shoulder lines has been

long recognised as a funda-

mental feature in the design

of projectiles. A full - sized

section of a Metford "303

bullet, illustrating this point,

is given in Fig. 18, and a

streamline form of which it may be regarded as a " mutilation
"

is indicated by the dotted line.

Fig. 17.

Fig. 18.

§ 28. Streamline Flow General.—Let us suppose an approximate

streamline form to be built of bricks, and, in the first place, we

will assume that the bricks are so small as to merely give rise to

a superficial roughness. Then this roughness will add to the skin

friction and will give rise to some local turbulence, but the general

character of the flow system remains as before. We may go further

and suppose the bricks so large as to form steps capable of giving
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rise to surfaces of discontinuity (Fig. 19) . Then the resistance will

be increased, and the layer of fluid next the body will be violently

stirred up; but if we examine the fluid some distance away we

shall still find it comparatively unaflected. If we now suppose the

body to consist of a few large blocks, the depth of fluid aftected by

turbulence will be greater, but at a sufficient distance away we

may still expect to find lines of flow of characteristic streamline

form. We may therefore generalise and say. All bodies passing

through a fluid are surrounded by a streamline system offlow of a

greater or less degree ofperfection depending upon the conformability

or otherwise of the surface or surfaces of the body.

This proposition, if not sufficiently obvious from the

Fig. 19.

considerations above given, may easily be demonstrated

experimentally.

In the experiment described in § 17, the orbital motion of

the particles of the fluid is demonstrated by the motion of an

ichthyoid body in air irregularly charged with smoke. This orbital

motion, with its consequent displacement, is quite characteristic,

and if other shapes of body be substituted for the streamline

form, the motion of the fluid a short distance away is not

sensibly affected. In the case of a body of streamline form, the

motion can be observed much closer to the axis of flight than is

the case for a sphere or other bluft' form ; also when the move-

ment is complete nothing further happens. In the case of a

sphere, the looked-for movement duly takes place ; but imme-

diately after the whole of the fluid under observation is involved in
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a state of seething turbulence, where the wake and counterwake

currents are mingHng. If the point of observation is sufficiently

remote, the orbital motion may be detected, even in the case of

the normal plane, beyond the immediate reach of the wake

turbulence.

§ 29. Displacement due to Fluid in Motion.— It has been shown

(§ 15) that the fluid in the neighbourhood of the path of

flight of a streamline body undergoes displacement, and that the

total displacement is equal to the volume of the body. It might

be expected in the case of the normal plane, which possesses no

volume, that the displacement would be nil, and such would

doubtless be the case if the form of flow were that of the Eulerian

theory.

In actuality the normal plane, in common with bodies of bluff

form, carries a quantity of fluid bodily in its wake, which from the

present point of view becomes in effect part of the body, so that

the displacement manifests itself just as if the plane were

possessed of volume. This is characteristic of all bodies that

give rise to discontinuous motion ; the displacement is greater

than the actual volume of the body. If there were no mingling

of the wake and counterwake currents, the displacement would

be infinite, for the counterwake current would persist indefinitely.

In the case of a streamline body, a certain amount of fluid is

carried along with the body by viscosity, and this similarly

increases the effective displacement volume.

It would appear from actual observation that, where the

displacement is due to the attendant fluid, the outer streamlines

have a motion closely resembling that produced by a streamline

body, but that those nearer the axis of flight terminate in the

turbulent wake; the commencement of the orbit is all that

can be seen.

§ 30. Examples illustrating Effects of Discontinuous Motion.—On

the practical imj)ortance of the study of motion of the discon-

tinuous type it is unnecessary to dwell. It is at present the
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only basis on which it is possible to account for the phenomenon

of fluid resistance as experimentally known. Beyond this there

are many examples and illustrations which are of especial

interest, considered either as proofs of the theory itself or in

relation to their actual consequence or utility.

A useful application of the principle is found in the screen

employed on fast steamships to protect the navigating officer,

and frequently the "watch," from the rush of air, without

Fig. 20.

obstructing the field of vision. This is illustrated diagram-

matically m Fig. 20, in which it will be seen that the live

stream is carried clear over the sailor's head, the latter being

protected by the surface of discontinuity. A similar device is

frequently adopted in connection with the dashboard of a

motor car.

Evidence of the most striking kind of the existence of a surface

of discontinuity is sometimes met with in the growth of trees in

the immediate vicinity of the edge of a cliff (Fig. 21). It may
be seen that the form of the surface is clearly delineated, the
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tree toi3 being cut away as tliougii it might have been sheared off

by a stroke of a mighty scythe.

An interesting example of an indirect effect of discontinuity is

to be found in the effect of " cut " or " side " on the flight of a

ball. Let a ball (Fig. 22) moving in the direction of the arrow A
have a spin in the direction of the arrow B. Now where the

Fig. 21.

direction of motion of the surface of the ball is the same as the

relative motion of the fluid, as at D, the surface will assist

the stream in ejecting the dead water, so that the discontinuity

will be delayed, and will only make its appearance at a point

some distance further aft than usual. On the other hand, on the

side that is opposing the stream the surface of the ball will

pump air in, and so assist the discontinuity, which will make its

appearance prematurely. The net result of this is that the
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Pig. 22.

counterwake will have a lateral component (downwards in the

figure), and, on the principle of the continuous communication of

momentum, there will be a reaction on the ball in the opposite

direction, that is to say upuards. A ball may therefore be sustained

against gravity or be made to

" soar " by receiving a spin

in the direction shown, or, if

the spin be about a vertical

axis, the path of the ball will

be a curve (in plan), such that

the aerodynamic reaction will

be balanced by centrifugal

force.

The actual means by which

the reaction acting on the ball

comes about may be under-

stood from either of two points of view. We may (Fig. 22)

regard this reaction as the centrifugal effect of the air passing

over the ball preponderating greatly over that of the fluid

passing underneath, or if we antici-

pate a knowledge of hydrodynamic

theory (Chap. III.), we know that

the greater proximity of the lines of

flow in the former region is alone

sufficient to indicate diminished

pressure. The lines as drawn in

the figure are not plottings—there

is no way known of plotting a field

of flow of this degree of complexity

—but they may be taken as a very

fair representation of what the plotting would be if it could be

effected.

The reason that the streamlines have been shown rising to

meet the ball in its progress will be better understood in

the light of Chaps. III. and IV. This detail is related to
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more advanced considerations than can be entered into at

present.

A further interesting example is found in the aerial tourhillioii^

(Fig. 23), in which the rotor K is a stick of segmental section

mounted to revolve freely about the axis L. The plane face of the

rotor is set truly at right angles to the axis of rotation. If this

apparatus be held in a current of air with the plane face fronting

the wind, as, for instance, by holding it outside the window of a

railway carriage in motion, the rotor evinces no tendency to go

round in the one direction or the other. If, however, a consider-

able initial spin be imparted in either direction, the wind will

suddenly get a bite, so to speak, and the rotor will gather speed

Fig. 24.

and spin at an enormous rate, as if it were furnished with sails

like a well-designed windmill.

Eeferring to Fig. 24, we have at a the type of flow illustrated

to which the blade of the rotor will give rise when its motion is

normal to the air ; b similarly indicates the form of flow when

the rotor is going round slowly, not fast enough for the air to

take liold. In both these figures we have the flow independent of

the " rear body form," and the rotor behaves just as if it were a

flat plate. Now, let us suppose that the rotor be given a sufficient

initial spin to bring about the state of things represented at c.

* This intei'esting aerodynamic puzzle was first brouglit to the notice of the

author by Mr. Henry I^ea, consulting engineer, of Birmingham, who, it would

appear, had it communicated to him by Mr. A. S. Dixon, who in turn had it

shown him when travelling in Italy by Mr. Patrick Alexander. The author

has taken no steps to trace the matter further. The explanation here given is

his own,
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The surface of discontinuity that ordinarily springs from the

leading edge has got so close to the rear body of the rotor as to

have ejected the " dead-icater " on that side, and the resulting form

of flow will be something like that illustrated in Fig. 25. Here

the pressure on the left-hand

side (as shown) will be that

of the " dead-water," which

is, as we know, somewhat

less than that of hydrostatic

head, while that on the right-

hand side will, owing to the

centrifugal component of the

stream, be very much lower

;

that is to say, the rotor will experience a force acting from left

to right which is in the direction of the initial spin, so that the

motion will be accelerated and will continue. The fact that

the propelling force only comes into existence when the initial

spin is sufficient to eject the dead water from the leading side of

the rotor blade fully explains the observed fact that a very

considerable initial spin is necessary.

Fig. 25.
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CHAPTEK 11.

VISCOSITY AND SKIN-FRICTION.

§ 31. Viscosity.—Definition.—The fundamental law of viscosity

is enunciated in the form of an hypothesis to Section IX., Book II.,

of Newton's " Principia," as follows :

—

The resistance arising from the want of lubricity in the parts of

a fluid is, caeteris paribus, projjortional to the velocity with which

the parts of the fluid are separated from each other.

The subsequent propositions li., Hi., and liii., show that the

expression " want of lubricity " is synonymous with the modern

term " viscosity," and the motion contemplated by Newton in

framing the foregoing hypothesis is motion in shear. The

Newtonian law has since received ample verification at the hands

of Maxwell and others.

Maxwell, in his " Theory of Heat," gives a quantitative definition

of viscosity as follows :

—

The viscosity of a substance is measured by the tangential force on

the unit area of either of two horizontal planes at a unit distance

apart one of lohich is fixed while the other moves ivith the unit

of velocity, the space between being filled with the viscous sid)stance.

Or if (Fig. 26) a stratum of the substance of thickness I be

contained between a fixed plane A B and the plane C D, moving

from C towards D with a velocity V, then, when a steady state

is established, the motion of the intervening fluid will be in the

direction C to D, and its velocity at different points will be in

proi^ortion to the height above the plane A B, so that the fluid

in immediate contact with the plane A B will remain at rest, and

that in immediate contact with the plane C D will have the

velocity V in common with it. Then, if F be the horizontal force
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applied to the plane C D per unit area to overcome the resistance

of the fluid, we have

—

V
F = /A ^ , where /x is a quantity termed the coefficient of viscosity.

This equation is merely the algebraic expression of the law

previously stated, for where V and I are unity we have F = /a.

It will be seen that between the planes A B and C D there

will exist a velocity gradient. A series of particles situated at points

on a straight line a, a, a, a, at one instant of time, will be situated

at points b, b, b, b, on another straight line at another instant,

Fig. 26.

the figure thus giving a pictorial idea of the motion in a viscous

fluid.

§ 33. Viscosity in relation to Shear.—In the foregoing illus-

tration, which is in substance as given by Maxwell, the nature

of viscous strain as a sliear is sufticiently obvious. There are

cases, however, in which viscosity plays a part in which the

conditions are not so straightforward. The modern definition of

shearing stress is stress that tends to alter theform of a body without

tending to alter its volume, and any strain that involves ' the

geometricalform or jJroportions of a body requires shearing stress

for its production. All stresses and strains can be resolved into

shear and dilatation (j)lus or minus) ; and such stresses as linear

tension or compression of a solid involve stress in shear.

We thus see that changes in the shape of a body of a fluid,
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such as take place in the course of its passage through a " tube

of flow " in the vicinity of a streamHne body, are resisted by

viscosity in proportion to the velocity with which the change of

form takes place, and the work done on the fluid in this manner

must be supplied by a propulsive force ; that is to say, the body

will be resisted in its motion through the fluid from the cause

stated. We have here one of the causes of viscous resistance.

We cannot state that this form of resistance will increase

directly as the velocity, that is, according to the viscous law, for

we do not know that the form of the lines of flow is the same at

different velocities. It would apjjear that this must be so for an

inviscid fluid. It would also seem evident that the viscous

resistance will modify the form of flow materially. It may

therefore be deduced that the form of flow will be more modified

for low than for high velocities, in which case the form of resist-

ance we are now discussing will not vary exactly in the direct

ratio of the velocity.

Bodies other than of streamline form will also be affected by

this type of viscous resistance, when it will appear as an added

resistance. The only exception is found in the case of a x>lane

moving tangentially, the consideration of which introduces the

important subject of skin-friction.

§ 33. Skin-friction.—It is well established that there is no

slipping of a fluid past the surface of a soHd, but that the film

adjacent to the surface adheres to it, and the resistance experi-

enced is of the nature of a viscous drag. This fact has already

been assumed in the discussion of the law of viscosity, for other-

wise there would be no necessity for the fluid to be set in motion

by the plane C D at all. To a certain extent, therefore, the term

" skin-friction " is misleading. It is, however, a term sanctioned by

usage, and it is difficult to find a more suitable expression.

Let us suppose that a plane having no sensible thickness be

put in motion tangentially through a fluid, and be maintained in

motion until a steady state is reached. Then the advancing edge
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of the plane is continualh' engaging with new masses of the

fluid, and setting them in motion hy ^-irtiie of the viscous stress

exerted. But the conditions under which any given mass of fluid

is acted on are not those of the previous hypothesis ; the force

resisting the motion of the plane is that of the inertia of the Jiuid

itself ; and if we confine our attention to any one ijortion of the fluid,

its condition is not that of a steady state, but one of acceleration.

Now it is evident that when the leading edge first enters the

undisturbed region the stratum of fluid aflected will be quite

thin ; and as the following portions of the plane successively

traverse the same ref^ion the thickness of the stratum set in
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time in the direction of co-ordinates x, y, z, travelling with the

body (or plane) , we are supposing that any variation in V results

in a variation in like ratio of u, v, iv, for all values of x, y, z.

In order to simplify the thinking in connection with this

problem it is convenient to suppose the body to be a plane

travelling in the direction of the axis of x, and confine our

attention to the motion of the fluid taking place in like direction.

Let y be taken as the axis at right angles to the plane.

The viscous stress at every point will be proportional to.the

velocity gradient, that is -y-, which on the present supposition

varies as V for every point x, y, z, in the region, consequently we

shall have F a T', which is the viscous law. Now if the ])re-

scribed conditions satisfy the dynamic requirements of the

problem, we might conclude that the motion is strictly homo-

morphous, and that the viscous law obtains, but such is not the

case. The momentum communicated per second to any given

layer of the fluid, and therefore to the whole fluid, is = mass X
the velocity j)er second imparted, that is a w F a V^ ; so that

under strictly homomorphous conditions the viscous stress cannot

be satisfied for varying speeds by the inertia of the fluid.

If, when the velocity V increases, we suppose that the layer of

fluid affected to any given degree becomes thinner, and vice versa,

it is clear that the viscous forces will rise in a greater ratio than

directly as V, for the velocity gradient will be steeper, also the

inertia forces will be less, for the mass of fluid to be set in motion

will be less. It is, therefore, evident that we may suppose the

thickness of the affected strata varies with the velocity in the

degree necessary to preserve a balance between the viscous and

inertia forces.

§ 35. Law of Skin-friction.—Let us suj^pose that in any two

systems, differing only as to velocity V, the whole region be

divided into strata by an imaginary series of equidistant planes,

so that the thickness of corresponding strata in the two systems,
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and their distance from the material plane, shall be in the con-

stant ratio n. And let us denote the distance between adjacent

planes by the symbol ^y, and the corresponding velocity differ-

ence in the axis of x by A«. Then A^/ a n and Am a V. (1)

Let F = the tangential force.

We have F as measured hi/ viscosity varies as the area (which

is constant) X velocity gradient, or

—

dii All V .-.F <x-r- o: —— a —

.

(2)
dy Ay 11

And F as dependent on dynamic considerations = momentum

imparted per second to the fluid. For unit width of any stratum

we have mass ^ pAy V, and velocity varies as F or F =
^P Ay VK

F a nV^. (3)

y
By (2) and (3) we have

—

nV^ a -,

1

or n a. V ^,

substituting in either (2) or (3)

—

F aV ^'\
(4)

This may be taken as the normal law of skin-friction}

§ 36. Kinematical Relations.—In dealing with problems relating

to fluid resistance it is found to lead to simplification to eliminate

the density of the fluid by introducing two new quantities,

kinematic resistance and kinematic viscosity.

Kinematic resistance, which we will denote by the symbol K,

may be defined as the resistance per unit density, or R — F/p,

L*
and IS consequently of the dimensions 7^0.

1 The foregoing demonstration is here presented for the first time by the

author ; the experimental fact was discovered by Mr. H. S. Allen (compare

§ 50). The relation FjV^-^ = const, may appropriately be termed Allen's

law. It is evident in the above investigation that the balance of viscous and

dynamic forces is demonstrated for all corresponding layers of the region each

to each, for any number of cases of F variation, and consequently the method

is comprehensive, and includes both the plus and minus momentum of the

wake and counterwake currents.
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V
have E = A V where A is the area of the surface ; it will be

Kinematic viscosity, which we will denote by the symbol

= fjt-jp, and is consequently of the dimensions th-.

Writing the law of viscous resistance in its kinematic form we

V
ive E = A V where A is the area of

noted that this expression is dimensional.

If we similarly write the law of skin-friction E = A v -j^
, we

find that the dimensions do not harmonise.

Let us examine this expression in a general form, where

E = c X A" X ^' X V
;

dimensionally :

—

L* _ -. 2p L^ 1/ .

"m2 — C X Li X rjig X rrir '

2 jj + 2 g + r = 4,

and 5 + »• = 2,

g = 2 — r,

.'. 2^) + 4 — 27- + r = 4,

^p - r = 0,

r

^ = 2-

The general expression therefore becomes :

—

E = c v'' A^ V (5)

in which 5* + ^' = 2.

This is the general equation to the kinematic resistance of

bodies in viscous fluids, and correlates the variations in respect

of viscosity, area, and velocity ; the application extends to both

normal and inclined planes and bodies of the most diverse form.^

It may be illustrated here in its relation to the law of skin-

friction ; we have, E varies as V^'^ and the full kinematic

expression therefore becomes

—

E = cv^ A-'^' Fi'5, (6)

1 The method of dimensions presumes geometrical similarity of figure.
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and we have the unexpected hut experimentally established result

that the resistance does not vary with the area, hut according to

a fractional power of same.

If, as is customarily assumed, the resistance of a body is

taken as proportional to the square of the velocity, then we

shall have q = zero, and the pressure is independent of viscosity

altogether ; this result is due to Allen.-^ Under these condi-

tions the resistance is directly as the area, and conversely if

viscosity have any influence on the resistance, then the resist-

ance cannot vary directly as the area, hence the existence of

^^scosity may be regarded as giving a definite scale to the fluid.

§ 37. Turbulence.—The steady state of viscous motion depicted

in Figs. 26 and 27, on which the laws of viscosity and shin-

friction have been based, is found in practice to obtain over a

moderate range of velocity only. When a certain critical velocity

is exceeded the continuity becomes broken and the phenomenon

of turbulence manifests itself. Under conditions involving pure

viscosity (in contradistinction to the more complex phenomenon

of skin-friction), this critical point has been investigated experi-

mentally by Mr. Osborne Reynolds in the case of liquid flowing

through a straight tube. It is found that up to a certain velocity

the flow is everywhere parallel to the axis, but when this critical

velocity is reached the parallel flow breaks up, and is replaced

by an irregular turbulent motion. Up to the critical velocity the

law deduced by Poissuille for viscous flow through a tube holds

good ; beyond this point the resistance rises more rapidl}-,

and for high velocities approximates to F varies as T'-, when

the energy is mostly expended in generating the turbulent

motion.

The method of investigation employed by Osborne Eeynolds

consisted of observing the behaviour of a coloured filament of

liquid introduced in the centre of a tube containing liquid in

motion ; the result obtained is that steady motion ceases to exist

^ Fhil. Mag., September and Xovember, 1900.
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if the mean velocity exceeds where a is the radius of the

tube^ (c.g.s. units).

§ 38. General Expression.—Homomorphous Motion. — Let us

examine generally the relations of geometrically similar systems

possessed of liomomorplious motion—that is, under circumstances

when the theory of dimensions is strictly applicable, then the

quantities upon which the motion depends are comprised by

—

velocity = V, kinematic viscosity v, and a linear (scale) dimen-

sion I.

Let us write

I = cVP v\

or, in terms of dimensions

L'' L2«
T, =z V

and we have the equations

P + ^ = 0,

i; + 2 g = 1,

q = 1 J)
= - 1,

I ^ c Y or V = c
^, (7)

which may be taken as the general equation connecting all

similar systems of flow in viscous fluids.

In a number of tubes, such as may be supposed employed for

experimentally investigating the phenomenon of turbulence, we

have a number of such similar systems, and it will be noted that

the expression is identical with that arrived at by Mr. Osborne

Reynolds, in whose equation we have c = 1000 as expressing a

particular state of motion.

§ 39. Corresponding Speed.—The above expression enables us to

formulate at once a law of corresponding speed for motion in any

viscous fluid, for, if the physical properties of the fluid do not

vary in any way v will be constant and we have V a -, that

^ Poynting and Thomson, " Projjerties of Matter," Chap. XVIII.
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is to say, for submerged model experiments, in which the con-

dition of acceleration — constant does not apply, the smaller the

model the higher the speed, in the direct proportion of the linear

dimension—a rather unexpected result.

The law of corresponding speeds employed in naval architec-

ture is primarily influenced by considerations of wave-making,

in which (as shown later in the present work) the dimensional

basis is acceleration f ,y^- j
= constant; the author has proved

from aerodonetic considerations that the same law obtains in

connection with aerial flight.^ In this law we have V varies as

the square root of I so that the two laws are incompatible—that

is to say, not capable of simultaneous fulfilment. This fact is

well known in connection with model experiments relating to

ship resistance, the results of experiment being subject to correc-

tion according to certain rules for frictional resistance, and

similar correction will be required in the case of aerodrome

experiments.

If it were possible, as by employing some different fluid, to

alter the value of v when experimenting with scale models, the

necessity for applying a correction might be obviated ; we have :

—

By Fronde's law I^ = cil, where Ci is a constant.

By Equation (7) V = c y , or V C]J = c y, that is, c{- Z- = cv (8)

or, the kinematic viscosity is required to vary with the 3/2 power

of the linear dimension.

We cannot always obtain fluids with viscosity to order, but

if we select two fluids such as air and water, whose kinematic

viscosities are, at 15"^ C, in the approximate ratio of 14 : 1, and

if Zi and Za represent the lengths of the two models, and vi

and V2 the values of the viscosities respectively, then,

—

That is to say, that a model aerodrome, made to a ^^^ scale

^ Aerodonetics.
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and adapted for motion under water, will, at a velocity propor-

tioned to the square root of its linear dimension, that is nTT^h

the full scale velocity, give rise to a geometrically similar

disturbance in the fluid, and will itself undergo geometrically

similar disturbance, and density for density the resistance will be

proportional to the cube of the linear dimension—that is to say,

in the ratio of y^r^ of the full scale model ; or, taking count of

the relative density of air and water, the resistance of the

smaller model will be approximately four times that of the

greater.

§ 40. Energy Relation.—In all cases of purely viscous resistance

the law of viscosity requires that the resistance shall vary directly

as the velocity ; and the whole of the energy expended disappears

at once into the thermodynamic system. In cases where the

resistance is dynamic—that is to say, where it is due to the con-

tinuous setting of new masses of the fluid in motion—the whole

of the energy expended remains in the fluid in the kinetic

form (being only subsequently frittered away), and the resistance

varies as the square of the velocity. Where the resistance is due

to both causes combined, as in the case of skin friction, the

portions of the total resistance varying directly, and as the

square, are respectively proportional to the energy expended in

the two directions.

Now for any particular velocity, the total resistance—that is,

the sum of the viscous and dynamic resistances—may be ex-

pressed as varying as the n th power of the velocity ; it is not

necessary that the value of n should be constant over the whole

range of the R V curve ; it may be a quantity varying as a

function of V, the form of which is unknown ; but, for the

particular value of V chosen we have

— = n F"' ^ or = ny
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Let i^i be the resistance varying as V, and R2 be the resistance

varying as V^, then R = III -\- R2, and we have

dR _ Ri + 2R, _ R
dv~ V

"
" r

or Ri -\- 2 R2 = n {Ri + R.2), from which

# = '^. (9)
Ri 2 — n

If we apply this to the case of a body obeying the normal law

R. *5

of skin-friction we have n = 1*5, or ^^^ = — = 1, that is to
Ml "o

say, the energy expended dynamically is equal to that expended

in viscosity.

When the conditions are such that turbulence supervenes the

expenditure of energy dynamically in the fluid disproportionately

increases and consequently 7^i becomes greater than U2, and in

accordance with (9) the value of n rises, until for very high

velocities it ajDproximates more and more closely to 2, when the

law becomes more nearly R varies as T'-.

The foregoing applies not only to the resistance of a plane

moving tangentially through a fluid but to all cases of submerged

fluid resistance ; but at present the changes of the value of the

index n have been but imperfectly investigated.

§ 41. Resistance-Velocity Curve.—Let us suppose that a curve

a, a, a, a (Fig. 28) represents by its ordinates the resistance of a

body of some particular geometrical form for different values of V

(abscissae), which we may suppose have been determined experi-

mentally ; then if h, h, h, h be the curve for some other body of

the same geometrical form but of different linear proportions, we

shall, by the law of corresponding speeds, have for every given

value of R, V cc j, that is to say, the proportion a c/h c is every-
t

where constant and the two curves are similar in relation to the

axis of y. Also we have the relation a cjh c in the inverse

ratio of the respective linear dimensions, so that a single

curve may be employed to represent the velocity-resistance
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relation of any given geometrical form, the velocity being read to

a scale varying according to the linear dimension of the body, so

that the diameter or some other definite linear dimension of the

body is some definite and constant multiple or submultiple of the

scale miit employed. Thus, if the curve be plotted for a one

foot diameter circular plane and one foot per second velocity is

rej)resented by one inch, then for a two foot circular plane a one

foot per second velocity will be represented by two inches, that is

to say, a given pressure will be developed at one-half the velocity.

This result is independent

of the value of the index

connecting B and V, or

generally of the indices

relating R, Vi Ai and V,

of Equation (5) ; it would

appear to be fundamental.

§ 42. Resistance - Linear

Curve.— We may express

the relationship of linear

dimension and resistance

directly in the form of a

curve in which Pl is given by the ordinates as before, and I is

represented by the abscissae, the curve being drawn for any given

value of V. Now we have in Equation (5) J^ = c v'^ A^ V,

which we may write in the form R = c v'^ V V', where ^ is a

linear dimension on which A depends ; in this form the expres-

sion is symmetrical in respect of I and V, and we have Equation (7)

V = c J also symmetrical with regard to these quantities, so

that the form of the R I curve will be identical with the R V
curve.

Thus let a, a, a, (Fig. 28) represent the R T curve for a body of

a certain geometrical form which we will entitle (F) I where I is

a linear dimension, then, for any value of I assigned to the body,
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there is for a given value oi R a. corresponding value of V such

that VI is constant ; this is merely an expression of Equation (7)

VI = c V. But this holds good equally when the curve is read

as an Rl curve, the value of the constant product of VI being

unaffected ; consequently in reading the curve either as i? V or Rl
the units are interchangeable. It may be noted that I may be

the length, i.e., the axial dimension of the body, or the transverse

or some other dimension, without affecting the result, provided it

is in all cases the same, and thus truly represents the linear size

of the body.

§ 43. Other Relations.—In considering the relations of the curve

of resistance we have hitherto taken the kinematic viscosity v as

constant ; we will now study the consequences of taking this as a

variable. So far the treatment has covered the case of variations

of the velocity and linear dimensions of bodies in a fluid of

constant physical properties ; in supposing the viscosity to vary-

we are introducing the condition of a change of fluid, or at

any rate such a change in the physical state of the fluid as is

equivalent thereto.

Now, (7) V = c
J

is the equation to similar systems, so that the

similar system when v varies is found when V or I or their pro-

duct VI varies in like ratio, that is the scale value oj the axis of x

varies u-itli the kinematic viscosity. But by (5) R = c v^ {IVy
,

or for similar systems where IV cc v, we have R cc v" v' , where

q -\- r = 2, that is, R a v^, or the scale value of the axis oJ y

varies as the square of the kinematic viscosity.

The conclusion may therefore be stated that :

—

Tlie resistance of

a body oj any definite geometrical form, in a stated aspect, may he

represented as a function of its linear dimension {that is its size)

and its velocity, by means of a single curve which may be termed

its characteristic curve of resistance, the form of zvhiclt is constant

whether the abscisaae represent linear dimension or velocity, and

whatever the value of the kinematic viscosity may be. And further,
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in the interpretation of the curve the linear and velocity qiuDitities

alternatively represented by abscissae are interchangeable, and the

scale value of the axis of x is proportional to the magnitude of the

kinematic viscosity , and the scale value of the axis of y to the square

of the kinematic viscosity.

§ 44. Form of Characteristic Curve.—The form of the character-

istic curve of resistance for different forms of body can, in all

probability, only be determined experimentally. There are

three ways by which the cm*ve could be plotted, (a) by experi-

mentally determining R for different values of V (or vice versa),

for any piven body
;

(b) by the determination of the resistances

of a number of bodies of geometrically similar form but of

different scale dimensions, at any standard velocity ; and, (c)

by employing fluids of different viscosity and plotting indirectly,

using a standard body at a standard velocity. The same curve

should result in every case.

Of the three methods the last (c) may be dismissed as imprac-

ticable ; the two former, (a) and (b), are, however, well suited to

experimental conditions, and would furnish a complete check on

the foregoing investigation. At present the experimental data

are fraj^mentary and the evidence inconclusive.

The general proj)erties of the curve, common to all forms of

body, may be gathered from the circumstances of the problem.

For very small values of V we laiow that quantities varying as

V^'^ and F" become negligible, and the curve will be of the

form II a V and leave the origin as an inclined straight line.

When the velocity is very great resistances that vary as the

lower powers of the velocity will be negligible in comparison to

those that vary as V^, and consequently the curve will approach

asymptotically to the form 11 a V-. It is questionable whether

the B, <x V stage can exist when the viscous reaction of the

fluid is due wliolly to its own inertia ; in the demonstration of the

" normal law of skin-friction" it was shown that this condition

results in the "l"o power" law, audit would appear probable that

60



VISCOSITY AND SKIN-FEICTION. §46

this law is capable of more general demonstration, in which case

the form of the curve (in an infinite region) will be limited to a

minimum index of 1'5 and the straight line stage will disappear.

It is to be expected in any case that in actual experiment the

ordinary viscous law will be found to apply for very low velocities

on account of the fact that the size of the vessel containing fluid

in which the experiment is performed cannot be made infinite,

and for very low velocities the viscous stress or part thereof will

be carried across to the v^alls of the vessel. Under these circum-

stances the condition that the reaction of the viscous substance

shall be borne by its own inertia will not apply ; it is consequently

of importance that experiments should be conducted in as large

a tank as can be conveniently employed.

§ 45. Consequences of interchangeal)ility of V and I.—It is

evident that the general results relating to the form of the curve

which have been deduced from the obvious relations of resistance

and velocity apply to the less obvious relationship of resistance

and linear dimension, owing to the interchangeability of V and I

previously demonstrated (§ 42) ; we therefore see that

—

For small similar bodies, obeying the viscous law, the resistance

varies with the linear dimension, that is as the square root of their

area.

For bodies of larger size, the resistance may be found to vary

as the 1'5 power of the linear dimension, that is as the "75 ijower

of the area.

For bodies of very large size, the resistance will approach to

vary as the linear dimension squared, that is directly as the area.

For planes moving tangentially it would appear possible that

the latter condition is never attained but that some lower power

may prove to be the limiting condition.

§ 46, Comparison of Theory with Experiment.—The foregoing

theory receives substantial support from the experimental work

of Froude, Dines, Allen and others.
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In a series of experiments to determine the skin-friction of

surfaces moving tangentially in sea water, Froude found that an

increase in area is not accompanied by a proportionate increase

in resistance ; he also found that the index connecting resistance

and velocity is in general less than 2, the mean result of several

experiments giving 1*92. Colonel Beaufoy, also experimenting

in sea water, gives the value 1'7 to 1*8.

Dines, experimenting in the open air, obtained results that have

some interest from the present standpoint. In spite of some

conflicting evidence, it would, in the main, appear that, under the

conditions of experiment, the V^ law is a very close approximation

to the truth. In this Dines agrees with the previous experiments

of Newton, Hutton, and others, and with the contemporary work

of Langley.

It is to be inferred that in cases of direct resistance the Stokes

{R a V) and Allen {R a V^'^) stages are confined to bodies of

very small size and very low velocity. The bodies employed by

Dines varied from some few square inches to some few square

feet area.

Allen's work in connection with the present subject is of the

greatest moment. The present application of dimensional theory

is largely due to him as also its experimental verification. His

investigations principally relate to spherical bodies of very small

dimensions, and demonstrate iwsitivdy that which has been

already inferred negatively, i.e., the small size and low velocities

belonging to the Stokes and Allen stages of the characteristic

curve.

§ 47. Froude's Experiments.—Owing to the condition of con-

stant geometrical form not having been complied with in these

experiments, some doubt exists as to the exactitude of the theory

in its application. The planes employed differed in length alone,

and it is evident that the skin-friction on a long narrow plane

moving endwise will be less proportionately than one of more

nearly square proportions, and consequently the effect of
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departing from the conditions will be to show a fictitiously low

co-efficient for the longer of the j)lanes employed.

If the width of the planes in j)roj)ortion to their fore and aft

length were sufficiently great, this effect would be negligible, as

under these circumstances the sectional area of the fluid affected

would vary substantially with the width itself; we v^iil 2)rovisionally

assume this to have been the case, and treat the fore and aft

length as the I of the dimensional equation, at the same time

bearing in mind the direction in which error is to be exjDected.

The first three series of experiments are as follows, the figure

quoted being ia each case the mean resistance per square foot

taken over the whole area at a velocity of 10 feet per second :

—
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same whether the computation is made, as by Froude, on the

basis of experiments at different velocities, or as done here on the

basis of change of hnear dimension ; and secondly, the quanti-

tative discrepancy between columns 1, 2 and 3 is in the direction

anticipated from the nature of the 'provisional assumption.

§ 48. Fronde's Experiments (continued)—Roughened Surfaces.

—

When we examine the cases of roughened surface which form part

of the series of experiments quoted, we find results that are not

capable of such ready interpretation. In the case, for instance, of

a surface coated with coarse sand, the index determined by

Froude from experiments at different velocities was found not to

differ sensibly from the maximum possible; that is, the index

value is given as = 2. The constant velocity data in this case

are :

—

Surface.
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When, however, we have to deal with a physical roughness, the

conditions are altered, and in order that the theory should apply,

the scale of the roughness, ?'.?., the coarseness of the sand, must be

increased as the length of the plane is increased ; that is to say,

the contour of the protuberances that constitute the roughness

of surface becomes part of the geometrical form of the body. Thus,

in the examj)le quoted, the roughness, and so the resistance, is

less on the 8 feet and 20 feet planes than it should be, and so

the results are not comparable.

In all probability the difference between the values of the

resistance for varnish, paraffin, and tinfoil is due to some

difference in the physical roughness of these bodies, and so we

shall expect to find the best agreement with theory in the case of

tinfoil (which shows the smallest co-efficient) ; this is actually

the case.

§ 49. Dines' Experiments.—The most suggestive experiments

of Dines are those in which wind planes of different area are

balanced about a vertical axis and the relative pressure so

determined. Mr. Dines found that the pressure on normal

planes does not increase in proportion to their area, but is

proportionately greater on small than on large planes. The

actual results obtained by observations on planes 6 ft. by 7 ft.,

3 ft. by 3 ft., and 1 ft. 6 in. by 1 ft. 6 in., were that the pressure

per square foot on a plane 6 ft. by 7 ft. is only 78 per cent, of

that on one 3 ft. square, and that on the plane 3 ft. square is 89

per cent, of that on the 1 ft. 6 in. square plane. The actual

velocity of the wind in which these experiments were made is not

stated.

On the other hand, Mr. Dines specifically states that he finds

the wind pressure on the normal plane and on bodies generally

varies strictly as the square of the velocity, a result which it is

difficult, in view of dimensional theory, to harmonise with the

above experiments.

It is probable that the departure from the V^ law is less than
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is indicated by the balanced plane experiment, owing to the

smaller plane being unduly affected in each case by its proximity

to the larger one. It is conceivable that the smaller plane being

situated in the counterwake of the larger, will in effect be

surrounded by air moving with above the normal wind velocity,

and so show a fictitiously high pressure value. Mr. Dines'

elegant method of determining the V^ law, by balancing against

centrifugal force, would appear to be quite above suspicion,

although it may not be sufficiently sensitive to demonstrate the

departure from the law, which for the normal plane is certainly

very small indeed. In any case the results, without some such

explanation as given, are not altogether consistent, and a

repetition of these experiments ought to be made.

§ 50. Allen's Experiments.^—Mr. H. S. Allen, experimenting

with bubbles and small solid spheres in liquids, found that for

very small velocities the viscous law holds good, whereas for very

great velocities the F^ law prevails ; he also shows that there

is an intermediate well-defined range,'_over which the F^'^law

applies. His results are summarised as follows :

—

" Three distinct stages have been recognised

:

" (1) When the velocity is sufficiently small the motion agrees

with that deduced theoretically by Stokes for non-sinuous motion,

on the assumption that no slipping occurs at the boundary ; in

such motion the resistance is proportional to the velocity.

" (2) When the velocity is greater than a definite critical value,

the terminal velocity of small bubbles and solid spheres is

proportional to the radius, less a small constant; it may be

expressed by the formula given.

" (3) For velocities considerably greater than those just

considered, the law of resistance is that which Sir Isaac Newton

deduced from his experiments, namely, that the resistance is

proportional to the square of the velocity."

Of the above three stages, (2) corresponds approximately to the

1 PhiJ. Mag., September and November, 1900.
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law, resistance varies as the l'5th power of the velocity, for, where

the force overcoming the resistance is supplied by the difference

of specific gravity of the fluid and the sphere, we have

—

R a l\

and R a V V ^^-\

3-r
IT

that IS, V a
V r

But for a given fluid v is constant, and we have—
3-r

V (xl-^'

3-r 3
or if Fa r n = , or r = .

r M + 1

Now, if in stage (2) (Fig. 29) we ignore the small constant,

q
we have V a I ov n = 1, and r = ^, that is to say, the general

expression in this case becomes :

—

R = c v^ l^^ V^-, that is,

during this stage the resistance follows the normal laiv of skin-

friction, or Allen's laiv.

§ 51. Characteristic Curve, Spherical Body.—The form of the

experimental curve, as plotted by Mr. Allen, is given in Fig. 29, in

which ordinates = V, and abscissae == values of linear dimension,

i.e., radius of sphere. The first stage or Stokes portion of this

curve is a parabola, F a Z^ ; this corresponds to an r value =

unity ; the second stage is approximately a straight line, the

value of r here being as shown 1*5
; the third (or Newtonian)

stage of the curve, not shown on this plotting, has an r value

equal 2, that is n = '5 or F a l^. This form of plotting is the

outcome of the method of experiment, i.e., measuring the

limiting velocity acquired under the influence of gravity ; if we

re-plot as a resistance-velocity diagram (Fig. 30), the size of

the body being supposed constant, we are able to obtain a general

idea of the " characteristic curve of resistance " for a spherical
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body. In Figs. 29 and 30 the curve does not extend to the V^

stage ; in Fig. 31 we have the three stages represented dia-

grammatically , firstly, by a straight line departure from the origin

where B, a V—this is the Stokes stage ; next we have a section

of the curve following the R a F^'^ law, the Allen stage, and

lastly the curve will approximate to a parabola where R a V^.

The latter stage is that investigated both theoretically and experi-

mentally by Newton (" Principia," Book II., Section VII.), deter-

minations being made both in water and air ; also in the year

5-

FlG. 29.

1719 by Dr. Desaguliers, who employed spherical bladders let

fall from the cupola of St. Paul's. Newton's theoretical

investigations were based on the hypothetical medium of discrete

particles, but the experimental verification was sufficiently close,

qualitatively, to establish the velocity squared law as substantially

correct, so far at least as the sizes of sphere and velocities

employed in his own and Desaguliers' experiments are concerned.

§ 52. Physical Meaning of Change of Index.—The nature of the

alteration in the system of disturbance that accompanies each

change of " law " is a matter of considerable interest. The
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Stokes law is based on a system of motion of the fluid that has

been mathematically investigated and the lines of flow plotted

from an equation.^ It may be remarked that this system of

motion can never exist in its entirety, for it involves an infinite

sphe:f)e:,

Cf/AftACT^fT/ST/C CO/7(/£r.

Fig. 30.

quantity of momentum and an infinite quantity of energy^; in

other words, the steady state involves a force applied for an

infinite time through an infinite distance ; it also constitutes a

violation of the principle of no momentum of § 5.

If we suppose that the stress, due to the propulsion or to the

1 Stokes' Scientific Papers (t. iii.).

2 " Hydrodynamics," II. Lamb, 1906 ed., p. 553.
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resistance of the body, be transmitted hy viscosity to the walls of

the vessel, as when the body is moving quite slowly, or when the

thickness of intervening fluid is small ; then the resistance will

^/^</'

p^^^*

Fig. 31.

evidently follow the ordinary viscous law. When, however, the

viscous drag is resisted by the inertia of the fluid, that is to say,

there is no continuity of viscous stress from the body to the walls

of the vessel, then it would appear probable that the law of skin-

friction applies. If this view is correct, the extent of the stage
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where R varies as T" will depend, as already stated, upon the size

of the containing vessel.

§ 53. Cliange in Index Value (continued).—^We have so far confined

ourselves to the discussion of the first change of index, that

which takes place when the curve passes from the Stokes to the

Allen stage.

The second change of index value evidently takes place when

the motion of the fluid hecomes turbulent, for it is then that the

conditions leading to the normal law of skin friction are violated,

and the energy relation becomes disturbed. In all probability

also the V^ law, in cases involving other than pure skin-friction,

is closely associated with the phenomenon of discontinuiti/. A
system of flow of the discontinuous type is almost certainly

accompanied by resistance following the V^ law.

The conclusions of this and § 52 at present lack experimental

demonstration. There would appear to be some e^-idence to show

that the Stokes stage may exist independently of the size of the

vessel ; this at least is a conclusion reached by Allen. If this

should prove to be the case the explanation here given will need

modification.

§ 54. The Transition Stages of the Characteristic Curve.—The

junction or transition portions of the curve connecting the various

stages are not angular as shown diagrammatically in Fig. 31, but

pass gradually from the one to the other. The transition stages,

however, are not such as to mask the distinct individuality of

each portion of the curve, but merely enough to render

uncertain the precise point at which the change of "law" takes

place.

It appears that there is a small departure from the exact

expression given, both in the second stage (as found by Mr.

Allen) and in the third stage. In the latter case we may suppose

that when the velocity becomes very great the geometrical form

of the lines of flow becomes sensibly constant, and such resistance
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as is due to viscosity will then vary as the velocity, the net

resistance curve being thus the sum of the ordinates of a parabola

1

*/

•%'

oc

Fig. 32.

and an inclined straight line. It can be shown geometrically that

this results in the curve of resistance approximating to a parallel to

the true parabola as shown in Fig. 32. In the second stage we

have the experimental result of Mr. Allen as a guide. We know
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that if the second stage law were to hold good down to zero

velocity, we should have a certain small residuary resistance

(see Fig. 29). This means on the velocity-resistance diagram

that the origin for the 1*5 index curve will be situated a short

distance up the axis of y ; we may conveniently construe this

as an approximate parallel to the curve struck from the true

origin, when Fig. 32 will represent the manner in which the

resistance curve may be supposed to be built up.

§ 55. Some Difficulties of Theory.—In all cases of skin-friction

where the index exceeds 1*5 the motion is accompanied by

turbulence, and if the value of the index rises to 2, as it would

appear to do approximately in the case of the roughened

surface, then the dimensional equation (as pointed out by Allen)

shows that the resistance is independent of viscosity, and the

whole of the energy is expended dynamically in producing fluid

motion. Under these circumstances we must regard viscosity as

merely acting as a gearing by which rotational motion is im-

parted to the fluid, although it is difficult to understand how

such a gearing can be continually imparting rotation to new

masses of fluid without a certain amount of sli]) ; and such slip

would betoken an expenditure of energy in viscous motion and

necessitate the value of the index being less than 2.

Beyond this it is difficult to conceive of the resistance being

independent of the value of viscosity without being independent

of the existence of viscosity, which appears to be absurd. Conse-

quently it is probable that, so long as the effect of elasticity of the

fiuicl is not felt, the value of the index, connecting resistance and

velocity or resistance and linear dimension, can never reach its

limiting value, 2, but must always fall short of it by some small

quantity.

It is known, from experiments on resistance in the flight of

projectiles, that for velocities approaching the velocity of sound,

the index may rise considerably above the limiting value given

in the foregoing theory ; and therefore we may expect to find in
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general that the experimental determinations, except for velocities

quite small in comparison with that of wave motion, will be in

excess of those indicated by the theory. It is evident that in

elasticity we have a factor foreign to the dimensional theory

as given, and the existence of such a factor invalidates the

hypothesis upon which the theory is founded.

An apparent discrepancy occurs in the case of some experiments

made by Newton (Book II., Section VI.), who found, from the

motion of a pendulum whose spherical "bob " was immersed in

water, that the resistance ivas augmented in more than the duplicate

ratio of the velocity.

Newton supposed this to be an error due to the narroivness of

the trough employed, but this in the light of dimensional theory

is insufficient.

The probable explanation is that for a large arc the discon-

tinuous type of motion has time to establish itself on each swing,

whereas for small arcs of motion the flow has not had time to

fully develop discontinuity ; for very small arcs the flow will

approximate to the Eulerian form (compare Chap. III.).

Consequently the resistance for small amplitude is far less than

is the case for continuous motion, and thus factors are introduced

outside the dimensional hypothesis, which presumes a steady state.

§ 56. G-eneral Conclusions.—The importance of the results

attained in the present chapter, in relation to aerial flight, is to

some extent an unknown quantity.

It is evident that under ordinary conditions the law of viscosity

does not apply, and it would appear further that the tangential

resistance does not follow the normal law of skinfriction, but that

the conditions commonly involve turbulence, and K varies as

some higher power of V between V^'^ and V^. It is highly

probable that the conditions may be different in the case of the

smaller flying insects, such as flies, mosquitoes, etc., and it may

be the relatively greater importance of viscosity in such cases

that is primarily responsible for the peculiarities of insect flight.
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For large birds and flying machines the " R varies as V^ " law is

probably accurate enough for ordinary computations of resistance,

whether frictional or direct. The V^ law is generally assumed in

the present work as sufficiently near the truth ; the assumption

of one law for both classes of resistance results in a simplification

of method which fully justifies its employment, even at the

expense of some small degree of accuracy.

The meaning of the statement (§ 36) that viscosity gives a

scale to the fluid, may be illustrated by supposing a " blue-

bottle " to find itself transformed into a common fly (supposing

the two to be strictly proportional in their parts) : it would find

that the apparent viscosity of the air had increased ; in other

words, the air would appear to be more " sticky " than usual.

The same fact is familiar in other cases—for example, the differ-

ence in character of a large and a small flame, etc. Other

physical properties are capable of giving a scale to a fluid : thus

elasticity as demonstrated by the length traversed by a wave in

unit time; surface tension as demonstrated by the velocity of

slowest surface wave.

One of the least satisfactory results of dimensional theory, so

far as revealed by a comparison with conclusions that would be

naturally formed from experience, is the inverse relation that

exists for homomorphous motion between V and I. It would

appear that for bodies of similar form any state of motion—say

the state when discontinuity sets in—is reached when their

respective velocities are in the inverse ratio of the linear

dimension. Thus, if a salmon and a herring were geometrically

proportional, the herring would be capable of a higher velocity,

without ceasing to be of streamline form (by definition), than the

salmon in the inverse proportion of their respective lengths.

Now this seems very unsatisfactory, for a whale would be scarcely

capable of locomotion without carrying a deadwater region in its

wake—a most improbable conclusion. Certain explanations are

possible, but the author has been unable up to the present to

find any conclusive solution to the difficulty.
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CHAPTER III.

THE HYDKODYNAMICS OF ANALYTICAL THEORY.

§ 57. Introductory.—The analytical treatment of hydro-

dynamic problems commonly involves an extensive application

of the higher mathematics, the classic methods being those of

Euler, Lagrange, Stokes, and others.

The importance and bearing of the mathematical demonstra-

tions, in connection with the subject of the present work, is

comparatively limited, but many of the results are of great

consequence; the present exposition has therefore been restricted

to a brief indication of the mathematical method, and a digest

of those results which, from the present standpoint, are of the

greatest interest. Where it has been found possible, a simple

physical demonstration is given ; in many cases the results of

established investigation are taken for granted.

The present discussion opens with a recapitulation of the

physical properties of fluids, which may be taken as a concise

re-statement of essential definitions, sufficient to render back

reference unnecessary. The chapter concludes with a critical

argument on the practical deficiencies of the Evlerian and

Lagrangian method, and on the theory of Discontinuous Flow.

The hypothesis of the initial discussion is strictly that of an

inviscicl fluid, and in general the condition of incompressihility

is assumed. Up to a certain point the mathematical treatment,

as usually applied, takes cognisance of compressibility, but

generally speaking, the tangible results, so far as they concern

our present subject, relate to the simpler conditions.

§ 58. Properties of a Fluid.—All fluids are characterised by

certain definite physical properties. The property that may be

76



HYDEODYNAMIC THEOEY. §59

said to constitute fluidity, and which distinguishes fluid from

solid bodies, is inability to sustain stress in shear. A fluid in

which this property is perfect is said to be inviscid, and in such

a fluid a shearing strain, i.e., distortion, may take place without

being accompanied by any corresponding stress : such a fluid

must be regarded as hypothetical. All actual fluids possess

viscosity ; in a viscous fluid a stress in shear may exist, but is

accompanied by a continually increasing strain ; "stress in shear

in a viscous fluid bears, in fact, the same relation to the rate of

change of strain that stress in a perfectly elastic solid bears to

the strain itself.

The remaining physical properties of a fluid are identical with

those of a solid body, and comprise density and elasticity

(volumetric). These two quantities are related to a third

quantity—pressure—in so much that the density is a function

of the pressure, the nature of which function is defined by

the law of elasticity ; thus in a perfect gas under isothermal

. . P
conditions we have - = constant where p is density, and P

pressure.

If we take the two extreme cases in the relation of p and P,

so that, firstly, the elasticity be supposed zero, we shall have any

finite pressure, however small, produce an infinite density, and

the fluid becomes identical with the medium of Newton. If,

secondly, we suppose the elasticity to be infinite, so that a

change in P, however great, produces no change in the density,

we have the case of an incompressible fluid. The latter assump-

tion is that of our present hypothesis.

§ 59. Basis of Mathematical Investigation.—The Equations of

Motion may be said to constitute the starting point of all

analytical investigation ; these are :

—

(1) The Equation of Continuity, expressing the relation between

the density of the fluid and the linear rate of change of flow

in each of the co-ordinate directions of space; or, under the

restriction that density is constant, the relation between the
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(linear) rate of change in the three co-ordinate directions amongst

themselves.

The equation of continuity is based upon the fact that the inflow

and outflow of any small element of space must balance, or must

balance against the change of density if the fluid is compressible.

The form of the expression for an incompressible fluid is

—

du j_ dv dw _
dx dy dz

'

where u, v, and w represent the velocities in the directions of

the three co-ordinate axes x, y, and z.

(2) The Dynamical Equations expressing the relation in the

direction of each of the three co-ordinate axes x, y, z, for every

small element of the fluid, between the rate of change in its

momentum, the difference of pressure on its opposite faces, and

the component of the extraneous force, if any.

The Extraneous Forces are usually represented in the three

co-ordinate directions by the symbols X, Y, Z, and denote

forces acting from without on the fluid particles, such, for

example, as the force of gravity. In the present branch of the

subject these forces do not require to be considered.

Employing, as is customary, the symbol DF/Dt to denote a

differentiation following the motion of the fluid, it can be shown

,,. DF dF
,

dF . dF
,

dF ...
^^"^

Dt=-dt+''di,+''dy^'%Iz- ^^^

Now the rate of change of the x momentum of any small element

8x Sy Sz is p8x 8y 8z j^, and this must be equal to the differ-

ence of the pressure force on its two faces, which is evidently

dp—
^^ S^ % S^ (where jj is pressure). The minus sign is due to

the fact that the momentum increase takes place in the direction

of the pressure decrease. So that :

—

pSxSy8z^=-^M8^SySz,
Dt dx

or ^ = _ iP

.

Dt pdx
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Substituting from (1) for DujDt, Dv/Dt, and Dw/Dt we

have :

—

In the

become :—

du j_ du . dii
_j_

du

dt dx dy dz

dv
,

dv . dv . dv-^+M^-+r'^ \- IV -:r-

dt dx dy dz

div dw j^ div
_|_

dw _
dt dx dy dz

steady state du/dt is zero,

_ _ '^"/^
\

dp_\

pdx,

dp

pdy,

_ dp

pdz

and the equations

du _. du j^ du _ _ dp

dx dy dz pdx'
etc.

When there is no motion or motion of translation only in the

fluid, the last three terms of the left-hand side of the equation

are zero, and the equations become :

—

du dp
,

T~ = r^> etc.
dt pax

The further development and employment of these equations

is outside the scope of the present work, but the physical

significance can be gathered by comparison with §§60 and 88.

The mathematical superstructure founded on the above

consists in the main of finding solutions to the equations of

motion in a number of well-defined cases, and in the general

development of the theory in its application to the motions of

bodies of stated geometrical form under known boundary

conditions.-^

§ 60. Velocity Potential (<^ Function).—If a force be applied

to a body initially at rest in a fluid, a circulation of the fluid is

set up, the flow taking place along paths of curvilinear form by

which the displaced fluid is conveyed from one side of the body

to the other. We may regard the initial direction of flow, pro-

duced in this manner, as denoting a ''field of force," the

1 For the full mathematical treatment reference should be made to

"Hydrodynamics," H. Lamb, Camb. University Press.
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direction of the lines of force being everywhere that of the

initial acceleration of the particles.

When such a system is initiated in a fluid from rest, at the

instant the force is applied the surfaces of equal pressure are

everywhere normal to the lines of force. This is not necessarily

the case when the fluid is in motion, for we have then super-

posed pressure differences due to the change in velocity and

direction of the particles which modify the pressure distribution.

Let us suppose that the applied force is impulsive, i.e., let it

be considered to be an infinite force applied for an infinitely

short time ; then the form of flow generated will be that due to

the initial application of the force, that is to say the field of flow

will coincide with the field of force.

Now it does not obviously follow that this form of flow will be

stable or permanent. In actual fluids, such as water or air, we

know in fact that it is not so. It would, however, appear that

in the ideal fluid of hypothesis any form of motion generated

by an impulse in this manner will persist without change of

form, and therefore the field of force and system of pressure by

which the flow is generated may be taken as defining the form

of flow for the steady state.

Under these circumstances it is evident that the motion will

be the same whether generated by an impulse or by a finite force,

since the continued application of the force to the body in

motion will accelerate the field everywhere in the line of flow.

If we now examine the initial pressure system, then the

velocity produced on the fluid from rest along any line of force

after a brief interval of time will be, for any small difference of

pressure, inversely as the mass per unit section, that is,

inversely as the distance separating , the points at 'which the

said pressure difference exists. Or if Sp is the pressure incre-

ment, and 81 the distance along the line of force, the velocity

after a certain brief interval of time will be everywhere pro-

portional to -^' or, when the increments are taken as evanescent
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velocity varies as ^^ , or, resolving into its three co-ordinate

components, we have

—

dp dp dp

where c is a constant.

In the above expression the density of the fluid and the

magnitude of the applied force are involved in the constant c.

It is, however, evident that we may regard the form of flow as a

matter of pure kinematics, since the existence of the flow is not

dependent upon the pressure system by which it is generated.

Consequently we may substitute for p a function ^, which has no

dynamic import, and which is termed velocity potential, and we

may write the expression

—

_ dcf) d(j> d4>

^' ^'' ^^'' ^ di' ^ ' dz
'

the terms on the right-hand side of this equation being sometimes

written with a minus sign.

In the foregoing illustration <^ is a single-valued function,

inasmuch as it can have a definite value assigned for every point

in the field of flow.

§ 61. Flux {ij/ Function)
, ^ and xj/ interchangeable.—In cases of fluid

motion in which a velocity potential exists the lines of flow are,

as pointed out, everywhere normal to the equipotentials, that is

to say the surfaces of = constant. It can be shown analytic-

ally that if the curves of flow be plotted for equal increments of

flux (that is, so that the amount of fluid that flows j)er unit time

past any point and between two adjacent lines is constant), and

the curves ^ = constant be plotted over the same field, the two

series of lines will divide the field into a number of similar

elements whose ultimate form in the case of motion in two

dimensions, when the units emploj^ed are sufficiently small,

becomes square within any desired degree of approximation.

Thus (Fig. 33) let e e be two lines of flow, and /./' be two lines

A.F. 81 G
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4> — constant ; then the cell cut off, a, h, c, d, will be approxi-

mately square, and if we choose to subdivide for intermediate

values of flux and velocity potential as indicated, the cellules so

formed will approximate still more closely, and the whole field

may be regarded as ultimately built up of a number of such

square elements.

If in two-dimensional motion the successive increments of flux

be represented by increments of a quantity

if/, it can be shown that the <^ lines and the ij/

lines may be interchanged, the lines of equal

flux becoming equipotentials, and vice versa.

The applied impulse will of course require to

be different for the two systems.

When the motion takes place in three

dimensions, the xf/ lines and <^ surfaces still

divide the fields into a number of rectangular elements, or cubes

(Fig. 34), but the conjugate property no longer exists ; the \p, <^,

functions are not interchangeable.

The foregoing principles may be illus-

y 1^ cp
I

trated by the simple case of a source and

sink.

Fig. 33.

Fig. 34.

§ 62. Sources and Sinks.—A source is a

hypothetical conception, and may be defined

as a point at which fluid is being con-

tinuously generated, and conversely a sink

is a point at which fluid is supposed to dis-

appear. Nothing actually resembling a source or sink is known

to experience, the utility of the conception resting in its appli-

cation to theory. A jjoint source gives rise to three-dimensional

motion; a line source gives rise to two-dimensional motion. A
line source may also be described as a point source in two

dimensions.

The field of flow from a source or towards a sink in an

infinite expanse of fluid can be laid down from considerations
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of symmetry. The conditions require that it should be con-

stituted of radial straight line flow equally distributed circum-

ferentially in space. The field, in the case of motion in two

dimensions, being shown plotted in Fig. 35 for a series of

equal increments of flux, each line of flow will represent some

definite value of the function if/, any one of the lines being

arbitrarily chosen as datum.

Fig. 35.

The equipotentials, <f>
= constant, will be a series of concentric

circles whose radii form a geometrical progression.

If the functions ij/ and <^ be interchanged, the diagram repre-

sents a cyclic motion round a fHament, the radial lines hecoming

the equipotentials.

In the case of the source or sink, the velocity of the fluid

at the origin is infinite, the whole flux having to pass through

a region having no magnitude. In order to keep the problem

within the range of physical conception it is customary in
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this and similar cases to suppose the source or sink to be

circumscribed by a small closed curve, which in the case we have

under consideration will be a circle. When we interchange

the functions ij/ and ^ the same considerations apply. In this

case the space within the circular enclosure represents the

section of a cylindrical filament, around which the cyclic

motion of the fluid is taking place. The introduction of such

an obstacle, i.e., a circumscribed area in a two-dimensional

space or an infinite cylinder in a three-dimensional space,

involves what is termed the connectivity of the region. Where

no obstacle exists the region is said to be simply connected;

where one or more such obstacles exist the region is mul-

tiply connected. The question involves certain points of

definition.

§ 63. Connectivity.—It is possible to connect any two points

in a region containing fluid by an infinite number of paths

traversing the fluid. Such paths as can by continuous varia-

tion be made to coincide without passing out of the region

are said to be mutually reconcilable.

Any circuit that can be contracted to a point without

passing out of the region is said to be reducible.

Two reconcilable paths combined form a reducible circuit.

A simply connected region is one in which all paths joining

any two points are reconcilable, or such that all circuits

drawn within the region are reducible.

A doubly connected region is one in which two irreconcilable

paths, and no more, can be drawn between any two points lying

within it, so that any third path shall be reconcilable with the

one or the other, or shall be in part reconcilable with one

or the other, and in part reducible to the circuit formed by

the two combined. (The latter portion of this definition is

necessary to provide for the case of a third path being drawn

making one or more circuits of the " obstacle.")

In general, multiply-connected regions, in which u irreducible
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paths, and no more, can be drawn to connect any two points, are

said to be n-ply connected.

A few examples may be given. The region internal or

external to the surface of a chain link or an anchor ring is a

doubly connected region ; a simple electric circuit, either internal

or external to the conductor, is a doubly connected region ; on

breaking the circuit both regions become simply connected. The

cavity of the labyrinth of the human ear is a triply connected

region, as also is a lake containing two islands. The region

surrounding a gridiron is w-ply connected where n is the number

of the bars.

§ 64. Cyclic Motion.—The subject of connectivity derives its

importance chiefly from its relation to the class of fluid motions

known as cyclic. In a simply connected region, for all motions

having a velocity potential, the latter, ^, is a single-valued func-

tion, having at every point in the system a definite assignable

value, varying continuously from point to point throughout the

system. When the region is doubly connected this manifestly

may not be the case, for if there is a circulation around an

irreducible circuit it is evident that if we follow the variation of

(f>
round such circuit we shall on arriving at the starting point

have two conflicting vakies. Thus, referring to Fig. 35 when the

radial lines are taken to represent (j) = constant, we are unable

to assign a progressive series of values to the </> lines that will

be consistent.

Under these conditions </> is termed a cyclic function, and its

value depends upon the datum point chosen for its zero and

the number of times the path of integration has been taken round

a circuit.

A physical conception of velocity potential under these circum-

stances is somewhat difficult, but if we revert to the dynamical

hypothesis and regard the velocity potential system as the

pressure system by which the motion is generated, we encounter

at once the same difficulty in another form. Before we are able
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to interfere either to start or to stop the fluid in cyclic motion,

we must introduce some imaginary barrier in its path. In the

sj^ecial case in the figure this evidently requires to extend

from the central core outward to infinity in order to intercept

the whole of the flux. We are at liberty to select what

position we like, circumferentially, for this barrier, and in

choosing such position we fix the datum for the value of (p.

If then we suppose a suitable impulse to be applied the j9

of the impulse pressure system will be a single-valued func-

tion throughout the field, and p defines 4> for the subsequent

motion. The barrier, however, cannot be maintained under the

conditions of steady motion, and it is the ivithdrawal of the

barrier that renders ^ indeterminate. It is the complementary

fact that the barrier temporarily renders the region simply con-

nected, and on its withdrawal the cyclic conditions supervene.

The particular case of cyclic motion taken as an illustration is

one of the most elementary simplicity. The degree of complexity

of any cyclic system of flow depends primarily upon the boundary

conditions. We shall have occasion to refer later to cyclic systems

of greater complexity, but at present the complete solution of the

equations of motion is only known in some few cases where the

boundary conditions are simple.

Although in any case of cyclic flow, such as in the example

given, the fluid is in circulation around a central island, and so

as a whole possesses angular momentum and rotary motion in the

ordinary acceptation of the words, such a form of flow {i.e., one

that can be generated by an impulse and possesses a velocity

potential) is in reality irrotational. The theory of rotation in

fluids is of considerable importance, in view of the fact that it can

be proved that if the motion of an inviscid fluid is irrotational at any

instant of time, it will remain irrotational for all time ; that is to

say, it is impossible to produce or destroy rotation in an ideal fluid.

§ 65. Fluid Rotation. Conservation of Rotation.—Let us suppose

a hollow circular cylindrical vessel filled with fluid to be set in
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rotation, about its axis : then if the fluid possessed viscosity it

would, in course of time, acquire sensibly the same speed of

rotation as the vessel, so that the whole system would revolve

en bloc. With an ideal fluid, however, the rotation of the vessel

might be continued indefinitely without imparting any motion to

its contents.

If we suppose substituted for the circular cylinder one of

square or other irregular section, it might be imagined that

rotation would be imparted to the fluid by the irregularity of the

boundary surfaces ; such, however, is not the case. An inviscid

fluid offers no resistance to distortion, and consequently the

containing vessel, however irregular

its form, is unable to acquire a

"purchase" on the fluid contents,

and the fluid is not set in rotation.

Conversel}^ if we suppose the fluid

to be in a state of rotation in a

vessel or region, no matter what

its form, such rotation will persist

and the fluid will continue to rotate

for an indefinite time.

The foregoing reasoning, although

touching the essence of the matter, can hardly be regarded as

rigid proof.-^

Fig. 36.

§ 66. Boundary Circulation the Measure of Rotation.—The study

of rotation may be confined to two dimensions. Let a a (Fig. 36)

represent a circular cylindrical vessel of radius r within which

the fluid possesses a motion of pure uniform rotation.

Now, such rotation is shared uniformly over the whole area

;

therefore, if we suppose the area divided into a number of equal

small elements, and represent the rotation of each b}' a circulation

^ The mathematical demonstration of this important fact will be found in

" Hydrodjmamics " (H. Lamb, Cambridge), or reference may be made to the

original investigation (Lagrange, " Oeuvres," T. IV., p. 714).
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round its boundary (Fig. 37), then the circulation round each

element will be equal, and that along all the lines common to

two adjacent elements is equal and opposite, and therefore of

zero value, so that circulation along the boundary alone remains.

It is proved then that :

—

The sum of the circulations round the boundaries of the indi-

vidual elements is equal to the circulation round the boundary

of the region ; that is to say, the rotation of the fluid withifi the

region is measured by the circulation round its boundary. It is

evident that this result is not confined to uniform rotation. Let

us suppose that the fluid contain rotation unevenly distributed

amongst its parts, so that it may be in part irrotational, and

in parts the sense of rotation may be opposite to that in other

parts, but so that the velocity

(u v) is, throughout the region, a

continuous function of x y ; then

if we suppose it be divided as

before into a number of small

elements so that each element

shall be indefinitely small, then

the rotation within each element is uniform, and by the preceding

argument is measured by the circulation round its boundary

;

but since -?* v is a continuous function of x y, the flow along

the boundary of each element is in the limit equal and opposite

to that of the element adjacent to it, and the two cancel out,

leaving only the circulation round the boundary. Hence for

any region the sum of the rotation integrated over the surface is

equal to the sum of the circulation integrated along its boundary.

§ 67. Boundary Circulation Positive and Negative.—Eeferring

again to Fig. 36, let us suppose a boundary surface to exist at

e e e dividing the region into two parts, and let e e e coincide

with one of the lines of flow so that it will not interfere with the

motion of the fluid ; the boundary e e will thus be circular, and

concentric to the boundary a a.
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Then if r be the radius of the whole enclosure a a, and n r be

the radius of the region e e, and x the total rotation, the rota-

tion within the region e e as measured by the circulation along

its boundary will be n^ x > the remaining rotation in the region

between the boundaries will therefore be x — ''' X » that is to

say, the circulation along the external surface of the boundary e e

is equal and opposite in sign to that along its internal surface.

Now if we regard the rotation of the fluid mass as a matter of

rigid dynamics, the motion in the path e e is the same in sense

whether it takes place in the matter external or internal, and in

general rotation is an algebraic quantity, measured plus or

minus, according to whether it takes place counterclockwise or

clockwise (the latter being taken minus hj convention). It is

evident, however, that circulation along a boundary (also an

algebraic quantitj^) cannot be so measured, but is j;/«(s or minus

according as the fluid flows towards the right or the left hand of

an observer stationed on the boundary facing the fluid. Thus,

in the simj)le case illustrated, let us suppose the rotation to be

jDOsitive (counterclockwise), then to an observer stationed on the

"mainland" the circulation will pass from left to right, and is

reckoned positive. If the observer now take his stand on the

"reef" e e, and face the outer basin, the circulation will jjass

from right to left, and is therefore negative. If he now turn

about and face the inner basin, the circulation is from left to

right, and is positive. Another method of defining the sense of a

circulation is to suppose an observer swimming in the fluid to

keep the boundary always on his right hand, then the direction

in which he is swimming is positive and the opi^osite direction

negative. The positive direction is indicated by arrows in the

figure.

Rotation in a fluid as above defined is a conception apart from

any quantity known in rigid dynamics, and owes its importance

to certain propositions relating to fluid motion. It is a quantity

that in a perfect fluid can undergo no change. Conservation of

rotation is an absolute law in an inviscid fluid.
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§ 68. Rotation. Irregular Distribution. Irrotation,—Definition.

—The iDroiDOsitions connecting boundary circulation and rotation

include all cases of rotation, so that we know that however much
the rotation differs in different parts of the fluid, the algebraic

sum of the rotation taken over the whole of the region is equal

to the integration of the circulation along the boundary (reckoned

2ilus or minus, according to the law laid down).

Thus, the total rotation in a region containing Jiuicl is zero when

the sum of the circulation taken over a comjjlete circuit of the

boundary is zero; also, the motion of a fluid is " irrotatiojial"

when the sum of the circulation round a complete circuit of the

boundary of its each small element is zero.

§ 69. Rotation. Mechanical Illustration.—In order to clearly

dissociate the idea of rotation in a fluid from that of circular

motion by virtue of which it may possess angular momentum,
we may imagine a region of uniform rotation, such as that we

have been considering, to have its motion intercepted by a net-

work of rigid boundaries suddenly congealed throughout the

region. Then the boundary system will at the instant of its

formation receive an impulsive torque, and angular momentum
of the rotating mass will be given up, but the rotation within the

meshes of the network will persist, the new conditions being

those of the supposition in Fig. 37, the equal and opposite

circulations along the boundaries in common being materialised.

We can suppose a mechanical model constructed to represent

this action. Let us imagine a frame mounted upon a

shaft capable of revolution, and carrying a multitude of accu-

rately balanced wheels mounted on frictionless bearings, these

bearings being arranged parallel, and parallel to those of the

main shaft. Let us suppose that the whole apparatus be initially

rotating en bloc; then if we stop the motion of the frame each of

the wheels will continue to spin with the same angular velocity

as previously, and nothing that we can do with the frame will

aher their rate of spin in the slightest. The frame corresponds
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to the network boundary system and the wheels with the fluid

in the meshes.

§ 70. Irrotational Motion in its Relation to Velocity Potential.

—

We have above defined irrotational motion as follows :

—

The motion of a fluid is irrotational ivhen the sum of the circula-

tion round a complete circuit of the boundary of its each small

element is zero.

Assuming this definition, it can be shown that fluid in irrota-

tional motion has a velocity 'potential.

Let (Fig. 38) the cell ah c dhe any small element of the fluid

in which a h and c d are lines of flow and a c and h d are normals

thereto. Then since the motion in the line of

a c and h d \^ nil, the circulation round the circuit

is the sum of the circulations along a h and c d,

and since that motion is irrotational, this quantity

is zero.

Let Wi be the velocity of the fluid along a h

U2 ,, ,, ,, ,, ,, C (I

X be the distance ah -n 00Fig. 38.

.T2 ,, ,, c ci

(For the sake of simplicity the axis of x has been chosen in the

direction of the flow.)

Then let us take two columns of the fluid along the lines a h

and c d respectively, whose section is defined as Sy X Sz, then

if p = density, we have masses of the two columns Xi p Sy 8z

and X2 p Sy 8z respectively. But their velocities Ui and u^ are

connected by the relationship u^ Xi = ih x^, or — = — . The
ih Xi

momenta of the two columns are therefore in the relation

^2 ^1 p % Sz is to Xi x^ o 8y Sz, which are equal ; consequently, if

a certain force ajDplied to any column for a time t will bring it

to rest, the same force applied for the same time to the other

column will bring that to rest also. But the areas of the

columns are equal ; therefore to stop or to reproduce the motion
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of the fluid the pressure difference applied between the points

a and h requires to be the same as that between c and d, so that

the normals a c and h d to the field of flow are equipotentials

(<^ = constant).

This demonstration may be taken as applied to every small

element of the field, so that the proposition is proved.

Corollary : When a fluid has velocity -potential its motion is

irrotational.

§ 71. Physical Interpretation of Lagrange's^ Proposition.—The

foregoing proposition, taken in conjunction with that relating to

the conservation of rotation, constitutes a demonstration of

Lagrange's theorem that " If a velocity potential exist at any

one instant for any finite portion of a perfect fluid in motion under

the action offorces ivliich have a potential, then, provided the density

of the fluid he either constant or a fimction of the pressure only, a

velocity potential exists for the same portion of the fluid at all

instants before or after.'"

This statement, save to a mathematician, is not very clear, as

it is difficult to obtain a sufficiently close conception of velocity

potential to be able to attach any physical meaning to its

conservation.^ The inversion of the statement, however, obviates

all difficulty ; it then becomes : If the motion of any portion of

a 2^erfect fluid he irrotational at any instant of time, then, provided

the density of the fluid he either constant or a function of the pressure

only, the motion of the same portion of the fluid tvill he irrotational

at all instants before and after.

§ 72. A Case of Vortex Motion.—The case of cyclic motion

resulting from an interchange of the functions i/^ and in the

source or sink system is one of particular interest. If (Fig. 35)

we suppose the origin circumscribed by a line of flow, then we

^ The velocity potential may fall to zero in a portion of the fluid in the

course of its motion without that portion of the fluid losing the attribute of

velocity potential in the sense of Lagrange's theorem.
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have a cyclic system in which the origin represents the axis of a

cylindrical body of infinite length making the space round it a

doubly connected region. The velocity of the fluid is everywhere

inversely as the length of its path of flow, consequently if we

supj)ose the cylinder be made smaller the velocity at its surface

will be proiDortionately greater, so that in the limit if we suj^pose

the cylinder to become evanescent the velocity becomes infinite.

The circulation round any such evanescent filament is indetermi-

nate, for it is equal to oc x 0. The physical signification of this

is that we have a system of flow that may be regarded as

rotational or irrotational according as we regard the cylinder as

non-existent or merely evanescent. If we regard the cylinder as

non-existent and the motion as rotational, then the rotation is

measured by the circulation round any of the lines of flow (for

the ch'culation round each is the same) , so that the whole rotation

must be supposed concentrated at the geometric centre.

Such a motion is known as vortex motion, and the system

figured constitutes a vortex filament. It will be seen that if r

represent the radius of the path of flow and v the corresponding

velocity, v r = constant, and if the angular velocity w = v/r we

have o) 7-2 = constant,—that is to say, for any chcuit of flow the

area X angular velocity is constant, which is the relation for

vortex motion established generally by the theorem of Helmholtz

and Kelvin. The discussion of this tyj)e of motion will be

resumed later in the chapter.

§ 73. Irrotational Motion. Fundamental or Elementary Forms.

Compounding by Superposition.—All known forms of h'rotational

motion can be regarded as being co^ipounded from a limited

number of dift'erent tj-pes. These are :-^(a) Uniform motion of

translation
;

(h) rectilinear motion to or from a point, i.e., sources

and sinks
;

(c) cyclic motion (in multiply connected regions

only).

Let us examine first the simj)le case of a fluid mass possessed

only of a uniform motion of translation, and let us suppose that its
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motion is compounded of two component motions whose velocity

and direction are known. Then it is evident that the two com-

ponent motions can be compounded by drawing a j)arallelogram,

which may either be regarded as a " parallelogram of velocities
"

if we take its elements to rej^resent velocity, or a " parallelogram

of forces "if we take its elements to represent the impulses by

which the motion is produced. Thus, if we compound a north

wind with an east wind having the same velocity, the result is a

north-east wind having a velocity V 2 times as great ; and the

forces that would produce the two air currents separately would

produce the combined current if acting simultaneously.

If we denote the strength of each superposed stream by a series

Fig. 39.

of parallel lines, so that the flux or quantity of fluid passed per

unit time is the same at every point between each adjacent line

and its neighbour—that is to say, if we draw the lines of flow,

i}/ = constant, for each component stream, then the distance

separating any two adjacent lines will be inversely as the velocity,^

and the network formed by the superposed systems will give the

parallelogram of velocities at every point. This method of com-

pounding the two systems of flow is illustrated in Fig. 39, in

which a a a and h b b rejDresent the component streams, and

c c c, drawn diagonally, gives the resultant flow. It is evident

that the lines c c c will quantitatively represent equal values of

ij/, for the resultant flux across any line d d drawn through

^ Eeferring to the diagram to the right of Fig. 39, we have from

geometrical considerations the normals g and j respectively proportional to

the sides of the parallelogram h and k.
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intersections athwart the stream will be the sum of the

components.

§ 74. The Method of Superposed Systems of Flow.—The concep-

tion on which the foregoing method has been based can only be

applied so long as the fluid moves en masse, but it can be shown

that the method is apiplicable to all cases of irrotational motion.

If we confine our attention to the field of force developed at the

instant of application of the component impulses, then it is clear

that the resultant field can be obtained by the use of the

parallelogram of forces as shown in the figure ; there is, however,

another, and perhaps more convincing, method of proof ; this is

the method of superposition.

Let us suppose that instead of two motions being superposed

on one fluid current two fluid currents be superposed on one

another. This is at first difficult, owing to the instinctive but

wholly imaginary difficulty of regarding it as possible for two

bodies to occupy the same space at the same time. To simplify

ideas, let us suppose the motion to be two-dimensional, so that it

may be fully represented on a plane surface ; then if we represent

one motion on one plane and another motion on a plane adjacent

to it the two systems will be superposed ; and further, if we take

as many systems as we wish and represent them on as many

adjacent planes they become superposed. And since a plane

possesses no thickness, such superposed systems, however

numerous, occupy no finite quantity of the third dimension, and

in fact constitute but one plane.

Now, reverting to the argument, let us suppose that any two

systems of fluid motion be superposed one on the other. Then

so long as we can identify the particles belonging to each separate

system (as supposing the streams to consist of different kinds' of

matter), the two systems must be regarded as separate ; but if we

imagine that we cannot distinguish the matter in the one stream

from that in the other, then a flux across any imaginary barrier

in one direction will neutralise an equal flux across the same
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barrier in the opposite direction, and it will only be possible to

recognise the resultant flow ; thus, as before, if Fig. 39 represent

the two superposed streams by the lines a a a and h h h, the flux

across the imaginary barrier line e f, due to the stream a, will be

equal and opposite to the flux across the same line due to the

stream h, consequently there is no resultant flux across the line

Fig. 40.

e /, which is therefore one of the lines of flow of the resultant

system. Likewise in the case of the other parallelograms, so that

the field c c c is the resultant system.

We therefore see that the superposition of two independent

streams has the same resultant as the superposition of two

motions on one stream.

The foregoing constitutes the basis of a comprehensive method
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of plotting the field of flow for any finite combination of known

systems. It is the geometrical equivalent of the analytical

machinery emj)loyed in the mathematical solution of a vast

number of cases, and as such it is due to Clerk Maxwell. Many
comj)ound systems of flow involve an infinite number of elemen-

tary components, such as some prescribed distribution of sources

and sinks over certain lines and surfaces ; the graphic method in

such cases is not generally applicable, and the field requires to

be plotted from the mathematical solution.

§ 75. li', <^ Lines for Source and Sink System.—Let us take the case

of a source and sink A and B (Fig. 40), of equal flux, in two

Fig. 41.

dimensions ; then the lines i/^ constant for the individual fields

will consist of equal-spaced radial lines extending indefinitely on

all sides, as shown. If now we draw the resultant field we find

that the fluid emitted by the source is absorbed by the sink, and

from geometrical considerations it is obvious that the paths of

flow consist everywhere of arcs of circles passing through the

points A and B. Since the functions ij/ and <^ are interchange-

able, we can in a similar manner find the resultant system of

velocity potential, and we obtain the system of circles shown
;

if we take the latter as the lines of flow, and the arcs joining .4

and B as the equipotentials, we have the case of a vortex pair, that

is to say, two vortex filaments with equal and opposite rotation.
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§ 76. Source and Sink, Superposed Translation.—We might (with

certain reservations) regard such a combination of source and

sink as a tube (Fig. 41) through which fluid is being pumped, the

fluid entering the tube at B and emerging again at A. If we

suppose such a tube to move longitudinaUy through the fluid in

the same direction as that in which the fluid flows in its interior,

or, that which is in reahty the same, if we suppose the tube

fixed whilst the fluid as a whole has a velocity of translation in

the opposite direction, the system of flow undergoes considerable

modification.

Fig. 42 gives the solution of such a case for a tivo-dimensiotial

field. The source and sink system of Fig. 40 being superposed

on a motion of translation, it is found that two distinct systems

of flow result, internal and external respectively to a surface

of oval form ; the internal system consists of a source and sink

in a region bounded externally, and the external system gives

the stream lines proper to an oval cylinder in motion through

the fluid ; it is evident that ive may suppose such a body substi-

tuted for the internal system. The form of this oval represents

the shape of a body that will give rise to the same external

system of flow as the simple source and sink, and according

as the flux of the motion of translation is greater or less in

relation to that of the source and sink, the oval will be more or

less elongated, the limiting conditions approximating to a line

joining the foci on the one hand and to a circle on the other.

The form of this oval is not an ellipse, being fuller towards the

extremities, especially in cases where the ratio of major to minor

axis is considerable.

§ 77. Rankine's Water Lines.—These curves and the whole

external series have been closely studied by Kankine, the method

of plotting here given being that employed by him. Eankine

has pointed out the general resemblance of these curves to ships,

water lines, and has given them the name " Oogenous Neoids."

In a paper read before the Eoyal Society (November, 1863)
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Eanldne says, referring to the practical employment of these

curves :

—

" The ovals are figures suitable for vessels of low speed, it

being only necessary, in order to make them good water lines,

that the vertical disturbance should be small compared with the

vessel's draught of water. At higher speeds the sharper water

lines more distant from the oval become necessary. The water

lines generated by a circle, or ' cyclogenous neoids,' are the

' leanest ' for a given proportion of length to breadth ; and as the

eccentricity increases the lines become ' fuller.' The lines

generated from a very much elongated oval approximate to a

straight middle body with more or less sharp ends. In short,

there is no form of water line that has been found to answer

in practice that cannot be imitated by means of oogenous

neoids."

And further :

—

" Inasmuch as all the water-line curves of a series, except the

primitive oval, are infinitely long, and have asymptotes, there

must necessarily be an abrupt change of motion at either end of

the limited portion of a curve which is used as a water line in

practice, and the question of the effect of such abrupt change

or discontinuity of motion is one which at present can be decided

by observation and experiment only. Now it appears from

observation and experiment that the effect of the discontinuity of

motion at the bow and stern of a vessel, which has an entrance

and run of ordinary sharpness and not convex, extends to a very

thin layer of water only ; and that beyond a short distance from

the vessel's side the discontinuity ceases, through some slight

modification of the water lines, of which the mathematical theory

is not yet adequate to give an exact account."

§ 78. Solids equivalent to Source and Sink Distril)ution.—In the

light of present knowledge it would appear that the particular case

of flow under discussion is merely one of an infinite number of

possible systems in which sources and sinks of different strengths
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are distributed along an axis (or axis plane for two-dimensional

motion in a three-dimensional space), and it is an established

proposition^ that any solid whatever, in motion in a fluid, may
be imitated by an appropriate distribution of sources and sinks

situated on its surface, and it follows that within certain limita-

tions as to abruptness of contour, an equivalent exists for every

stream line solid of revolution in point sources and sinks

distributed along an axis, and for every cylinder of stream line

section in line sources and sinks located on an axial plane.

The distribution of sources and sinks that will produce any

particular form is only known in a few special cases, such as

those of the elliptical cylinder and ellipsoid, in which the number

Fig. 43.

is infinite. Any finite distribution can be investigated by the

graphic method by repeated compounding of system on system
;

a comprehensive way of investigating cases of infinite distribu-

tion is at present lacking. It ma}^ be noted that in all cases the

investigation commences with the source and sink system, the

form of the corresponding solid being obtained as a resultant

;

the reverse process can only be eflected by recognising the solid

as belonging to some particular system, and consequently only

certain solutions are possible.

It is evident that if we take any pair of Rankine's " oogenous

neoids " and trim fore and aft to form water lines (Fig. 43), we

can regard the process as equivalent to a number of sources in

the region a a a, and sinks in the region h h h, in order to

generate and absorb the stream flux that otherwise runs to

^ Lamb, "Hydrodynamics," jDp. 56, 57 (3rd ed.).
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infinity in either direction. It would be more proper to dis-

cover by trial some combination of sources and sinks that would

give an easy termination to the form than to effect this by an

arbitrary mutilation, for the true stream lines round the modified

form could then be plotted. Beyond this there is no advantage

in the one course over the other ; the criterion in either case is

the eye of the designer. In the hydrodynamic theory of an

inviscid fluid, every conceivable body is of stream-line form, and

the conditions that obtain in practice do not exist ; it is therefore

Fig. 44.

useless to attempt to rationalise the ichthyoid or stream-line form

by existing analytical theory.^

The foregoing examjDle illustrates the graphic method as

applied to effecting the combination of motion in two dimensions
;

certain cases of motion in three dimensions may be solved by

* In the paper from whicli quotations are given it would appear that Prof.

Eankine believed there to be some particular virtue in the forms derived

from the special case of the simple source and sink system, that the stream

lines of such a system constitute in fact natural water lines. In actuality

ichthyoid or stream-line form is governed by conditions not yet amenable to

rigid treatment, and the design of a stream-line form to work in a real fluid

with a minimum of resistance is largely a matter of art. The underlying

principles have been discussed in the previous chapters.
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proceeding in the manner laid down by Eankine for a solid of

revolution.^

§ 79. Typical Cases constituting Solutions to the Equations of

Motion.—Some typical cases of stream-line flow constituting the

Pig. 45.

solution to the equations of motion, for the forms of body speci-

fied, are given in Figs. 44 (cylinder), 45 (sphere), and 46

Fig. 46.

(ellij)tical cylinder). It is scarcely necessary to remark that

these forms of flow do not hold good for actual fluids.

In Fig. 47 are plotted the lines of flow for a lamina of infinite

"Principles Eelating to Stream Lines," The Enfjineer, October 16, 1868.

103



§ 79 AEEODYNAMICS.

extent relatively to the "enclosure," i.e., the fluid at infinity, and

relatively to the body itself. In the present work the former are

referred to as the Imes of flow and the latter as the stream lines,

the latter term being employed in all cases where the primary

flow is superposed on a motion of translation. This is merely

EiG. 47.

a matter of convenience in terminology, in which the present

work differs from some of the standard text-books in which the

term stream line is used more generally.

Of particular interest to the present subject (as will be

hereafter demonstrated) is the case of cyclic motion superposed

on a motion of translation. Fig. 48 gives the plotting in this
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case, the cyclic motion being supposed to take place about a

filament of negligible diameter ; the resultant motion is again

found to consist of two distinct systems of flow, one internal and

the other external to the surface a a a a ; the field is plotted in

full for equal increments of both i/^ and ^.

It may be pointed out here that any systems that individually

possess velocity potential must of necessity possess velocity

potential in their resultant, for otherwise two irrotational systems

would, in combination, possess rotation, which is manifestly

impossible.

§ 80. Consequences of Inverting i//, ^ Functions in Special Case.

Force at Eight Angles to Motion,—In Fig. 48 the curves of \p and

if interchanged would obviously give the case of a source or sink,

the flow being vertical instead of horizontal. In this inverted

reading of the diagram we again find two systems of flow ; the

surface of separation e e e e passes away to infinity, and has

parallel asymptotes. It is frequently convenient when reading

any flow diagram to temporarily suppose the functions inverted

in this way.

A remarkable and important fact in connection with a cyclic

system with superposed translation is the existence of a reaction

or force at right angles to the direction of motion, such force in the

case represented in Fig. 48 being an iqjicard force acting on the

filament, that is to say, a downward force must be applied to the

filament in order that the motion as a steady state should be

stable. Where the fluid is bounded externally the force must

be supposed to act between the external boundary and the

filament or such other body as constitutes the inner boundary.

The necessity for this applied force may be demonstrated

in several ways, but it is in the first place necessary to consider

the distribution of kinetic energy and pressure in the region

occupied by the field of flow.

§ 81. Kinetic Energy.—The expression for the kinetic energy of

any dynamic system is ^mv^, where )n is the mass and v —
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velocity. Applying this to the case of stream motion, let h

be the distance between stream lines demarcating some definite

increment of i//, then we know that v a j, or v^ a y^, that is to

say, the energy per unit mass, is, in two-dimensional motion,

inversely as the area of the square elements cut off by the ij/,
(f>

lines. But the mass of fluid contained in these elements is

directly as their area, or varies as h^, consequently the kinetic

energy in each element is proportional to b^ X p, which is

constant ; therefore

:

The kinetic energy contained in each element cut off by lines of

equal increment of ij/ and ^ is constant.

In a, i}/,
(f>
diagram, such as Fig. 48, the total kinetic energy is

thus measured by the total number of squares, and the kinetic

energy in any circumscribed region is equal to the number of

squares in that region. In order to give an absolute value to the

energy on this basis it is necessary that the quantity of energy in

some particular square element should be known.

The kinetic energy in the field of flow round a body in motion

is imparted to the fluid when the body is started from rest, and

is given up when the motion is arrested. The effect of the fluid

motion is thus to add to the apparent inertia of the body, so that

a given force requires to act through a greater distance to impart

a given velocity than for the same body in vacuo. Not only has

a force to act for a greater distance, but also for a longer time,

which means that the body possesses in effect a greater store of

momentum for a given velocity. In reality, however, such increase

of momentum is only apparent ; the momentum of the body and

fluid system combined is actually less than that of the body at

the same velocity i)i vacuo by the amount due to its fluid dis-

placement. That is to say, if the body be of the same specific

gravity as the fluid the total dynamic system possesses no momentum

at all, whatever the velocity. This apparent paradox is accounted

for by the fact that during the period of application of force
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to the body an equal and opposite force has to be applied to the

external boundary of the fluid ; thus, if a stream-line body of

the same specific gravity as the fluid be started from rest from

a boundary surface, during the application of the accelerative

force there will be a region of diminished pressure in the

neighbourhood, whose sum is in effect of equal value and

opposite sign to the applied force. (Compare Chap. I., § 5.)

§ 82. Pressure Distribution. Fluid Tension as Hypothesis.—The

distribution of pressure in the field of flow of a fluid in a state of

steady motion can be ascertained immediately from the distribu-

tion of kinetic energy if we assume the principle of work.

The change in the velocity of any element of the fluid in

passing from one to another part of the field is due to the

difference of pressure on its boundary surfaces, and consequently,

on the principle of Torricelli (which follows from the assumption

of conservation of mechanical energy), the difference of pressure

between any two points is that of the difference of "head"

corresponding to the values of the velocity at the two points.

Thus if the pressure where the motion is nil be taken as zero, the

pressure at every point in the field will be proportional to

- iv'').

Now a minus pressure constitutes a tension, a kind of stress

that actual fluids can only support within very narrow limits ; we

may, however, by subjecting the whole field to a superposed

hydrostatic pressure p of sufficient magnitude, do away with

minus pressure throughout the region, the condition being that

for every point p — nv^ is positive, where n is a constant. The

pressure under these circumstances becomes, where the motion is

nil, equal to the applied hydrostatic pressure p.

The objection to the existence of a tension of any desired

magnitude in the fluid is entirely based on the behaviour and

properties of real fluids, with which we are not for the time being

concerned ; it is a mere matter of hypothesis and definition to

provide that the ideal fluid shall support without cavitation any
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tension whatever, and it leads to some simplification from a

physical point of \'iew to make this assmnption and deal with

the tension system that results. The consequences are the same

whether the superposed pressure be taken account of in the

ideal fluid, or whether it be regarded merely as a mechanical

detail necessary to carrying the theory into the realms of

reality.

We already know that the kinetic energy varies everywhere as

v^, and we now have it that the tension also varies everywhere as

r^ (pressm-e and tension being the same quantity but of reversed

sign), consequently the tension on the fluid is everywhere pro-

portional to the kinetic energy, that is the total tension on each

element of the ^, 4> plotting is constant.

In the interpretation of this and the corresponding result as to

energy the two-dimensional diagram must be regarded as con-

sisting of a slice of unit thickness, the energy increment being

that contained in the element consisting of the volume cut ofl' by

adjacent sm-faces, the corresponding tension being measm'ed over

the surface of the element.

§ 83. Application of the Theorem of Energy.—A simple example

of the application of the energy theorem is found in the case of a

circular cylinder of infinite length in steady motion in an infinite

region containing fluid.

Let Fig. 49 represent the cylinder in cross-section with the

external field plotted for it and 9 with respect to space. Let the

cylinder be supposed to consist of a thin shell filled with fluid

having the necessary motion of translation only ; then let the

i!/, (j> lines be plotted for the fluid within the cylinder as shown.

Now if we count the complete squares within a quadrant, internal

and external to the cylinder, the number is equal ; further, for every

jjart of a square internal to the sin-face there is a corresjwnding

jmrt external to the surface, and these fractional squares may be

made as unimportant as we please by choosing increments of

ij/ and (f> small enough, consequently the energy external to the
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cylinder is equal to the energy internal to the cylinder ; that

is to say :

—

The energy in two-dimensional motion about a circular cylinder

having a motion of translation through a fluid is equal to the

energy of motion in the cylinder itself, for equal densities, or the

Fig. 49.

energy internal and external are as the respective densities of

the cylinder and the surrounding fluid.

In a similar manner it can be shown that the energy accom-

panying an elliptical cylinder in its motion through a fluid is,

densities being equal, the same as for a circular cylinder of

diameter equal to the major or minor axis, whichever is placed

transversely to the line of motion.
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§ 84. Energy of Superposed Systems. — The superposition of

systems of flow containing energy may in certain cases result

in the addition of their separate energies of motion, but it is

evident that this is the exception rather than the rule. The

energy of two combined systems is given by the number of

^, (f>
elements in the combined field.

In the special case, for example, of the superposition of two

motions of translation at right angles, as along the axes respec-

tively of X and t/, it is found that the energy of the combined

field is the sum of the separate energies, a fact which is other-

wise obvious (Eucl. 47, L). In general, it can be shown that, if

on a general motion of translation he superposed ami system of

Jloiv ivJiose mean velocity in the direction of the translation is zero,

the energy of the resultant is tlie sum of the energies of the

component fields.

Let us suppose the translation to take place along the

axis of X, and let the velocity of translation be U ; let the

X component of the velocity of the superposed system be u

a variable in respect of r, y and z. Then the mass of each

small element of the fluid is p 8x 8y 8z, and the energy

of the combined field is ^ "^ p Sx Sy 8z {U -\- u)^, but

2 p 8x 8y 8z u is zero ; we therefore have energy = J m U^

-\- '% P 8x 6y 8z u^, where m is the total mass ; which proves

the proposition in respect of motion along the axis of x. But the

energy of any components of the superposed motion in the direc-

tion of the axes of ;/ and z, which may be regarded as translations

at right angles to the main motion, we have already seen also

comply. Therefore the total energy is the sum of the components.

§ 85. Example: Cyclic Superposition.—An example may be given

in two-dimensional motion in the case of the cyclic superposition

(Fig. 48). We know that the energy contained in a case of cyclic

motion around a cylinder or cj'lindrical filament in space is

infinite, for the linear size of the ij/,
(f>

squares forms a geometrical

progression, and any finite number of such squares, however
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great, may be circumscribed by a circle of finite diameter ; that

is to say, no finite quantity of energy, however great, will cover

the whole field. When the diameter of the filament becomes

zero the energy internal to any line of flow also becomes infinite,

but so long as we regard the motion as cyclic, we are not entitled

to regard the filament as of zero diameter; it is legitimate to

suppose the filament of very small diameter, so small as not, hy

its size, to affect the superposed motion of translation.

Now since a pure cyclic motion round a fixed filament does

not result in any displacement of the fluid in translation, its mean

velocity in each of the co-ordinate directions of space is zero.

Consequently, if such a motion be superposed on one of pure

translation, the energy of the combined system is the sum of the

separate energies and is infinite. Moreover, this result is inde-

pendent of the energy of the motion of translation (which is never

available except to an external system), for if we take the fluid

at rest, at infinity (in the x and y directions), and the filament

to undergo the translation, the problem is unaffected, and we

have proved that to generate a cyclic motion about a filament in

motion (Fig. 48) requires the same quantity of energy as to

generate the same cyclic motion about a filament at rest, and in

both cases where the expanse of fluid is infinite the total energy

required is infinite also.

§ 86. Two Opposite Cyclic Motions on Translation.—In the case

of the superposition of a system consisting of two cyclic motions

of equal value and opposite sign, such as that obtained by the

interchange of the functions ij/ and cj> in the source and sink

system (Fig. 40), the energy is finite, for the system consists of

a limited number of squares, and consequently the energy

required to generate such a system about two filaments moving

uniformly in space is also finite ; the resultant stream lines of

such a superposition are given in Fig. 50. Such a system

possesses a plane of symmetry A A, and the motion of the

fluid on either side of this plane will be in nowise affected
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by supposing a rigid boundary substituted for the fluid on the

opposite side ; Fig. 50 may therefore be read as representing the

case of a cyclic motion round a filament in the neighbourhood of a

plane boundary, superposed on a translation parallel to the boundary

surface, and the energy required to produce such motion is finite.

§ 87. Numerical Illustration.—As a numerical illustration and

a check on the foregoing, the author has estimated the energy in

Fig. 50.

the plotting given in Fig. 48, in the region included in the

external system within the circular limit indicated, being one

of the lines of flow of the cyclic component. The number of

squares in the component motions were calculated from the

diameter of the circular limit, and the number in the combined

system counted, fractions being estimated by a planimeter. The

results are as follows :

—

Cyclic component ..... 336

Translation ...... 384

Total (sum of above) .... 720

Total by measurement . . . 719*2

Difference (evidently due to unavoidable

error in measurement) ... "8
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§ 88. Fluid Pressure on a Body in Motion.—The pressure

system about a body in motion in a fluid may be regarded as

composed of two distinct component systems, i.e., the accelera-

tive system, being that developed the instant a force is apphed

to a body at rest, which is essentially identical with the field of

velocity potential, and the steady motion system, in which we

have seen the fluid exj^eriences a tension everywhere proportional

to the energy density (compare " Dynamical Equations," § 59).

The first of these is in evidence at the instant when the velocity

is nil, as when a motion is started from rest or at the instant

it is brought to rest ; the second system belongs to the steady

state when the disturbance is not subject to acceleration. For

intermediate states when motion and acceleration are both

present the two pressure systems are found compounded. A
good illustration is to be found in the case of a body vibrating

in a fluid under the influence of a spring, such as a vibrating rod.

At the moment such a body is at the end of its motion, when the

accelerative force is greatest, the pressure system is that due to

the field of velocity potential ; when it is in mid-stroke, that is

when its velocity is greatest, the pressure system is that of steady

state and follows the law already given.

The accelerative pressure system may (as has been already

stated) be provided for, so far as the eftect on the motion of the

body is concerned, by the supposition of an appropriate addition

to the mass, and the extent of this addition has already been

given in certain typical symmetrical cases on the basis of the

energy of the disturbance. When the impulse, as in the case

of an oblique plane, is not in the direction of motion, it is not

possible to account for the whole effect on the added mass basis,

and in fact it is difficult to obtain a clear conception of the

physical aspect of the problem in such unsymmetrical cases, and

in general the solution is wanting. It would appear in the case

of a plane possessing in itself no mass, that the motion on the

application of a normal impulse borders on the indeterminate, for

a tangential component, however small, would result in an
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indefinite velocity in an edgewise direction being superposed. It

will be seen that in such a case as this the corresponding state of

steady motion is unstable, unless a torque be supposed applied

from without.

It is established that in the perfect tiuid any body in steady

motion, no matter what its form, experiences no resistance

whatever in the direction of its flight, that is to say, the sum

of the longitudinal components of pressure on its posterior sur-

face is equal to the sum of those on the anterior surface. It is

only in certain symmetrical cases, however, that the conditions of

motion are stable without a force or forces applied to the

body.

§ 89. Cases fall into Three Categories.—Taking the body and

fluid as a combined system, cases fall naturally into three distinct

categories : Firstly, those in which the fluid motion is in efect

symmetrical, in which case the motion is in equilibrium without

any applied force (this includes cases of unstable as well as cases

of stable equilibrium) . Secondly, cases in which the body is unsym-

metrical and in which the motion involves the application of a

couple or torque. Thirdly, cases in which cyclic motion is present

and in which the motion involves a transverse force. Cases may
occur which fall into both categories 2 and 3.

The first category has been sufficiently dealt with already in

the present chapter and in Chap. I ; the second is typified by

the case of the inclined plane, and in a generalised form has been

investigated by Kirchhoff, who has pointed out that there are three

mutually perpendicular directions for any solid, in which, if it be

set in motion and left to itself, the motion will continue indefi-

nitely ; in general it has been shown that one only of these

directions is stable, the other two represent cases of unstable

equilibrium. Generally speaking, a body having an aspect of

greatest area such as an oblate spheroid, or a plane disc, tends

to move " broadside on," and if its motion at any time is

disturbed it will oscillate about such natural " aspect of
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equilibrium," unless a restraining couple of sufficient magnitude

be applied.^

The third category possesses a particular interest in relation to

aerial flight. The transverse force is characteristic of cyclic

motion and is found as a consequence of the superposition of a

cyclic motion on a translation, as in Fig. 48. It is due to the

greater tension on the upper than the under surface of any

circuit, such as that of the solid of substitution, a a a ,- this

difference of tension is indicated by the numerical superiority of

the ij/ (ji squares in the region adjacent to the upper surface.

The connection between cyclic motion and a transverse force

can be independently established by taking the transverse force

as hypothesis and proving cyclic motion as a consequence.

§ 90. Transverse Force Dependent on Cyclic Motion—Proof.—Let

A B (Fig. 51) be successive positions of the body or filament at

the beginning and end of a short interval of time, to which the

transverse force is applied. Let it be granted that the filament

exert a force F on the fluid at right angles to its direction of

translation, and let us suppose that this force be sustained by a

distributed system of forces, f f fi fi, etc., acting from the

boundary of the region, and let the line S S represent the

mean position of the force F during the period under con-

sideration.

Now the force F forms with the forces // andyi/i two couples

(which from considerations of symmetry may be taken as equal)

of opposite sign, that to the right being counterclockwise and

that to the left clockwise. Assuming a steady state, the first

of these is continuously engaging with and acting on undisturbed

fluid on the right of the line S S, and must therefore be com-

municating to it counterclockwise angular momentum, and the

following couple must be communicating clockwise angular

^ Eor a lull exposition of the theory of this branch of the subject, reference

should be made to Lamb's "Hydrodynamics," Chap. VI., and numerous

references therein cited ; also "Nat. Phil.," Thomson and Tait, 313, 320.
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momentum to the fluid passing into the region to the left of *S^ S.

But this fluid is the same as that to which counterclockwise

momentum had previously been imparted. And the two couples

are of equal magnitude, and act on any portion of the fluid for

equal time. Consequently the clockwise couple will exactly take

away the angular momentum communicated by the counter-

clockwise couple, and the final state of fluid will be the same as

4 it A f\ f\ \V\i\^\i\i

Fig. 51.

its initial state. Also it will possess counterclockwise momentum
whilst in the neighbourhood of the applied force. But this

implies either a cyclic motion or a rotation, and we know
the latter to be impossible ; therefore a transverse force acting

betiveen the ^filament ami the Jiuid imj^Ues a cyclic motion around

the filament. It is evident that the foregoing theorem involves

as a corollary the converse, i.e., that a cyclic motion in trans-

lation will give a transverse reaction. We have yet to investigate

in what manner, if it is possible, the cyclic motion can be

generated.
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§ 91. Difficulty in the Case of the Perfect Fluid.—In any actual

fluid there can be no difficulty. If, for example, we suppose a plane

of infinite lateral breadth gliding edgewise through the fluid to

have a force applied at right angles to the direction of motion,

this force is borne immediately by the fluid, and the conditions

necessary to the development of the cyclic system are fulfilled.

In a perfect fluid, however, a plane can move without resistance

in any aspect, and thus it is not possible to generate a difference

of pressure between its two sides except for the period whilst the

normal component of its velocity is undergoing acceleration.

Being limited in this manner, the quantity of energy disposable

for the production of cyclic motion would appear to be strictly

limited, and consequently we may form the following con-

clusions :

—

(1) In an infinite fluid where a cyclic motion, however weak,

possesses infinite energy, it will be impossible to generate

cj^clic motion.

(2) In a finite region it would appear possible that cyclic

motion may be induced by a body whose normal motion is

accompanied by kinetic energy and which therefore exerts a

pressure on the fluid while it is acquiring lateral motion under

the influence of the applied force ; a portion of the applied force

being eventually borne by the cyclic motion developed.

(3) Assuming (2), the more limited the region the less the

body will yield to the applied force in the production of the

cyclic motion necessary to give rise to an equal and opposite

reaction.^

§ 92. Superposed Rotation.—If rotational motion be superposed

on a motion of translation, equilibrium cannot be maintained by

forces applied to the boundary either internal or external.

^ Conclusions (2) and (3) may be taken as provisional, pending proof or

disproof on analytical lines. The inviscid fluid of Eulerian theory- is a very

peculiar substance on which, to employ non-mathematical reasoning. It

is quite likely that in the inviscid fluid the dynamic conditions are satisfied

without the production of cyclic motion under any circumstances.
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Let us take the case of a cylindrical body of fluid rotating en

masse about its axis. Then we may regard such motion as

approximately composed of a number of cyclic motions super-

posed, and with their internal boundaries removed. Let us

assume the cylindrical space to be subdivided by a number of

concentric cylindrical surfaces, such as the lines of flow of a

cyclic system, and, beginning at the centre, let us suppose a

cyclic system to be started about a filament so that the velocity

at the surface of the filament is that of the rotation. Then,

taking the next concentric surface and treating it as a boundary,

let us suppose a further cyclic system to be superposed on the first

so that the velocity at the surface in question becomes that of the

rotation, and again with the next concentric surface, and so on
;

then by taking the concentric surfaces sufficiently close to one

another the motion of the fluid in rotation can be approximated

to any desired degree. So long as the boundaries be supposed to

exist the system is a superposed series of cyclic motion ; if the

boundaries be supposed withdrawn the motion is one of uniform

rotation.

Now let us suppose such a system superposed on a motion

of translation. Each cyclic system will give rise to a

transverse resultant force on its boundary so that we shall

have forces acting throughout the fluid occupied by the rota-

tion. It is here assumed that the fluid is constrained to

follow the paths of motion as geometrically laid down as

the result of superposition, and it is shown that such con-

straint involves forces acting from without distributed over

the whole region occupied by the rotation, a thing which

under the conditions of the hypothesis is impossible of

achievement.

The impossibility of compounding rotational motion with

translation otherwise follows directly from Lagrange's theorem,

for the resultant would involve the transfer of rotation from

one part of a fluid to another, and would thus involve the

violation of a principle that is fundamental.
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§ 93. Vortex Motion.—It is unnecessary in the present work to

do more than give a general description of vortex motion and

vortices, and discuss their properties so far as bearing on the

present subject.

Eeference has ah'eady been made to vortex motion in § 72,

where the character of the motion in a vortex filament is dealt

with, and it is shown that such a filament possesses rotation, and

the relation area X angular velocity = constant is established.

The most common form of vortex motion is found in the vortex

ring, familiar from the easy manner in which such rings can be

produced in smoke-laden air (the smoke being necessary to render

the rings visible), either by ejecting tobacco smoke from the

mouth or by employing a simple apparatus consisting of a box

having a circular aperture on one side and a loose diaphragm on

the other. Vortex rings of great size may frequently be seen

when a salute is being fired from guns of large calibre.

The motion in a vortex ring resembles that of an umbrella

ring being rolled on its stick, only the rotation is in the reverse

direction—that is, as if the ring were being rolled inside a

cylinder ; the fluid is, so to speak, being eternally turned inside

out, with a motion of translation superposed. The superposed

translation is necessary to its equilibrium.

In real fluids the rotation is not concentrated at the axis as in

the case discussed in § 72, but is distributed about the axial

region or core. As a matter of convention in the perfect fluid,

it is usual to suppose the core to be in a state of uniform

rotation—that is, to have constant angular velocity, and the

motion of the part external to the core to be cyclic and

irrotational, there being no discontinuity at the surface of the

core, the velocity {u v u') being a continuous function of the

position {x y z).

By this convention the core behaves as a solid body, since in an

inviscid fluid under no circumstances can its rotation be destroyed

or transferred.

We might equally suppose the core to consist of a void space, a
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region of cavitation in fact, whose pressure is zero. Spiral vortices

of this type occur when a screw propeller gives rise to cavitation,

the void being filled with water vapour. In other cases the core

is constituted by a region filled with some other fluid. We again

find an example in the motion produced by a screw propeller

when the tips of the propeller emerge from the surface and carry

down with them into the water a quantity of air—such vortices

may frequently be seen astern of a vessel when steaming under a

light load.

A vortex cylinder or filament may be regarded as a portion

of a vortex ring of infinite diameter ; it can only exist

Fig. 52.

either if infinitely long or if its ends terminate on boundary

surfaces.

A single straight filament in infinite space is theoretically

stable without motion of translation ; two such filaments in the

neighbourhood of one another mutually interact, and are only

stable with superposed motion.

The superposed motion proper to two filaments depends upon

their relative position
;
parallel filaments of like rotation rotate

round one another at a velocity proper, each to each, to the cyclic

motion of its neighbour, as in Fig. 52 (A)
;
parallel filaments

with counter-rotation are in equilibrium when possessed of

motion of translation (Fig. 52 (B)) ; when two such vortices are

equal to one another the combination is termed a vortex pair, and
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the direction of the translation is at right angles to the plane

containing their centres.

A vortex filament in the neighbourhood of a plane boundary-

surface behaves as if it can see its own reflection, that is, as if

such reflection were another vortex filament.

A vortex ring may be looked upon as the analogue of a vortex

pair in three dimensions, i.e., the mutual interaction of its parts

results in a motion of translation, the translation taking place at

right angles to the plane of the ring.

Two concentric co-axial vortex rings tend to behave as two

similarly rotating filaments, i.e., revolve round one another ; the

consequence of such a motion under the changed conditions is that

the two rings alternately overtake and j)ass through one another,

the process being repeated and going on indefinitely. Kings

behaving in this way are sometimes said to play " leap-frog.'"

Groups of filaments or rings behave in a similar manner to

pairs : thus a group of rings may play " leap-frog " collectively so

long as the total number of rings does not exceed a certain

maximum ; congregations of vortex filaments likewise by their

mutual interaction move as part of a concerted system, like

waltzers in a ball-room ; when the number exceeds a certain

maximum the whole system consists of a number of lesser groups.

In general, beyond the special features above described, the

motion and behaviour of vortices and vortex rings presents much
in common with that of solid bodies ; thus two vortex rings on

impact bounce off from one another like two perfectly elastic

solids, and we have the Vortex Atom theory first propounded by

Lord Kelvin (Sir William Thomson), and subsequently extended

by Professor .J. J. Thomson (ref. " Motion of Vortex Kings,"

Macmillan, 1883).^

^ The present description of vortices and vortex motion is a bare statement

of the most elementary facts of the subject. Most of that which is known
will be found in the writings of Helmholtz, Kelvin, and J. J. Thomson, and
a mathematical resume, with copious references, in Lamb's '

' Hydrodynamics,"
Chap. VII.
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§ 94. Discontimious Flow.—Up to this point the assumption has

been made that the continuity of the fluid cannot be broken. As

a working hypothesis, the fluid has been defined as capable of

sustaining stress in tension ; it has at the same time been

pointed out that the equivalent result may be obtained by sup-

posing the fluid to be subjected from without to a hydrostatic

pressure superior to the greatest negative pressure (tension) due

to its motion at any point throughout the region.

"\Ye will now suppose that the fluid is not capable of sustaining

tension, and that the external hydrostatic pressure is either

wanting or is insufiicient to prevent cavitation.

The importance of studying these conditions does not rest so

much upon the possibility of actual cavitation, as u^Don the

general resemblance of the resulting systems of flow to those

encountered where real fluids are concerned. It is evident that

the void regions in the examples we are al)Out to discuss may be

supposed filled either with some different fluid, or even with inert

masses of the same fluid as that in which the motion is taking

place.

§ 95. Efflux of Liquids.—A typical example of motion with a

free surface is presented in the efflux of liquids. When a liquid

escapes from an orifice under pressure, the surfaces of the jet so

formed, and its interior a short distance away from the point of

discharge, are at atmospheric jiressure (presuming the experiment

is conducted under ordinary conditions), and the velocity can

therefore be predicted, knowing the pressure within the vessel.

If we suppose the pressure to be applied by a head of liquid in

the vessel, then whatever quantity of liquid passes out of the jet

disappears from the region of the free surface, so that if we

assume the " principle of work," and suppose there to be no loss

of energy, the velocity of the jet will be that due to a body falling

freely from the height of the column of fluid measured from the

point of discharge to the free surface. This is the theorem of

Torricelli.
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Let the area of the efflux jet be ^ ; let s be the " head " of

liquid whose density is p ; let r be the efflux velocity.

Let it be assumed that the pressure within the vessel is every-

where due to the hydrostatic head,—that is to say, let us suppose

that the motions of the fluid within the vessel do not affect the

pressure on its surfaces.

Then r = V 2 gs, and mass of fluid passing out per second

pAv =^ pA V '2 gs, or,

Momentum per second = r X pA V '"2 gs = 2 pAgs,

which is the reaction on vessel due to the " recoil " of efflux.

But pressure per unit area on wall of vessel at level of

aperture = pgs, or, if a = area of wall of vessel on which pressure

is relieved,

a = ^-^^^ = 2 A.

That is to say, on the above assumption the aperture in the

wall of the vessel is twice the area of the resulting jet.

When the aperture is a simple hole in the wall of the vessel

(Fig. 53, A), the assumption is not strictly accurate, for the

pressure in the region surrounding the hole is less than that due

to the hydrostatic pressure owing to the converging of the lines

of flow, and consequently the actual hole is of less area than that

over which the pressure is effectively relieved, and the Jet

contracts less than the simple theory would indicate.

§ 96. The Borda Nozzle.—The conditions of hypothesis are most

nearly conformed to by the Bovda rc-entvant nozzle (Fig. 53, B),

in which the aperture is furnished with a short tube extending

inward. Such an arrangement ensures, as closely as is possible in

practice, that the pressure on the walls of the vessel is unaffected

by the motion of the fluid. Experimenting with a circular

cylindrical nozzle, Borda (1766) obtained the result a = 1'94 A,

which is in sufficiently close agreement with theory. It is more

usual to invert this expression, wnting A — "515 a.

The complete solution of the path of flow at the free surface

124



HYDEODYNAMIC THEOEY, §96

has been effected, in the case of the Borda nozzle in tuo dimen-

sions, by Helmboltz, and may be found in Lamb's "Hydro-

dynamics," where the solution is also given in the case of a simple

tico-dimensional a.-pevtuYe ; the calculated coefficient in the latter

case is '611, ^vhich does not differ hopelessly from the experi-

mental value, usually taken for two-dimensional flow to be

about '625.

We may evidently supjDose the efflux to take place into a

vacuous region, or into one filled with air, or even from one vessel

containing hquid into another containing the same kind of liquid

;

mw///////^v \1 i 7 ^///yyyyyyyyyyyyyy^

Fig. 53.

the only obvious condition would appear to be that the pressure

at all points on the surface of the jet should be constant. Such

a system of flow bears a considerable resemblance to that which

actually occurs in the case of any real fluid, but on the assump-

tion of continuity it is not the form of flow given by mathematical

theory in such a case. If the edges of the aperture are taken to

be infinitely sharp, then the discrepancy can easily be accounted

for, as the velocity at the sharp edge becomes infinite, and con-

sequently an infinite hydrostatic pressure will be necessary to

prevent ca\"itation, which is not possible ; the conditions of

hypothesis are therefore departed from. This, however, is not

tbe full explanation, for the flow in practice closely resembles the
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efflux system, even when the edges are given quite an easy radius.

Before discussing this difficulty further another example of motion

with a free surface may be given.

§ 97. Discontinuous Flow. Pressure on a Normal Plane.—In

Fig. 47 the stream lines are given for a normal plane on the

assumption of continuity. We now have to deal with the same

example under different conditions, the form of flow involving

Fig. 54.

discontinuity; a stream of infinite breadth impinges normally

on a fixed plane, from the edge of which springs a free surface.

The solution to this problem is only known in the particular

case of two-dimensional motion where the plane is a lamina

of infinite lateral breadth, and is, in the main, due to Kirchhoff.

The form of the resulting free surface is given in Fig. 54, in

which the direction of flow is taken as vertical.-^ The pressure

force for one unit width of the lamina is given by the expression

1 Gravity is assumed to be inoperative. In Fig. 54 the free surface only

is an actual plotting ; the stream lines are merely an indication of the

character of the flow.
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•44 p V^ /, where p is density, V — velocity, and I — width of

lamina in absolute units. The expression for mean pressure will

therefore be :

—

P = -44 p T'2

Similarly the case of an inclined lamina has been investigated

by Kirchhoff and Eayleigh, and the following are the expressions

obtained :

—

P_ ^ 17 sin [3 pr\
4 + - sin (3

where /3 is the angle of inclination.

For the position of the centre of pressure :

—

cos P

(1)

X = i X X I, (2)
4 + - sin f3

where / is the width of the plane and x the distance forward of

the geometric centre.

The following Table gives the result for different values of (3

(1) pressure on plane in terms of normal pressure, and (2) the

proportionate distance of the centre of pressure from the central

line :

—
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If an actual fluid behaved anything like the ideal fluid of

theory, the necessity for the ichthyoid form would not exist ; any

shape, however abruj)t, short of jDroducing cavitation, would give

rise to stream-line motion and be destitute of resistance. The

actual phenomenon of fluid resistance, discussed in the two pre-

vious chapters, is characterised by features which at present are

not capable of complete elucidation by analytical means.

The principal characteristic in which the actual flow and the

Eulerian form differ is as to the existence or otherwise of

resistance to motion. In all cases discussed in Chap. I., with

the exception of the " stream-line form," the surface or "stratum"

of discontinuity is an ever present feature which is closely

related to the resistance encountered by the body in motion. It

has been shown that the proneness to develop discontinuity

increases the less the viscosity, and it is difficult to understand in

what manner the tendency, which grows greater as the value of

viscosity approaches to zero, should suddenly cease when zero is

reached. This argument may be otherwise stated in the form

:

It is difficult to understand how a fluid that offers by hypothesis no

resistance to shear can assume a rigidity in shear not possessed

by a viscous substance.

§ 99. Deficiencies of Theory (continued). Stokes, Helmholtz.—In

the year 1847 Stokes, discussing a particular hyi^othetical case of

flow, was the first to suggest the possibility of a discontinuity or

" rift " as a phenomenon connected with the motion of the perfect

fluid. Helmholtz, writing in 1868 on the "Discontinuous Move-

ments of Fluids " {P}dL Mag., XLIII.), pointed out the familiar

instance of smoke-laden air escaping from an orifice as an

example in which the motion is not at all in accordance with the

hydrodynamic equation, the air moving in a compact stream

instead of spreading out, as the theory of the joerfect fluid requires.

He remarks that such known facts cause physicists to regard the

hydrodynamic equation as a very imperfect approximation to

the truth, and that " divers and saltatory irregularities, which

128



HYDEODYNAMIC THEOEY. §100

everyone who has experimented has observed, can m no wise be

accounted for by the continuous and uniform action of [viscous]

friction."

This does not express the position of affairs one whit too

strongly ; in fact, before the date of the recent additions to the

mathematical theor}- relating to discontinuous motion (largely

initiated by Helmholtz himself), it might almost have been said

that the hydrodynamic theory of the text-book had nothing at

all to do with the motions of any known liquid or gas.

In the paper in question Helmholtz states that it is necessary to

take account of a condition in the integration of the hydrodynamic

equations, which had up till then been neglected. In the hydro-

dynamic equations, velocity and pressure are treated as continuous

functions of the co-ordinates, but in reality there is nothing to

prevent in a true inviscid Jiiiid two layers slipping past one

another with finite velocity. The author of the paper, referring

to his previous work on gyratory movement, suggests that the

surface of separation is a gyration surface, the conception being

that the surface consists of an infinite distribution of lines of

gyration at which the mass of fluid is vanishingly small (or

evanescent), and the moment of rotation finite. It is pointed out

that such a system involves a discontinuity, such as might be

initiated by incipient cavitation, and under these circumstances

the conditions of mathematical hj'pothesis are violated. The

theory of discontinuous motions, such as outlined, is afterwards

dealt with at some length, with results similar to those already

given.

§ 100. The Doctrine of Discontinuity attacked by Kelvin.—The

theory of discontinuity has been regarded by some authorities as

a questionable innovation, and it has been violently attacked by

Lord Kelvin in a series of articles to Nature in the year 1894,

and so the subject has become a matter of controversy.

So far as the author is aware, this controversy has never been

authoritatively settled ; it is therefore necessary to give the
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matter more than passing attention and to discuss the subject

from its controversial aspect.

In brief, Kelvin's objections appear to consist in the following

:

(1) Any system of discontinuous flow is inconsistent with his

(Kelvin's) theorem of least energy, and therefore cannot exist.

(2) That a surface of discontinuity in an inviscid fluid (whose

physical continuity is unbroken) is essentially unstable and, if

formed, will break up. (3) That in a real fluid possessed of

viscosity a surface of discontinuity is impossible.

§ 101. Kelvin's Objections Discussed.—It is certainly true that

the discontinuous system of flow violates Lord Kelvin's theorem
;

it is evident, however, that this theorem rests definitely upon the

hypothesis of continuity, and it is i^recisely this hypothesis that

Helmholtz has deliberately set aside. Consequently the objection

is without weight.

In considering the behaviour of an inviscid fluid a certain

ambiguity exists. Since rotation cannot be imparted to or

abstracted from the fluid, there may be an infinite variety of

possible forms of flow under given boundary conditions which are

ordinarily excluded by hypothesis since they cannot be generated

from rest. The Kelvin theorem of least energy is proved only

for motions that can be generated from rest, and does not of

necessity apply to motions that cannot be so produced.

It is conceivable that if a fluid possessed viscosity in a very

small degree only, its motions, if generated and continued for a

short period of time, would not sensibly depart from the Eulerian

form, but if continued for a long time an entirely different system

might eventually be evolved. On this basis, which supposes a

cumulative change in the form of flow, the inviscid fluid may,

after an infinite lapse of time, develop forms of flow quite foreign

to the Eulerian theory, and such forms of flow will obviously be

independent of Kelvin's theorem. The supposition of an infinite

lapse of time merely constitutes an extension of the hypothesis

of the perfect fluid, to simulate as far as possible the conditions
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obtaining in the case of the nearly inviscid fluid, discussed further

in § 104.

On the second objection, i.e., the supposed instabihty of the

surface of discontinuity in a perfect fluid, we are treading on very

different ground, and reference should be made to Kelvin's article.

There is certainly nothing to prevent the supposition of the

momentary existence of a surface of discontinuity in an inviscid

fluid, and it is difficult to see how it can be destroyed, in view of

the fact that it contains rotation which by the theorem of Lagrange

can never leave the infinitesimal film of fluid that initially con-

stitutes the surface. It is certain that such a system of flow

cannot break up into finite vortex rings, for if the rotation be

distributed over a finite quantity of fluid in the core of such

vortex rings, the theorem of Lagrange has been violated, and if

the rotation be confined to a core that is vanishingly small the

energy required to create one such ring is infinite.

§ 102. Discussion on Controversy (continued).—On the third

objection, as to discontinuity in the case of the real fluid, it is

unnecessary to dwell at length. Neither Helmholtz nor his

followers could ever have supjDosed that the discontinuity exists

as a surface under actual conditions, but rather as a stratum con-

taining rotation. It has been elsewhere pointed out (§ 20),

that in the case of the real fluid the conception of a surface of

discontinuity must be looked upon as an abstraction of that ivhich

is essential in a somewhat complex phenomenon, and it is this

fact that Kelvin appears to overlook ; he points out that the

surface will, if formed, break up at once into a series of vortex

filaments, or vortex rings, and this view is in all probability

correct; it may also be found practicable to assess the pressure

reduction on the back of a plate on the basis of vortex theory, as

suggested in Kelvin's article. It appears, however, to the author

that all this may be considered in the light of an extension rather

than a controversion of the Helmholtz theory.

In the course of his criticism Kelvin suggests certain cases of
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motion as constituting an absolute and patent disproof of the

doctrine of discontinuity, which in reahty do not seem capable of

any such interpretation. One of the supposed cases is given in

Fig. 55, which represents a projectile having a gap in its mid-

body dividing it into two halves which are assumed to be rigidly

connected ; this has been indicated in the present reproduction

by a stem or spindle.

Now it appears to the author that this example can be con-

strued in favour, rather than otherwise, of the Helmholtz doctrine.

Let us suppose the gap bridged initially by a telescopic sheath

represented by the dotted line and the projectile set in uniform

motion in a perfect fluid. Next let us suppose the sheath to be

withdrawn (by sliding it longitudinally), then we have a

system of flow involving a surface of discontinuity, a system of

c -«< 0£/KD - \A/ATER.

Fig. 55.

flow alternative to that of the ordinary Eulerian theory, and con-

trary to the theorem of least energy, and one that has many

•points in common witJi that ivhich obtains in practice.

§ 103. The Position Summarised.—We may summarise the

possible causes of the departure from the theoretical Eulerian

form of flow as follows :

—

(1) The observed departure is due to viscosity, and :

(a) The dejxirtnre is less the less the viscosity, as might be

readily imagined (to harmonise with the Eulerian theory).

(h) The departure is greater the less the viscosity.

(2) The departure not necessarily connected with viscosity, and

either

:

(c) Due to cavitation (as suggested by Helmholtz).

id) Due to compressibility (alternatively suggested by Helm-

holtz).
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{e) Due to imperfection of boundary conditions (as suggested

by Kelvin).

(/) Defect of mathematical hypothesis concerning the nature

of an inviscid fluid.

ig) The mathematical demonstration in error.

{h) The experimental observations in error.

{j) Some unaccounted physical conditions.

By a process of exhaustion we dispose of {g), (li), and ( /) as

highly improbable
;

(c) and (d) must be considered as insufficient

in view of the fact that no cavitation is in general manifest, and

a surface of gyration or discontinuity or vortex motion ^Yithout

an internal boundary involves rotation.^ Alternative (e), suggested

by Lord Kelvin, does not seem cap)able of accounting for the facts

known to experiment.^ It seems e\*ident, under ordinary circum-

stances, that the boundary conditions are a sufficient approximation

to theory.

§ 104. The Author's View.—The true explanation is probably

to be sought in (1) (/>). I)i all real fin ids tlic injiuence of viscosity

accounts for the departure ; and the departure is greater the ^e-ss

the viscosity.

This seems paradoxical; it would appear to denote a sudden

change in the behaviour of a fluid when viscosit}^ becomes zero.

Such a change would involve discontinuity in the physical pro-

perties of a substance, which is scarcely admissible; this paradox

is on\y apparent, ior thefactor of time is involved in the production of

the discontinuous system of flow, and, as will be subsequently shown,

the continuity of behaviour extends to the fluid of zero viscosity.

The following conclusions may be formulated :

(1) That whatever ma}^ be the value of the viscosity, the initial

motion from rest obeys the Eulerian equations.

^ The compressibility of a fluid does not enable it to evade Lagrange's
theorem.

^ Lord Kelvin in his article suggested the possibility of the boundary
conditions being affected by the formation of bubbles at and in the region of

shai-p corners ; but this cannot apply in the case of a gas.
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(2) That the discontinuous system may in a viscous fluid be

regarded as arising hy evolution from a motion initially obeying

the mathematical equations.

(3) That in fluids possessing different values of kinematic

viscosity the time taken for the evolution of the discontinuous

system is greater when the kinematic viscosity is less, and vice

versa.

(4) That the ultimate development of the discontinuous system

of flow is more complete the less the value of the kinematic

viscosity, and vice versa.

Taking the propositions in order :

—

(1) Forces due to viscosity are proportional to velocity : when

velocity is nil, such forces have no magnitude, consequently the

initial direction of flow is unaffected by viscosity.

(2) In a viscous fluid it is established that the layer adjacent

to the surface of a solid is adhesive, i.e., moves as part of the

solid—that is to say, the viscous connection between fluid and

solid is the same as that between two layers of fluid. Consequently

when the flow has been established, there will be a layer of fluid

next the solid more or less inert, which will only in a small

degree partake of the motion of the dynamic system. Now the

surface of the body possesses regions of greater and regions of

less pressure, and this inert layer will be steadily pushed along

the surface from the regions of greater pressure to those of less.

Therefore, taking the typical case of a normal plane, the surface

current of fluid so formed will be available to '* inflate " the

surfaces of hydrodynamic flow in the region of the edges, almost

as if the edges of the plane were emitting fluid by volatilisation.

This inflation of the surfaces of flow in regions of least

pressure can be conceived to continue until the combined inflated

region becomes one whole, the " dead water," occupying the

space in the rear of the plane. Similarly for other forms of

body.

(3) The less the viscosity the thinner the inert layer, and,
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other things being equal, the longer it will take to bring about a

given degree of inflation,

'4) The viscous drag experienced between the live fluid and

dead water tends to carry the latter away, and if the viscosity

exceed a certain value, then, other things being equal, it is

found in experience (notably in the case of an ichthyoid form)

that the dead water may be ejected and carried away as fast as

formed by the viscous drag of the surrounding current. Under

these conditions it may be taken that viscosity by its direct drag

prevents the surface current from flowing in opposition to the

main stream, so that the surface current is consistently rear-

ward, the result being an absence of dead water. The surface of

discontinuity may be regarded as having coalesced with the

surface film of the body. If the viscosity be sufficiently reduced,

the surface of discontinuity will detach itself, and in general the

less the viscosity the more comjjlete ivill he the development of the

discontinuous system of flow.

Let us now take the case of a fluid bordering on the inviscid.

It is evident, firstly, that the change in the system of flow will be

very slow ; and, secondly, it would appear that the ultimate

transformation of the system will be very complete.

Let us now go further and suppose the viscosity of zero value.

Then, on the principle laid down in § 101, we may regard the

ultimate condition as one involving discontinuity as investigated

by Helmholtz and others, with the reservation that it will require

an infinite time for its development.

The transition stages of the system of flow in the inviscid or

nearly inviscid fluid are wholly unknown. If we assume the

Eulerian and Helmholtz as the initial and final systems of flow,

there must be a continuous series of intermediate stages that

await investigation. In the Helmholtz theory the dead water

region has assigned to it a pressure equal to that of hydrostatic

head. Perhaps the intervening stages could be investigated in

like manner by assigning other pressure values to the region in

question.
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It is by no means certain, however, that the Helmholtz system

does actually represent the final form. Since the motion is a

matter of infinitely slow development, it is probable that, in spite

of the vanishing value of v, the fluid by which the dead water

region is being developed will be set in motion just as in the

case of a viscous fluid, the motion taking the form of a vortex

ring on a core containing rotation, situated immediately in the

wake of the plane or body. Such a system is quite in accord

with hydrodynamic principles, but does not involve discontinuity

and does not in itself give rise to resistance. It is a pregnant

fact that, so long as the continuity of the system ofjloiv is unimpaired,

Fig. 56.

the pressure distribution for uniform motion is that of § 88, and

resistance other than that directly due to viscosity is absent.

§ 105. Discontinuity in a Viscous Fluid.—It has already been

pointed out that the surface of discontinuity in a viscid fluid

must begin to degenerate as soon as formed, owing to the fact

that a finite velocity between adjacent layers would betoken an

infinite tangential stress. We could suppose the degeneration

to take the form of a thickening of the discontinuity so that it

becomes a stratum of fluid with a velocity gradient. We can

alternatively and with every appearance of probability suppose

that the surface becomes a stratum of turbulence. The latter

would certainly agree more closely with observation.

Suppose we adopt the suggestion of Lord Kelvin and regard
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the turbulence as initially taking the form of a series of vortex

filaments following each other in rapid succession and acting as

rollers between the live fluid and dead water (on this point

Kelvin does not differ materially from Helmholtz), and if we

represent the resulting system of flow as in Fig. 56, in which the

motion is given diagrammatically relatively to the vortex rollers, so

that the apparent motion of the fluid on the two sides is opposite,

then, making certain assumptions, we can obtain some results

from dimensional theory.

Let it be granted that for different values of T' and v the size

of the indi\ddual rollers may vary, but the form of the disturbance

is homomorphous.

Let o) be the angular velocity of a roller taken at some stated

point on some specified line of flow ; then,

oy = {F) V, V.

As in § 38, let us write oi" = V, v".

Dimensionally tj^=?P ip-

Thence we have x = y -\- z,

and y — — 2 z.

Taking x — 1, we obtain y = 2; z = — 1.

Hence the expression becomes w = T'^j'"^ X constant, or

F^ = wv X constant. Taking r for the radius of the roller

at the point chosen, we can write this expression in the form,

—

r = 77 X constant.-^

§ 106. Conclusions from Dimensional Theory.—From the above

expression the following conclusions may be drawn :

—

In different fluids ceteris jjrt?-j^i<s the size (diameter) of the

rollers will vary directly as the kinematic viscosity. Hence in an

inviscid fluid the rollers will become of vanishingly small

diameter, or the surface containing them will be a surface of

gyration of Helmholtz, that is a surface of discontinuity.

^ Tins is, as it evidently shonld be, the same expression as determined

generally for homomorphous motion in § 38, ?• being the linear dimension.
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In a fluid of given kinematic viscosity, the size of the rollers

will vary inversely as the velocity, that is the velocity difference

between the live stream and the dead water.

In a given fluid the frequency with which the vortices are

generated will vary as the square of the velocity. It is probable

that we have in this the origin of the " pitch note " that may be

heard when a body is in rapid motion through the air, for example

in the swish of a stick or the whistle of a projectile.

The foregoing conclusions are only strictly applicable so long

as the vortex rollers are of small diameter compared to the body

by which they are generated, for otherwise the motion will not be

homomorphous, as required by hypothesis. It is probable that it

is the relation between the size of the vortex rollers and that of

the body that determines the point at which the discontinuous

form of flow begins. Thus for velocities less than a certain

minimum in any given fluid the value of r will be so great that

there is no room for the vortex to form ; at a higher velocity it

seems likely that a single vortex may be generated, which will

follow in the wake of the body, as in § 104, and it will only be

at velocities in excess of this that the vortices will detach them-

selves in accordance with the iSgime contemplated. The precise

conditions must, however, be regarded as uncertain.

The ultimate fate of the vortices formed in the peripheral

region of the wake is not altogether known ; it would appear

that they will break up into groups and sub-groups, after

the manner described in § 93, till the whole wake of " dead

water " becomes a region of seething turbulence, the motion

gradually becoming incoherent and dying out as the energy

is absorbed in viscous strain.
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CHAPTEE IV.

WING FORM AND MOTION IN THE PERIPTBRY.^

§ 107. Wing Form,—Arched Section.—The most salient charac-

teristics of ivi7ig form are common to birds of widely different

species and habit of life. In sj^ite of variations in detail and in

general proportions, there is a certain uniformity of design and

construction that cannot fail to impress even the most superficial

observer.

The features in common may be taken, on the doctrine of

natural selection, as consequent on the form of the fluid motion

essential to flight, although, physically sjDeaking, it is the fluid

disturbance that depends upon the form of the wing.

To be definite, we may say that the general nature of the fluid

motion can be shown to depend upon the major function of the

wing, i.e., the support of the weight ; the wing form must then

conform to the motion so derived, and the detail of the fluid

motion in turn will depend upon the more minute character of

the wing form. Such indefinite process of adaptation and re-

adaptation as the above implies is one to which the methods of

evolution appear to be eminently adapted, but to which the

methods of calculation are ill suited ; hence much of the difficulty

of the subject.

One of the most remarkable, and it may almost be said unex-

pected, peculiarities of wing form is the dipping front edge or

arched section. This is a characteristic in the wing form of all

birds capable of sustained flight, but it is only within compara-

tively the last few years that this feature has been the subject of

observation. It is scarcely credible that so marked a peculiarity

should have escaped observation for centuries, but it would seem

that such is the case.

' Gr. irepL and irrepoy (see footnote, Preface).
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The wing section given in Fig. 57 is that of a herring gull

{Larus argentatus). The dotted line gives the form as plotted

from templates made shortly after the bird had been killed ; the

full line gives the approximate form in flight when sustaining

the weight of the bird. The direction of flight is supposed

horizontal.

§ 108. Historical.—Historically, so far as the author has been

able to ascertain, the credit of the discovery of the dipping edge

is due to Horatio Frederick Phillips, whose publication is to be

found in the specification of Patent 13,768 of 1884. The discovery

Fig. 57.

appears to have been made as a matter of practical experience,

and, as often takes place under these circumstances, the theory given

by the inventor in his specification is erroneous. Just, however, as

in patent law an inventor's theory, however unsound, is not held

to invalidate an invention, so in the matter of discovery, the fact

that a discoverer does not fully understand the fact that he has

been the first to ascertain, does not in any way detract from the

credit due. In a case such as the present the fact that the

discovery is based on practical experience in the face of an

imperfect and in reality hostile theory adds rather than otherwise

to its value.

Fig. 58 is a reproduction of the forms of wing section given (as

applied to artificial flight) in the specification cited. Tlie motion
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is supposed to take place from left to right, as in Fig. 57.

Fig. 59 illustrates a modified form given in a further specifica-

tion by the same inventor, 13,311 of 1891. These two figures

show clearly the nature of the feature under discussion. In both

specifications the theory given is inadequate.-^

The advantages of the arched form of wing section were known

to the late Herr Lilienthal at the time of his experiments in

flight, 1890-94, and the discovery has been attributed to him

by some writers.^ It is possible that Lilienthal was unaware of

Phillips ' previous work, and that discovery by him was made

Fig. 59.

independently. There is no evidence to show that Lilienthal pos-

sessed more than a practical acquaintance with the arched form.

^ In his 1884 specification Mr. ]-*liillips says :

—

"
. . . so arranged that a current of air striking the forward edge of the

hlade at an acute angle is detiected upwards by the forward part of the

surface, and a vacuum (or partial vacuum) is fonned on the after-surface,

substantially as described."

Further, in the patent of 1891 he writes :

—

" The particles of air struck by the convex upper surface A at the point E "

(compare Fig. 59) "are deflected upwards, as indicated by the dotted lines,

thereby causing a partial vacuiun over the greater portion of the upper

surface."

2 See article "Aeronautics," " Encycl. Brit.," O. Chanute.
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About the same time as Lilienthal was at work the author

succeeded in evolving the arched form, or dipping front edge,

purely from theoretical considerations, at that time having no

knowledge of the previous work of Phillips or the experiments

then being conducted by Lilienthal. The author first formulated

his theory in 1892, the basis being the study of the special

case of an aeroplane of infinite lateral breadth. Sections of the

aerofoil employed in model experiments in 1894 are given in

Fig. 60.

The author gave a resume of his theory in a paper read at the

MID-SECTION.

PLAN- FORM,- ELLIPSE.
ASPECT RATIO, 13 : I .

Fig. 60.

annual meeting of the Birmingham Natural History and Philo-

sophical Society on June 19th, 1894, a wall diagram of which

Fig. 68 is a reproduction being exhibited. A more complete

account of this work formed the subject-matter of a paper oflfered

to the Physical Society of London, but rejected (September 3rd,

1897).

In the present chapter, on wing form and the motion of the

fluid in its vicinity, the main argument and demonstration are

taken without substantial alteration from the rejected paper, the

subsequent work being a revision of the theory on more orthodox

hydrodynamic lines.
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§ 109. Dynamic Support.—Endeavours have been made in the

past to apply the principles of the conservation of momentum

—

that is, the doctrine of the continuous communication of momen-

tum (§ 3)—to estimate directly the eflticiency of an aeroplane

sustaining a load and the expenditure of power necessary. If

the air were a fluid discontinuous after the manner of the New-

tonian medium, then such methods would lead to immediate and

reliable results, for we know that if W be the weight supported,

and V the velocity of downward discharge, and m the mass per

second of the projected particles,

W = viv or V = W/m (1)

and if ^ = energy expended per second,

E = ^ im^ = 4r-

or for any given weight to be sustained (IF = constant) the energy

is inversely as the mass of fluid dealt with per second.

Something by way of convention is necessary to connect the

above quantities with the size and velocity of the wing member.

Thus if we suppose the latter to be an elastic aeroplane of area A
and angle /?, travelling at a velocity V, we shall have :

—

y = F X 2 ^An (3 (where v is the velocity imparted at right

angles to the plane), and m = VA p sin /3, and (1) becomes

IF = p AV'^Q, sin' 13.

If we had taken for our convention that the surface of the

aeroplane is inelastic,^ then, since the particles on impact would

not bounce off, v = J sin /3 and

W = p A V^ sin^ B. (2)

The above results are not altogether in harmony with expe-

rience. The weight sustained does vary approximately with the

area of the plane and density of the fluid, and as the square of

the velocity, but the relationship in respect of angle does not

hold good.

Let us introduce an elementary notion of continuity into the

fluid. It is evident that when the layers of air adjacent to the

1 Compare " Principia," prop, xxx., Book II.

143



§ 109 AERODYNAMICS.

aeroplane are diverted these will react on the neighbouring layers

of air, and so on, so that a stratum of some considerable thick-

ness will be involved. Now the factor that must limit the

thickness of this stratum is evidently the size and shape of the

plane, for the more remote layers of the fluid only escape by the

fact that a circulation takes place from the side of greatest to the

side of least pressure, which circulation depends chiefly upon the

size and shape, and but little upon the angle of the plane.

The elasticity of the air might become sensible if the

velocity were sufficient, but at ordinary velocities this factor

is unimportant.

Let us then assume for our convention that the depth of the

layer affected for a plane of given shape depends upon its linear

dimension and is constant in respect of angle, the latter being

supposed to be of small magnitude. Then, since under the pre-

sent supposition the lines of flow will require to follow the

surfaces of the plane (the fluid being unable to bounce off as in

the previous case), we have

V — V sin ^, m = pK AV,
where k is a constant, and by (1) we obtain :

—

W = p kA F2 sin 13. (3)

This result for planes of certain general proportions, at small

angles to the line of flight, agrees closely with experiment.

The quantity k ^ of equation (3) may be aptly termed the

sweep of the aeroplane or wing. It is a measure of the effective

cross-section of the horizontal column of air dealt with by the

aeroplane or supporting member. It has been found, exj^eri-

menting with superposed planes,^ that two planes fifteen inches

by four inches in pterygoid aspect, and at angles less than ten

degrees, do not suffer any sensible diminution of their individual

sustaining power if they are separated by a vertical distance of

four inches. It is therefore fair to assume that a plane of the

dimensions stated is sustained by the inertia of a layer of air not

more than four inches thick. That is to say, the siceep does not

^ Langley.
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exceed the area of the plane itself, or we have k equal to or

less than unity.

By employing this in conjunction with equation (3) an outside

estimate may be made of the load supported by planes of the

form stated. Such estimates generally fall short of the experi-

mental value in the relation of about one to two. By substituting

a fictitious value for the " sweep " of about twice that ascertained

by experiment the results of the equation can be made to agree.

It is evident, therefore, that all the conditions of the problem

have not so far been included in the theory.^

Fig. 61.

§ 110. In the Eegion of a Falling Plane,—Up-current.—In the

foregoing discussion the subject has been treated as if the air,

coming into the immediate region of an advancing aeroplane, is

in a state of rest, and as if the support is wholly derived from

the downward velocity imparted to it. But it has been shown

that if this were actually the case the weight supported could,

as a maximum, be only about one-half of that found by

experiment.

Let us take the simple case of a horizontal plane supporting a

weight and allowed to fall vertically. There is at first a circula-

tion of air round the edge of the plane from the under to the

upper side, forming a kind of vortex fringe (Fig. 61), the air all

round the edges of the plane being in a state of rapid upward

motion.
1 Compare §§ 160-1.
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If now we impress upon the plane a simultaneous horizontal

motion, it is evident that the air encountered by its leading edge

will be in a state of upward motion, and it would appear probable

that this up-current, in front of the advancing plane, would only

cease to exist when the horizontal velocity of the plane becomes

equal to the velocity of sound.

But if an up-current is encountered, impinging on the advancing

edge of a loaded aeroplane, the downward momentum communi-

cated to the air will be augmented, and may be regarded as con-

sisting of two parts, to the sum of which the sustaining force is

due, i.e., the part communicated in bringing the up-current to

a state of rest and the part communicated to the air as velocity

downwards.

It is evident that the problem as above presented is in effect

identical with that of an inclined plane moving horizontally

—

that is to say, the relative direction of the horizon is not of

importance. The force of gravity in the one case can be substi-

tuted by the resultant of the force of gravity and an applied

force of propulsion in the other.

§ 111. Dynamic Support Reconsidered.—When we consider part

of the support of a body as derived from an up-current, it is

necessary to examine the origin of the up-current, for it is evident

that the generation of such a current must give rise to a down-

ward reaction, and everything depends upon whether such

reaction is borne by the body itself or by the deeper layers of

the air, and eventually by the earth's surface.

Eeverting to the case of a body supported by the communica-

tion of momentum to a number of independent material particles,

it is evident that the particles projected downwards eventually

give up their momentum on striking the surface of the earth.

We may follow the subsequent history of the particles in two

extreme cases :

—

Case 1.—If the particles or the earth's surface are supposed

quite inelastic, the impact is accompanied by a continual loss of
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.2

energy, which is given by the expression -^— foot poundals per

second.

Case 2.—If, on the other hand, the particles and the surface

of the earth be perfectly elastic, the former will rebound with a

velocity equal to that with which they strike, and the system as

a whole will not lose energy. If the body be arranged to deal

continually with the same set of particles, none being allowed to

escape, then it may be supported without any continued expendi-

ture of energy—that is to say, without any work being done.

Such a case is exemplified in the dynamical theorj' of heat when

a loaded piston is supported by gaseous pressure in a closed

cylinder. We could also suppose it to be effected by imbuing

the supported body with sutScient intelligence and skill so to

direct the particles thatjthey would always rebound within its

reach.

We have already seen (§ 4) that in Case 1 the weight sup-

ported is equal in absolute units to m v. But in Case 2 the

particles impinging on the body impart as much momentum as

they do in leaving it ; hence the supporting force — 2 m v.

In both cases it will be observed that the projected particles

act as carriers of momentum between the earth's surface and the

dynamically supported body, the weight of which is eventually

carried down and distributed on the surface beneath ; and, more-

over, we are unable to conceive of any arrangement of material

particles used for dynamic support, however complex, that will

not eventually transmit the stress produced by the weight of the

body down to the surface of the earth. (Compare § 6.)

§ 112. Aerodynamic Support.—We may now examine and

discuss the behaviour of an incompressible and frictionless

(inviscid) atmosphere with respect to an aerofoil'^ traversing it.

When a loaded aerofoil is dynamically supported by a fluid,

we know that its weight is eventually sustained by the surface

' From Greek atpos and (pvWov (lit. an air Itaf). Compare § 128.
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of the earth, and that the transmission of the stress is effected

by the communication of momentum from part to pait, and is

thereby distributed over a considerable area as a region of

increased pressure. But, as is usual in fluid dynamics, there is

a certain ambiguity in the application of the principle of the

continuous communication of momentum, and we as yet lack

some definite statement

as to the application of

the principle to the case

in point.

In Fig. 62 A B re-

presents an aerofoil,

supporting weight, W,

dynamically, under the

conditions of the hypo-

thesis. Consider a.fluid

prismatic column formed

by imaginary vertical

surfaces touching the

edges of the aerofoil and

continued downwards to

the earth's surface and

upwards indefinitely.

Adopting the hypo-

thesis that the fluid is

inviscid, all forces act-

ing on the column from

the surrounding fluid

must be normal to its surface, and have no vertical component.

The only vertical forces acting on the column are therefore the

weight of the loaded aerofoil, W, acting downwards, and the

pressure on the base of the column C D, due to the distribution

of the weight W on the earth's surface. Let this latter equal iv

;

there is then a downward resultant W — w acting on the column.

(The weight of the column itself and the pressure produced
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thereby on C D are obviously in equilibrium, and require no

consideration.)

When the aerofoil has a horizontal motion through the fluid

the conception of the prismatic column will not thereby be

altered. Although its contents are constantly passing out on one

side and being renewed on the other, the instantaneous condition

of the forces acting is not in any way affected ; the downward

static resultant W-iv remains. Consequently the downward

momentum imparted per second to the fluid leaving the prism

plus the upward momentum received per second from that

entering must be equal to W— w.

When the height at which the aerofoil is sustained is great in

comparison with its own dimensions, the area over which the

weight is distributed on the earth's surface is obviously also

great, and the quantity w becomes negligible. Under ordinary

conditions this would usually be the case, so that the weight may

be regarded as in no part statically supported. In special cases,

however, iv may become of sensible magnitude, and it is probable

that results obtained with a very large aeroplane near the surface

of the earth would be found not to hold good for the same

aeroplane at any considerable altitude.

§ 113. Aerodynamic Support,—Field of Force.—We have already

(§ 60) learnt to regard the lines of flow of hydrodynamic theory

in the light of " lines of force " and the region occupied by such

lines as a "field of force." The definition may be given as

follows :

—

A line offorce in a fluid is defined as a line lying everywhere in

the direction in which the iMrticles of the fluid are undergoing

acceleration, and in the case of a fluid initially at rest at the

instant of its being set in motion the lines of force are identical

ivith the lines of flow of mathematical theory. The whole region

occuj)ied by the lines of force is termed a field of force whose

intensity is everywhere proportional to the acceleration of the

particles.
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In the case of the field proper to a force of stated direction

applied to a given body in a quiescent fluid, it follows from

considerations belonging to hydrodynamic theory that the form

of the field is unique, that is to say, its geometry is absolutely

defined by the conditions.

In the case of a fluid in aru arbitrary state of disturbance, the

field of force will not generally be of 'the same form as for the

quiescent state. Where there is pre-existing motion in the fluid

we may speak of the field as a distorted field.

The form of the field in the case of a fluid initially at rest

for such forms as a sphere, an ellipsoid, or a circular or elliptical

cylinder, is perfectly well known (§ 79), and in an infinite

expanse of fluid extends indefinitely in every direction. If,

however, the region is bounded as in the case of the atmosphere,

limited by a rigid boundary constituted by the surface of the

earth, the field will be modified as represented diagrammatically

in Fig. 63, in which the continuous lines are the lines of force,

and the dotted lines, normal to the former, are lines or surfaces

of equal pressure.^

It is a necessary consequence of the definition of lines of force

that all lines in the immediate vicinity of a stationary boundary

surface must be parallel to it, and therefore that surfaces of

equal pressure, if they meet the ground, must do so normally, as

indicated in Fig. 63. This figure will consequently represent

diagrammatically the spreading out of the pressure area and its

ultimate distribution as a region of increased pressure on the

surface of the earth.

§ 114. Flight with an Evanescent Load.—We will now suppose

that the aerofoil that gives rise to the field of force is in flight,

that is to say, it possesses a horizontal velocity. Now we know

at present very little of the nature of the disturbance created.

We cannot even assert that the form of the resulting flow is

^ Compare § 60. Lines of equal ^wessure only foi' initial motion otherwise

correspond to <?).= const, of mathematical theorj".
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geometrically similar for different load values ; in fact, it will be

hereafter shown that it is not.

We will in the first instance direct our attention to the case

where the load is supposed to be very small indeed, so small in

fact as not to be measurable in finite units, a small quantity of

the second order.

In order that there shall be no ambiguity in respect of the

Fig. 63.

proposed conditions, let us imagine a number of aerofoils of

equal area carrying different loads that vary from some finite

value down to zero, and suppose that each aerofoil is of the best

form possible for deriving the support necessary from the atmo-

sphere. Then the form of the aerial disturbance may vary in the

different cases, but as the load approaches zero the aerofoil

approximates more and more closely to an aeroplane, and the
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disturbance approximates to its evanescent form, that which we

now propose to investigate. We therefore base the initial argu-

ment upon the case of an aeroplane gliding horizontally and edge-

wise, supporting a load smaller than can be specified infinite units.

§ 115, Aeroplane of Infinite Lateral Extent.—We have in the

previous chapter become familiar with the simplification that

results from the consideration of cases in which the motion

takes place in two dimensions only, and with the conception of

bodies of infinite lateral extent as a special case involving such a

condition.

In Fig. 64, let A represent the forward and B the after-edge of

an aeroplane extending to infinity in the direction at right angles

to the plane of the paper ; or, if preferred, we may consider the

plane to be of finite extent, but bounded laterally by two continuous

parallel walls rising vertically from the surface of the earth.

Let us examine a portion of the field e e e enclosed between

two adjacent lines of force, Ji, J^. Then the intensity of thefield in

the region e e e is inversely proportional to the distance between the

hounding lines of force. For let q-i, q^, be the normal distances at

anj' two points G and H, and let us suppose a small displacement
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to take place in the direction of the h'nes of force. Let this

displacement at G and H be equal to Si and s.2 respectively

;

then, since the flux is everywhere equal, — = -^.

But the acceleration of the particles is proportional to the

rate of displacement, and therefore to the displacement itself.

Acceleration at G _ S\ _ q.^

So
Hence

Acceleration at H — , that is, the intensity of the

Fig. 65.

field is inversely proportional to the distance between the boundary

lines of force.

Taking the velocity of the fluid through the field as V, let k

be the intensity of the field (Figs. 64 and 65), where q is the

normal distance between two adjacent lines of force, r/i,J2 (so that

kq is constant), and let ^j be the distance in the line of relative

motion, and 6 be the angle at which the path of the particle cuts

the lines of force. Then the time taken by the particle to traverse

the "tube of force" Ji J^, = ^, the momentum imparted in the

direction of the lines of force

ponent I is :

—

k p
of which the vertical com-

k p sin 6

V
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But P — 9 cosec

J
_ kq cosec 9 sin _ kg

which is constant. Therefore, if the particle, after cutting

the tube at G (Fig. 64) and continuing its course, recut the same

tube at H, the upward momentum communicated at G u'ill be equal

to the doivnward momentum communicated at H.

But a particle of fluid traversing the field of force of the

aeroplane may be regarded as passing through a series of

regions bounded by adjacent lines of force, to each of which

the foregoing result may be applied. Consequently the upward

^ ^i ^S K ^S ^t ^7

Fig. 66.

velocity acquired in traversing the ascending field to Ci will be

given up in traversing the descending field to the medial line

P Q (the line separating the front and rear portions of the field),

and the downward velocity imparted to the particle in cutting

the descending field to d will be given up in traversing the

corresponding ascending field, so that, in respect of the vertical

component of motion, the final state of the fluid will be the

same as its initial state.

Again, since the conditions determining the form of the field

are symmetrical, the field itself must also be symmetrical about

the plane of which the medial line P Q (Figs. 64 and 66) is the

trace.

Let hi, h-2, //a, hi, h-, etc. (Fig. 66), be points on the path of a

particle of fluid cutting P Q at li^, corresponding to equal

154



MOTION IX THE PERIPTEEY. §116

intervals of time. In the elements hg h^ and h^ h- the horizontal

components of the forces acting on the particle are equal and

opposite ; therefore the loss of horizontal velocity along Its h^ is

equal to the gain along li^ /^, and the horizontal velocity at hg

is equal to that at ]i-^. Similarly the horizontal velocities at h^

and Iiq are equal, etc., and in general the horizontal velocity

component of any particle on one side of P Q is equal to that of

the similarly situated particle on the other side. But the

original state of the fluid is one of no horizontal motion.^ This,

therefore, is also the final state.

We have consequently shown, in a system such as we have

established by the present hypothesis, that the motion imparted

to the fluid is eventually given up by the fluid both in respect of

its vertical and horizontal components, and consequently there

is no continual ti'ansmission of energy to the fluid, and no work

requires to be done to maintain the motion or to support the

plane. The fluid in the ^-icinity of the aeroplane is in a state of

motion, and consequently possesses energy, but under the con-

ditions of hypothesis the quantity is less than any assignable

finite magnitude, that is to say, infinitesimal, but the motion

remaining in the fluid and the continued energy expenditure are

of zero value considered as infinitesimals of the same order.

Therefore, adopting a method of expression common in mathe-

matical work (but not so frequently employed in direct physical

demonstration), we may say that if we take as hypothesis a

small finite load, so that the actual motions of the fluid be small

finite quantities, the exj)enditure of energy in sustaining the load

will be zero, neglecting small quantities of the second order.

§ 116. Interpretation of Theory of Aeroplane of Infinite Lateral

Extent.—The sj'stem of flow deduced in the foregoing article in

the case of an aeroplane of infinite lateral extent in an inviscid

and incompressible fluid is one that may be classified as a

conservative st/stem, the energj^ of the fluid motion being carried

^ Eelatively to the earth.
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along and conserved just as is the case in n-ave motion. The

motion round about the plane may thus be considered as a

supporting wave. When the amplitude of motion becomes

sensible, there is no doubt that the streamlines react on one

another in a manner not accounted for by the form of field con-

templated, i.e., that of the quiescent state. Under these conditions

the method of investigation is not strictly applicable, but there

would appear no reason to doubt the validity of the main

inference. This conclusion is confirmed by a subsequent investi-

gation conducted on different lines.

Considered in the light of wave motion, the peripteroid system

must be regarded as a forced wave, the aerofoil supplying a force

acting from without.

§ 117. Departure from Hypothesis.—Before proceeding to the

further investigation, it is of interest to note briefly the conse-

quences of a departure from the initial hypothesis.

If we suppose the aerofoil to be of finite lateral extent, it is

immediately obvious that neither the lines of force nor the lines

of flow can be represented by a single section through the field. The

former, being no longer constrained to lie in parallel planes, diverge

laterally, some portion of them escaping, as it were, and passing

round the ends of the aerofoil through the regions marked o, o, a

(Fig. 67), in which R and L are the right and left-hand extremities

of an aerofoil whose direction of motion is perpendicular to the

paper. The fluid traversing the regions o, o, o, will have upward

momentum communicated to it during the whole time that it is

in those regions, and will be finally left in a state of upward

motion.

Now, owing to this lateral spread of the ascending field forward

of the aerofoil, the upward velocity imparted to particles in that

region is less than the downward velocity imparted in the corre-

sponding portion of the descending field, and the fluid crossing

the medial line F Q (Fig. 64) will have, on the whole, a down-

ward velocity. Similarly the downward momentum imparted

156



MOTION IN THE PEEIPTERY. §117

by the descending portion of the field aft ot P Q will be greater

than the upward momentum imparted by the corresponding

ascending field aft of the aerofoil. Consequently the portion of

the fluid traversing the regions/,/,/, / (Fig. 67) will be ultimately

left with some residual downward momentum, which must be

equal to the total upward momentum received by the fluid

traversing the regions o, o, o, for otherwise there would be a

Fig. 67.

continual accumulation, or else attenuation, of the fluid in the

lower strata of the atmosphere, which is impossible. (This other-

wise constitutes an application of the principle of no momentum
of § 5.) Thus in the case of a loaded aerofoil of finite lateral

extent, there is a continual loss of energy occurring, and a source

of power is consequently necessary to maintain the aerofoil in

horizontal flight.

In addition to the residual vertical motions of the fluid, of

which the causes have just been discussed, there must also be

horizontal counter-currents formed simultaneously with those in
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a vertical direction, the horizontal and vertical motions being the

horizontal and vertical components of the actual resultant motion

of the fluid. We may regard the latter as in the main consisting

of two parallel cylindrical vortices, having right and left-handed

rotation respectively, which are being continually formed at the

flank extremities (as in Fig. 61, reading this figure as an end-on

presentation), whose energy is being continually dissipated in

the wake of the advancing aerofoil.

From another point of view, this loss of energy may be looked

upon as a gradual spreading out and dissipation of the wave

(§ 116) on the crest of which the aerofoil rides, and it

becomes necessary that the aerofoil should constantly renew the

diminished wave energy in order to maintain sufficient amplitude

and support the given load.

The first of these conceptions, i.e., that of the vortex cylinders,

is not, for a perfect fluid, compatible with hydrodynamic theory,

for such vortex motion would involve rotation, and could not be

generated in a perfect fluid without involving a violation of

Lagrange's theorem (§ 71). In an actual fluid this objection

has but little weight, owing to the influence of viscosity, and it

is worthy of note that the somewhat inexact method of reasoning

adopted in the foregoing demonstration seems to be peculiarly

adapted, qualitatively speaking, for exploring the behaviour of

real fluids, though rarely capable of giving quantitative results.

The problem in three dimensions will be again examined after

reviewing the subject on more rigid lines.

§ 118. On the Sectional Form of the Aerofoil.—We are at the

present juncture in a position to draw certain elementary

inferences as to iheform of aerofoil appropriate to the motion of

the air in its vicinity. The two aspects of form which are of

most interest are, firstly, cross-section by a vertical plane in the

direction of motion ; and secondly, plan-form or projection on a

horizontal plane.

The immediate function performed by the sectional form of the
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aerofoil is to receive a current of air in upward motion and

impart to it a downward velocity, the whole air being dealt with

possessing relatively to the aerofoil a superposed motion of

translation. It would appear that any appropriate smoothly

curved form, whose leading and trailing angles (Fig. 68) are

conformable to the lines of flow, might be regarded as fulfilling

the necessary conditions, the essential feature evidentl}' being

that neither edge shall give rise to a surface of discontinuity.

Fig. 68.

Since the amplitude of the motion may be regarded, for a fluid

of given densit}^ as a function of the load on the aerofoil and its

velocity of travel, the steepness of the lines of flow must also be

a function of these variables, and for a given sectional form of

aerofoil there is some critical velocity at which the advancing

edge may be taken as conformable. AYhen the aerofoil is

supposed of infinite lateral extent, then if the sectional form be

made symmetrical, at the velocity at which the leading edge

becomes conformable, the trailing edge will also be conformable.

If, however, the aerofoil be of finite lateral extent, we do not

know what the relation ought to be between the angles a and /3,
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and we have as yet no means of ascertaining same, either for

any particular point in the length of the aerofoil or generally for

all points. The partial solution of this problem is reserved for

a later chapter. It is probable that in nature the conformability

of the trailing edge is substantially ensured by the extreme

flexibility of feathered construction, an incidental advantage of

this method being undoubtedly an automatic adaptability to

variation of velocity and load.

§ 119. On the Plan-form of the Aerofoil: Aspect Ratio.—In

the experiments of Professor Langley and others, planes of long,

narrow plan-form, in pterygoid aspect, and at moderate angles,

have always been found to give a greater lifting effort, ceteris

paribus, than other forms, or than the same form moving end

on. The reason of this is at once evident when it is considered

that the amount of the fluid traversing the regions o o o o,

Fig. 67, or " stray field," is relatively much less when planes of

great lateral extent are employed, and every increase in the

lateral extension of the plane makes the relative loss of field still

smaller, the behaviour of the plane approaching more and more

nearly to the ideal case in which the conservation is complete, and

the plane reaps the benefit of the whole up-current generated.

Wherever flight has been successfully achieved, advantage

has been taken of the influence of asjject ; the aspect ratio varies

amongst birds from about 4 : 1 (as in the lark, also scops owl)

to about 14 or 15 : 1 (in the albatros). The wing spread

with which Lilienthal successfully experimented had an aspect

ratio of about 8 : 1, similar proportions being adopted in gliding

machines subsequently by Pilcher, Chanute, and others. The

author, experimenting in 1894, successfully employed a ratio

of 13 : 1, and Phillips in his captive flying machine, about 1893,

succeeded, by his "Venetian blind" method of construction, in

employing a ratio of more extreme proportion still.

§ 120. On Plan-form (continued) : Form of Extremities.—The

form of the extremities of an aerofoil exerts a considerable
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influence uiDon the dissipation of energy, irrespectively of the

aspect ratio. It is evident that if, as a provisional assumption,

we suppose the pressure distribution to be uniform over the

whole area, the circulation will be much more rapid in the

immediate vicinity of the edge than at some distance away ; and

since the fluid in circulation in the stray field represents energy

lost, we can minimise this to a considerable extent by adopting a

pointed, or acutely rounded, extremity, as in Fig. 69 ; so that

the stray field is not contiguous to the edge of the aerofoil

except in one spot at each extremity. If we neglect other factors

that have weight in practice in determining wing form, and

endeavour to rationalise on purely an aerodynamic basis, we can

lay it down that for uniform load distribution, if we take the

Fig. 69.

extreme wing tip as origin, the form of the wing extremity will

be a surface that can he generated hy a straight line passing through

the origin. This law ma}^ be taken as holding good for such a

length of the aerofoil at each end as may be regarded as incon-

siderable in comparison to the total length, and follows from the

absence of any scale factor in the problem ; a surface as above

defined may be regarded as a segment of the surface of an

irregular cone.-^ It is possible that in a viscous fluid some

departure from the form above prescribed may be anticij)ated

from the fact demonstrated in the previous chapter, that the

existence of viscosity is suflicient to give a scale to a fluid.^

In practice, it will be shown later in the work, the question of

wing-form, especially with regard to the extremities, is not

1 Compare §§190-192.
- Compare §§36 and 56.
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decided by aerodynamic considerations alone, and that the

question of equilibrium is involved.

It is evident that we are not bound to our assumption of

uniform load distribution, and that if we suppose the pressure

difference (between the under and upper surfaces) to be less

towards the extremities, the latter may be made proportionately

fuller without seriously disturbing the relative distribution of the

stray field ; we might thus take an elliptical form as a standard,

with a pressure distribution appropriately proportioned. In

general, the wing-plan of a bird has ordinates that approximate

more or less closely to those of an ellipse. The discussion of the

practical aspect of this question will be resumed in a subsequent

chapter.

§ 121. Hydrodynamic Interpretation and Development.—We
may recognise in the foregoing investigation (§§ 115 and 116)

an elaboration of the theory initially put forward in § 90

(Chap. Ill), where the forces acting on the fluid were dealt with

in hulk, instead of as in the present instance being studied in

detail.

In § 90 it was shown that the disturbance peculiar to the

neighbourhood of the aerofoil possesses angular momentum, and

it was inferred that this being the case, the disturbance comprises

a cyclic motion, for otherwise it must involve rotation, which is

excluded by the nature of the hypothesis. We are consequently

confined, in an inviscid atmosphere, strictly to the case where the

aerofoil is of infinite lateral extent, for a cyclic motion is only

possible in a multiply connected region.

The problem, then, from the hydrodynamic standpoint, resolves

itself into the study of cyclic motion superposed on a translation.

We have already devoted some attention to such a combination,

and we have traced the field in a simple case for values of the

functions i/^ and 4>, Fig. 48. In Fig. 70 we have the stream lines

for this particular case plotted over a considerably greater

area, the internal system of flow being replaced by a solid of
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substitution. We may look upon this figure as representing in

section a theoretical wing-form, or aerofoil, approj)riate to an

inviscid fluid with its accompanying lines of flow ; as such it

is merely one of an infinite number of possible forms, its only

virtue being that of representing the simplest possible case of

peripteroid motion.

§ 122. Peripteroid Motion.—An infinite cylinder, of any sectional

form whatever, divides infinite space into a doubly connected

region, and in such a region cyclic motion becomes possible.

From the hydrodynamic standpoint irregularity of contour is no

detriment, as obstructing neither the cyclic motion nor that of

translation. The consequence is that peripteroid motion is

theoretically possible in the case of a cylinder of infinite extent,

no matter what its cross-section. This conclusion applies

naturally only in the case of the inviscid fluid ; in a real fluid we

are threatened with discontinuity. The position is analogous in

every way to that of simple translation. In the inviscid fluid all

bodies are of stream-line form, in real fluids only those that in

their motion do not set up a discontinuity. Again, just as in the

simple translation only certain simple cases are capable of

solution by known analytical methods, so in peripteroid motion

the cases capable of solution are very limited in number.

In order that a case of peripteroid motion should be solvable,

the boundary conditions (both internal and external) must,

generally speaking,^ be such that their lines of flow for both

translation and cyclic motion are separately known. The author

has succeeded in plotting the stream lines in the following

cases :

—

Fig. 70, a filament of infinite lateral extent in an infinite

expanse of fluid.

^ A case, such as Fig. 70, is an exception. Here neither system is known
separately for a cylinder the form of the shaded section. In a case of this

description, where a body is substituted for a self-contained system of flow,

we have an exception to the fact stated.
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Fig. 71, a plane of infinite lateral extent moving edgewise,

may be taken as an aeroplane at evanescent angle. Fluid

infinite.

Fig. 72, the same as Fig. 71, but with more powerful cyclic

component, showing form of motion in greater detail.

Fig. 73, combined system due to two superposed planes,

separated 1| times their width. Planes and fluid infinite.

Fig. 74, elliptical cylinder of infinite lateral extent, in infinite

expanse of fluid.

Fig. 75, an aeroplane of evanescent angle in vicinity of

boundary surface.

§ 123. Energy in the Periptery.—A body in motion in a fluid is

known to carry with it kinetic energy due to the fluid disturbance

in addition to that due to its proper mass (§§ 81, 84). A
superposed cyclic motion adds to the energy so carried.

A cyclic motion around a cylinder or cylindrical filament, or

round about a plane, in an infinite expanse of fluid contains an

infinite quantity of energy (§ 85), and the resulting peripteroid

motion for these cases will consequently require an infinite

quantity of energy for its production. We must consequently

regard Figs. 70, 71, 72, 73, 74 in the light of types of motion,

rather than an actual form of motion that we could produce if

the circumstances of hypothesis were materialised. If, however,

we limit the expanse of fluid by a boundary, such as in Fig. 75,

the energy of the cyclic motion immediately becomes finite, for

the number of squares is limited (§ 86), so that the flow as

here depicted is not open to the same objection.

The quantity of energy in the particular case given in Fig. 75

is equal to that of a body of fluid moving with the aeroplane,

whose area is approximately one-seventh of that of the square on

the aeroplane section.

The quantity of energy contained in peripteroid motion, and

its relation to the load supported, is a matter that awaits more

complete investigation.
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§ 124, Modified Systems.—In the examples given in Figs. 70,

71, 72, 73, 74, there are in all cases abrupt motions of the fluid

at certain points, such as could not occur in practice where a

real viscous fluid such as air is concerned ; the stream lines that

most nearly fulfil the necessary conditions are those belonging to

the elliptical cylinder (Fig. 74).

If we select from Fig. 74 a pair of stream lines possessing the

requisite smoothness of curvature as the boundary of a supposed

aerofoil, and, having truncated the fore and aft extremities.

Fig. 78.

proceed to whittle away the abruptness of the ends so formed

(Fig. 76), we obtain a possible wing section whose form, derived

entirely from theoretical considerations, bears an unmistakable

resemblance to an actual section taken through the thick of the

wing of one of the larger soaring birds. The whittling process is

supposed carried out just as would be done in the case of a plank,

originally sawn with square edges, to which it is desired to give

a stream line form (Fig. 77).

A different and perhaps not quite so legitimate subterfuge is

employed in Fig. 78, in which the space enclosed within the

dotted line is supposed to contain uniform rotation. This
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requires that the load should be distributed throughout the region

in question (compare § 92), a condition that could be only

approximated in practice by the employment of a number of

surfaces, such as indicated diagrammatically by the stouter lines

shown in the figure. The form of these surfaces for the con-

ditions stated is that of a series of concentric cylindrical sections.

Fig. 79.

§ 125. Peripteroid Motion in a Simply Connected Eegion.—The

problem presented in the case of an aerofoil of finite lateral

extent is, from the present standpoint, one of some difficulty,

inasmuch as the region under these circumstances becomes

simjily connected, so that cyclic motion can no longer exist, and

rotation in some form constitutes the only solution. It is, of

course, conceivable that flight in an inviscid fluid is theoretically

impossible.

Let us first study the case of a viscous fluid, and then, by
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supposing the viscosity to become less and less, endeavour to

approach the conditions of the inviscid.

We have seen in § 117 that the lateral terminations of the

aerofoil give rise to vortex cylinders, which trailing behind

gradually dissipate their energy in the wake. Such a sup-

position presents no difficulty in viscous fluid, for the core of

the vortex cylinders can then be formed of a mass of fluid in

rotation.

Now we know that two parallel vortices, such as we have here,

possessed of opposite rotation, in the first instance attract one

another, and by their mutual interaction move through the fluid

parallel to one another in the direction of motion of the fluid

that lies between them (§ 93). Consequently in the present

instance they will precess downwards as fast as they are formed,

so that the aerofoil and its accompanying vortex train will appear

somewhat as shown diagrammatically in elevation and plan in

Fig. 79.

But if the dissipation of the vortex motion takes place

sufficiently slowly, as when the viscosity of the fluid is not great,

the vortices may persist until they reach the level of the ground.

Under these circumstances one of two things will happen

:

either the vortices will spread apart as they approach the ground

surface, each acting under the influence of its own " reflection
"

in the well known manner, or the ends of the vortices will attach

themselves to the surface in the manner suggested by § 93.

If it be supposed that the aerofoil and its load were created in

some upper region, and set in motion away from the earth's

surface, the former assumption would be perhaps the most

academically correct : if, however, we suppose the loaded aerofoil

to be launched from the earth beneath, the vortices would

naturally grow out from the surface, and would remain attached

to the surface as they travel with the aerofoil to which they

belong.

In the case of real fluids, the existence of these vortices can be

traced experimentally by the employment of an aerofoil under
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water and inverted (Fig. 80), the pressure region being on its

upper surface, and the vortices being evidenced by the dimples

in the surface of the water. This experiment shows that in

practice the vortices are continually breaking up and being left

behind as fragmentary eddies. If the experiment is tried in a

comparatively narrow vessel the eddies are actually found to

have retrograde motion, owing to the influence of their own
" reflexion " in the sides of the vessel. If the experiment were

tried in an open expanse of water on a large scale it would

probably give more perfect results.

It would appear probable that in a fluid of very small viscosity

vortices springing from the ex-

tremities of the aerofoil and

terminating on the boundary

surface may be permanent ; in

fact, we might regard the whole

system as a single-vortex fila-

ment, with both its extremities

situated on the boundary, and

enclosing the aerofoil as an inci-

dent. Following out this idea,

we should obtain, for an inviscid

atmosphere, a system consisting

primarily of a vortex hoop or half-

ring, loaded in the centre by the aerofoil (Fig. 81), and whose

energy will be perfectly conserved, the aerofoil and its supporting

vortex lying in a plane at right angles to the direction of flight.

Such a system in a fluid that is truly inviscid would be uncreatable

and indestructible, just as in such a fluid a vortex ring is uncreatable

and indestructible. The system of static forces called into play

is represented diagrammatically in Fig. 82, in which the tension

due to the vortex motion is represented by an irregular polygon

following the vortex core, the forces at right angles being those

due, on the one hand to the load on the aerofoil, and on the

other to the cyclic motion round the vortex core in translation,
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that is, the force that prevents an ordinary vortex ring from

collapsing on to itself.

Pending the complete hydrodynamic investigation of such a

system as above sketched out, it must be regarded somewhat in

the light of a speculation in which there is nothing actually

Fig. 81.

improbable. The conception suggests that if we had been called

into existence surrounded by an atmosphere destitute of viscosity

our natural method of locomotion would have been to glide

horizontally sustained on the crest of a vortex hoop, a structure

Fig. 82.

which from its immutability would require to be specially created

at birth, and would after death continue to pervade the world for

all time like a disembodied spirit.

§ 126. Peripteral Motion in a Real Fluid.—In dealing with a

real fluid the problem becomes modified ; we are no longer under

the same rigid conditions as to the connectivity of the region.
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The whole subject of cyclic motion in the case of a viscid fluid

has not been thoroughly investigated. It is evident that to a

certain extent the restrictions proper to the inviscid fluid must

ajDply, but since we can generate rotation we are able to induce

vortices with a freedom not possible when viscosity is absent.

Basing our argument on the facts as already ascertained, it is

evident that if we continuously generate vortices at the right and

left hand extremities of the aerofoil, as in Fig. 79, we can regard

these vortices as forming in effect, taken in conjunction with the

Pig. 83.

aerofoil itself, an obstacle to connectivity, so that, although the

vortex dies away after a while, it persists as long as is necessary

to permit of a cyclic system being established and maintained.

It is probable that these terminal vortices do not each actually

consist of a single vortex but rather of a multiple system of

smaller vortices ; especially should this be the case with the

larger birds, and similarly for mechanical models of any size.

We can conceive that these vortices are formed after the

manner indicated in Fig. 83, in which an aerofoil is represented

in end elevation with the flow indicated diagrammatically. We
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may suppose that the air skirting the upper surface of the aero-

foil has a component motion imparted towards the axis of flight,

and that skirting the under

surface in the opposite direc-
|

tion, so that when the aerofoil

has passed there exists a

Helmholtz surface of gyration.

This surface of gyration will,

owing to viscosity, break up

into a number of vortex fila-

ments or vortices after the

manner shown.

Fig. 84.

§ 127. Peripteral Motion in

a Real Fluid (continued).—The cyclic flow of the vortices to the

right and left hand of the aerofoil finds itself superposed on the

main cyclic system of the

aerofoil, so that the axes of

these vortices will not be

parallel to the axis of flight

as might be supposed, but

will take up a resultant

direction and may be con-

ceived to spread out as

shown in Fig. 85. The

compounding of two cyclic

systems into a resultant

system is illustrated dia-

grammatically in Fig. 84,

in which the circle a a a

represents the main cyclic

Pj(j_ 85. system, that whose support-

ing reaction is concerned in

sustaining the load ; h h represents the cyclic system of one of

the vortex filaments, and c c the resultant.
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§127 AERODYNAMICS.

Eepresenting diagrammatically the relative strengths of the

cyclic systems as the sides of a parallelogram (Fig. 85), we arrive

at an indication of the manner in which the vortices will spread

as they are left behind by an aerodrome in flight.

Following the matter further we may represent the interaction

of the vortices on each other in the manner shown in plan in

Fig. 86. This figure is merely a diagram, the motion indicated

EiG. 86.

being based on the known properties of vortices (§ 93). The

filaments will evidently wind round one another like the strands

of a rope, being involved in common in the resultant cyclic dis-

turbance. The two vortex trunks springing respectively from

the right and left hand wings, owing to their rotation being

opposite, do not wind round each other but precess downwards as

in Fig. 79. The motion is represented as becoming incoherent

in Fig. 86, as undoubtedly must sooner or later be the case.
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CHAPTER V.

THE AEROPLANE. THE NORMAL PLANE.

§ 128. Introductory.—Any material plane, that is to say any

thin rigid plate bounded by parallel plane surfaces, when propelled

through the air or held stationary in air in motion, experiences

a reaction of greater or less magnitude. Any such "plane " is,

from the manner of its employment, termed an aeroplane.

Theoretically an aeroplane is regarded as being material and

rigid without possessing thickness. In practice, a certain

amount of thickness being necessary, the edges may either

be cut square, as in the planes employed by the late Professor

Langley, in which case an allowance requires to be made for the

edge effect, or, the edges may be carefully bevelled and rounded

off, so that the aeroplane becomes an equivalent body of stream-

line form, in which case it is believed that no allowance is

required.

The study of the aeroplane may be said to form the elementary

basis of experimental aerodynamics as relating to the problem of

flight. Whilst laying due stress on this fact, it may be pointed

out that the importance of aeroplane study consists in its educa-

tional value and its bearing on certain subsidiary problems,

rather than in the direct application of the aeroplane to the main

function of flight, i.e., the support of the weight. This statement

might appear somewhat unexpected, but it may be explained at

the outset that the author does not employ the term aeroplane

outside its correct signification, that is to say, to denote other

than a true or plane aeroplane ; the misuse of the word being

avoided by the introduction of the term aerofoil,^ to denote a

1 From Gr. aipos and <pvKKov (lit. an air-leaf).
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§ 128 AERODYNAMICS.

supporting member, or organ of sustentation of undefined form.

Thus a j^ldfia aerofoil is an aeroplane, or a pterygoid aerojoil is an

aerofoil of wing-like form.

There are cogent reasons why the aeroplane should take fore-

most place in the matter of experimental study. It is recognised

as essential to the inductive mode of investigation that, when-

ever possible, one of the conditions of experiment, and one only,

should be changed at a time, and it is primarily on this ground

that the aeroplane recommends itself. The aeroplane is possessed

of a geometrical definiteness that admits of no ambiguity ; a

specified contour form, making a definite angle with, and pre-

senting a definite aspect to the line of flight, constitutes (for any

given velocity) the whole of the factors by which the conditions

of experiment are defined. Beyond this there is (skin-friction

apart) a certain obvious relationship between the pressure com-

ponents about the co-ordinate axes, and the a)igle of flight, that

forms a valuable and instructive link in the interpretation of

experimental results.

§ 129. Historical.—Our knowledge of the aeroplane to-day is

the result of the work of a number of investigators. The exact

date at which the study of the subject was seriously taken in

hand is in doubt ; a certain amount of experimental work on the

resistance of bodies in the air is known to have been done early

in the eighteenth century, notably by Sir Isaac Newton (1710),

and Dr. Desaguliers (1719), whose observations are, however,

believed to have been confined to the motion of spherical bodies.

Newton also extended his researches to the theoretical study of

bodies of different forms in a hypothetical medium (ref. § 2), and

showed that the theoretical and experimental results are not

altogether out of harmony in spite of the unreal nature of his

hypothesis. Newton further attempted to solve the problem of

the normal plane in an incompressible continuous medium

{Principia, prop, xxxvii. and cors. 7 and 8, prop, xxxvi). These

propositions, resting as they do on the supposition of the
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THE NOEMAL PLANE. §130

congealing of portions of the fluid, are known to be unsound, ])ut

the results are not without interest.

The next experimental records chronologically are those of

Eobins (the inventor of the experimental device known as the

nhirUng table), about the middle of the eighteenth century, and

Charles Hutton in and about the years 1787—8; whilst among

the most recent may be mentioned the systematic researches of

S. P. Langley, 1888—90, and the investigations of W. H. Dines

of about the same period. An abridged account of the most

important of these investigations, with some criticism of the

methods and conclusions, is given in a subsequent chapter^

devoted to experimental aerodynamics.

§ 130. The Normal Plane.—Law of Pressure.—The simplest

case of the aeroplane is that in which the direction of motion

through the air is at right angles to its surfaces.

Even under these simple conditions the determination of the

pressure-velocity law has not been made without some difficulty,

and although the approximate form of the expression, P varies

as T^, was correctly given by Hutton, Smeaton and others more

than a centurj' ago, it is only of recent years that the constant

connecting the two sides of the equation has been ascertained

with any degree of certainty, and that with a possible error of

five per cent, or so. "Writing the expression in the form

—

P = k F^, the value of k is variously given by different authorities

as from "00166 to '0023 where P is in pounds per square foot, and

V is in feet per second.

The experimental basis of the law of the Normal Plane is two-

fold ; tests of wind pressure at known mean velocity, and

experiments on the resistance to motion of planes through still

air. At first sight there might appear to be no fundamental dis-

tinction between these two methods ; the difierence might be

thought to be merely one of relative motion ; owing, however, to

certain considerations that require to be taken into account, the

1 Chap. X.
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§ 130 AEEODYNAMICS.

results obtained by the two methods are strikingly different, and

the discrepancy in the value of the constant as given by different

writers may be to a certain extent explained.

§ 131. Wind Pressure Determinations.—One of the character-

istics of the aerial disturbance which we know as wind is the

continual fluctuation both as to direction and velocity ; this

characteristic is so well known as to have found expression in the

vocabulary of every civihsed nation—"gust of wind," "coup

de vent," etc. Wind may be said to consist of a general motion

of translation with a superposed motion of turbulence (§ 37),

the result being that at no point does the velocity or direction

remain constant for any length of time.

One immediate consequence of this variability is that for a

wind of known mean velocity = V, the mean value of V'^ is

higher than would be the case if the problem were one of uniform

air current having the same mean velocity, and therefore the

pressure (which depends upon V") will also be higher. If we

neglect the secondary effect due to the components of motion of

the air in directions parallel to the pressure plane (§ 146 et seq.),

so that the mean pressure on the plane is due only to the normal

component of motion of the wind, then it would appear that the

pressure will be proportional to the energy per unit volume ; for

dimensionally :

—

Pressure = Force /L^

Force = Energy /L

Pressure = Energy /L^.

That is to say, the pressure is proportional to the energy per unit

volume.

Now the average energy per unit volume in the wind is the

sum of the separate energies of mean velocity and of turbulence

(the latter for our present purpose being reckoned only in respect

of motion in the direction at right angles to the pressure plane),

and in a wind possessing such energy of turbulence, the mean

l)ressure will be greater than would be the case for the simple
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air current in the proportion that the sum of the energies bears

to the energy of mean velocity.

The validity of the above reasoning is unquestionable if we are

dealing with a fluid whose properties are those of the Newtonian

medium ; the energy of turbulence being represented by a varia-

tion in the individual velocities of the particles such as will not

affect their mean velocity. It is, however, open to question

whether it applies rigidly in the case of a fluid possessed of

continuity.

Another standpoint from which we may view the present

problem is that the turbulence, by effecting a rapid transference

of momentum from one part of the fluid to another, acts in effect

to augment the apparent viscosity, and in this way adds to the

pressure reaction. In any case experiments made on a fixed

plane or other body in moving air, cannot be regarded as valid

when the conditions are reversed.

Be3'ond the above there are certain considerations of a practical

nature that tend to further invalidate wind pressure measure-

ments as representing aeroplane resistance. It is probable that

the maximum pressure on a plane under given wind conditions

is not in proportion to the area exposed, and that a small plane

is liable to greater extremes, and where a maximum record is

made, the absolute area exposed becomes an important factor in

determining th& pressure per unit,

§ 132. Still Air Determinations.—Under the conditions of

experiment in still air, none of the foregoing considerations

apply, and it may be safely asserted that the resistance per

unit area is approximately proportional to the square of the

velocity and is almost independent of the size of the plane.

There is some doubt as to the exactitude of the F^ law, as in all

similar cases of fluid resistance, and it is likely that this doubt

will remain until the methods of experiment have undergone

refinement ; on the one hand, if there is a departure, existing

method is too crude to determine its nature, on the other hand
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§ 132 AERODYNAMICS.

it has been shown by Allen (§ 35 et seq.), that where the F" law

rigidly applies the resistance is entirely independent of viscosity,

a result that would appear to be highly improbable.

It has been proved from the behaviour of projectiles in flight

that the V^ law breaks down when the velocity of sound is

approached, and without doubt this applies also to an aeroplane

when a similar velocity is reached. The defect that manifests

itself at these high velocities is that the pressure becomes con-

siderably greater than the law would indicate, or as it may be

expressed, the value of the index increases, the expression being

written : P = k V'\ On the other hand, at very low velocities

at which the influence of viscosity makes itself felt the law

becomes modified in the opposite direction, the value of the index

diminishes.

It is probable that in actuality these two influences correct

one another over a fairly wide range, so that the V^ law may
become a far closer approximation than would otherwise be

the case.

§ 133. Quantitative Data of the Normal Plane.—The following

are the generally accepted data of the Normal Plane, the

authority being stated where known :

—

Wind Pressure.—P = k V~ where the constant k = "0023, P
is in pounds per square foot, and V feet per second.

The value of k given is that usually accepted, and will be

found in the majority of text-books, also in the " Encyclopaedia

Britannica " under the article on "Wind." Molesworth, in

his " Pocket Book," gives the figure "002288, but his authority

is not disclosed, neither are particulars given of the method

by which accuracy has been obtained to so many places of

decimals.

Still Air Data.—Form of expression and units as before.

Hutton is quoted as giving k = '0017. This result at the time

of his experiments (1787—8) must be considered quite remark-

able, in view of the fact that one of the most recent
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determinations, the corrected mean of a great number of

experiments made by Professor Langley, exactly a century

later, gave an almost identical result.

Langley, in presenting his final result, k = "00166 as the

corrected mean of his experimental records, states that the

possible errors of experiment are such as to leave a probable

uncertainty of about 10 per cent. The temperature and pressure

corresponding to the above value are given as 10 degrees C. and

736 m.m. mercury ; if we reduce to sea level we obtain Hutton's

result, k = "0017, almost exactly.

Dines^ has shown that the pressure depends not only upon

the velocity but also upon the shajie or " contour form " of

the plane, and that the pressure is least for planes of compact

outline, such as a square or circular disc. In his experiments he

obtained values for a rectangle 16 inches X 1 mch greater in

the proportion of 8 to 7 than for a square of equal area. The

value of k given by Dines for planes of compact form is about

6 jDer cent, below that of Langley ; the latter value is approxi-

mately equal to Dines' result for a rectangle of 4 : 1 ratio. This

6 per cent, difference is an actual disagreement. The planes

employed by Langley for his determination were of square

form.

§ 134. Resistance a FtLnction of Density. — Employment of

Absolute and Other Units. — In order that the expression

P — k V' should be dimensional the constant k must include

a quantity of the dimensions j^. This can be eliminated by

introducing the density of the fluid into the expression.

Employing British Absolute Units, let :

—

P = iu'essnre in j^oundals jJcr square Joot.

V = velocity feet per second.

P = density of fluid, lbs. (mass) per cubic foot.

C = constant.

1 Quarterly Jouinal, Eoyal Met. Soc, Vol. XV., No. 72, October, 1889.
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§ 134 AEEODYXAMICS.

The expression then becomes :

—

P = C p V-, in 's^•hich C
= 32"2 k/p, and for air' at 10 degrees C. and 760 mm. pressure

we have p = "078, whence,

—

. ^ _ 32-2 X -0017 _ _
^ " ^78 - '^-

The equation thus becomes :

—

P = •! P V\
The equation is identically the same in C.G.S. absolute units,

and the constant is of the same value ; that is to say, P = dynes

per square cut., V = cm. per second and p grammes per cubic cm.

If we express P in grammes per square cm., and T" in metres per

second, and substitute for p for air at 10 degrees C, we obtain the

equation in the form :

—

p = -009 T'-.

If the velocity is given in English miles per hour it is sometimes

convenient to have the expression in the form :

—

y2
P (pounds) = ^r^.

§ 135. Fluids other than Air.—If the whole physical properties

of a fluid were represented by the symbols in the equation, or if,

the equation being as it is, the fluid were incompressible and of

zero viscosity, the constant C would be the same for different

fluids.

The experimental determination in the case of sea-water has

been made by Captain Beaufoy, and independently by E. E.

Froude, the results being in close agreement. In absolute units

we have :

—

P = '55 p V'^, that is to say, the value of the constant

55
is i^or approximately four-fifths of that in the case of an-.

This difference is undoubtedly due to the lower kinematic

viscosity of water, which is less than air in the ratio of 1 : 14.

The nature of the relationship connecting the function kinematic

viscositi/ and the changes in the value of the constant, is not very

1 From tlie determination of Eegnault.
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clear ; the existence of 3uch changes shows the form of the

expression to be inexact, for, according to Allen ^§§ 35 and 4*2),

under these circumstances the T'- law cannot strictly apply. It

might, without departing from the form of the expression, be

possible to establish an empirical relationship, and it is in any

ease of interest to endeavour to ascertain the probable magnitude

of the constant for the particular case when viscosity becomes

vanishingly small.

There is no fluid known of which it can be said that viscosity

is a negligible quantity ; neitlier is it possible to deduce from the

data of known fluids what the behaviour of such a fluid would

be. We have consequently to fall back on pure theory.

§ 136. Normal Plane Theory Summarised.—Several methods of

computing the pressure on a normal plane have been proposed

;

up to the present none of these can be considered entirely

satisfactory.

1. The Method of the Xeutonian Medium.—The theory of

the Newtonian medium has been already discussed (§ 4^ ; it

has been shown that on this hypothesis we have two possible

results: (a) if the particles are elastic, P = '2 p V'-; (h) if the

particles are inelastic, P = p V-.

Both these results are higher than that given by experiment

for a viscous fluid, a defect that is due to the faulty hypothesis,

the Newtonian medium possessing no continuity. Newton was

fully conscious of this fact.

2. TheXeutonian Method (Book II., Section YII. prop. xxxvii.).

—

In this proposition,^ Newton arrives at a result for a fluid

possessing continuity the equivalent of which is :

—

P = -25 p r^

3. The Toi-ricelUan Method is here so named merely as a

matter of convenience as being based on the Torricellian

principle, and not as due to Torricelli himself.

In a continuous fluid, the theorem of Torricelli, which is

» See § 129.
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§ 136 AERODYNAMICS.

founded on the Principle of Work, shows that a given pressure

is capable of generating a certain definite velocity in the fluid

;

thus, representing the pressure of the fluid by its hydrostatic

head, the latter gives the height through which a body would

require to fall in order to acquire the corresponding velocity. If

we arrogate that the converse is true, i.e., that a given velocity

is capable of generating the cori-esponding pressure, and that the

conditions present in the case of the Normal Plane are such

that this corresponding pressure will be generated, then we

obtain the result : P = • 5 p V~, for, if s = " head," we have:

8 = — and mass whose weight constitutes pressure = p s, or

pressure = gps=gp^='5p V^.

4. The Helmholtz Kirchhof Method.—This method is based

on the theory of Discontinuous Motion (Chap. III., § 97) ; the

solution is only known in the case of a lamina bounded by

parallel lines of infinite length ; in this case the expression is

:

P = Up V\
The Helmholtz theory of discontinuous motion is in all

probability the correct theory of the fluid ^vhose viscosity is

vanishingly small ; and the above result may therefore be taken

as rigidly accurate. It is unfortunate that the mathematical

difficulties of this method have only been overcome in a few

isolated cases.

To summarise, we have :

—

(1) Newtonian medium (a) elastic

particles C = 2 x\ll shapes.

Newtonian medium (6) inelastic

particles.....
(2) Newtonian method, prop, xxxvii.

(3) Torricellian method .

(4) Helmholtz-Kirchhoff

.

And experimental determinations in ordinary viscous fluids as

follows :

—
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Air (Hutton) ... ... C = '1 Shape not stated.

., (Langley) ... C = '1 Square planes.

,, (Dines) ... ... O = "66 Circular and other " compact

"

forms.

,, (Dines) ... ... C = "76 Kectangular lamina 16: 1 ratio.

Water (Beaufoy, Froude) C = "55 Shape not stated.

§ 137. Deductions from Comparison of Theory and Experiment.

—

The method of the Newton medium may he dismissed on the

grounds of faulty hypothesis ; the prop, xxxvii. method may

be discarded as being certainly unsound ; the Torricellian method

is based on a tacit assumption that the fluid in proximity to the

front face of the plane is destitute of velocity, which we know is

not true, except at one point or on one line. The Helmholtz

method alone stands on a scientific basis, and at present this

gives a result in but one special case.

We are in want of data ; let us assume data and develop the

method. The results can be corrected for more reliable figures

when such have been ascertained.

Data assumed :

—

Helmholtz' result for infinite lamina . . C = '44.

Dines' determination for plane 16 inches X
1 inch assumed as for infinite lamina . C = '76 (Air).

Beaufoy's result augmented 10 per cent.

for infinite lamina. (Water) . . . C = '60.

These values are plotted in Fig. 87, in which abscissae

represent viscosity (kinematic), and ordinates values of C ; that

is, where V is constant, ordinates are proportional to kinematic

pressure.

Drawing tangents to this curve at a and h, we can deduce the

values of the indices q and r in the general equation of

§§35 and 42,—ii = c v'' l^ V\

The result given by the curve as drawn is as follows

:

Water : R = c f^'^ l^-^^ V^-^K

Air : R = c v^ l^'^ V^'K
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These figures must be regarded as a mere illustration. Not only

are the data unreliable but there is considerable doubt attaching

to the accuracy of a curve drawn through three points only.

Observations are wanted made with planes of one standard size

and shape, and at a standard velocity in fluids of different v

value, in order that this indirect method of estimating the index

values should be really effective.

§ 138. The Nature of the Pressure Reaction.—The resistance

experienced by an aeroplane in motion is due to the difference of

Abscissae, = KinejrLa.tic Vtscosity

O^-dinates, = C

'^

Fig. 87.

pressure between its anterior and posterior faces, and it is the

integration of this difference into the area that has hitherto been

referred to as the pressure on the plane and denoted by the

symbol P.

By the theory of Helmholtz, the pressure difference in a fluid

of zero viscosity is entirely due to the excess of pressure on the

front face, the " dead-water " being supposed to carry the

ordinary hydrostatic pressure of the fluid.

In real fluids there is a viscous drag at the surface of dis-

continuity, or stratum of turbulence, across which a continuous

communication of momentum takes place. This constitutes a
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force acting rearward on the dead-water as a whole, the reaction

of which appears as a region of decreased pressure (a partial

vacuum) on the rear face of the plane.

Dines^ has investigated this point experimentally, and has

found that for a one foot square plane in air at 60 vi/li., the

deficit of pressure on the rear face is approximately one-half the

excess pressure on the front of the plane, the measurement being

made in the centre of the plane. A similar proportion was

found to obtain when the pressure on the mouth of a tube was

measured pointed towards and aivay from the relative wind

direction.

Lord Kelvin has pointed out (Nature, p. 597, 1894) that the

pressure recorded by Dines in the above experiment, i.e., 1*82

inches of water, corresponds exactly to that given by the

Torricellian method, that is to say, that the excess pressure that

occurs at the centre of a normal plane for any given velocity is

that of the corresponding hydrostatic head. This fact is fully

consistent with hydrodynamic theory. If the stream lines could be

plotted it is evident that at the point on the face of the plane

where the stream divides, the velocity of the fluid will be nil,

therefore by § 82 the pressure at this point will be in excess of

that at a distance away by an amount corresponding to the head

due to the relative velocity of the fluid.

We have here a definite proof that the Torricellian method is

inapplicable in the determination of 'the constant C, for at every

other point on the face of the plane than that at which the stream

divides the fluid is possessed of velocity, and consequently its

pressure is less than that given by the calculation on the basis in

question.

There may be a small departure from the maximum pressure

law due to viscosity, but there is every reason to suppose that in

fluids of moderate viscosity such error may be ignored; the

1 " On the Variations of Pressure caused by the Wind blowing across the

Mouth of a Tube," Quarterly Journal, Eoyal Met. Soc. XVI., No. 76,

October, 1890.
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motion in advance of the plane may be looked upon as

irrotational.

The Helmholtz-Kirchhoff result shows that the distribution of

pressure over the front of the plane is fairly uniform over the

central jpart, falling off rapidly near the edges ; this is evident

from the fact that a maximum of '5 is associated with a

mean = '440 in the case of the infinite lamina. In the case of a

plane of compact outline it is probable that the Helmholtz

hypothesis would give a considerably lower figure, about '40 or

somewhat less ; the maximum, however, will be the same as for

the infinite lamina, so that it may be anticipated in this case the

pressure will fall off more rapidly towards the periphery.

§ 139. Theoretical Considerations relating to the Shape of the

Plane.—The influence of the shape of the plane is most con-

veniently studied in the two extreme cases to which we have

already directed attention, i.e., the compact form (a square or

circular disc) and the parallel strip or infinite lamina. The

former is a symmetrical case of three-dimensional motion ; in the

latter the motion takes place in two dimensions only.

It has been sometimes suggested that since the pressure

increases with the relative periphery, the j)ressure is greatest in

the peripheral regions ; we have already seen that such is not

the case. The true reason is to be found in a complication of

causes.

(1) The congestion of fluid that gives rise to the pressure

region is less when the fluid can escape laterally in two dimen-

sions than when its " spread " is confined to one dimension.

(2) The " spurting " of the lines of flow past the edges of the

plane will be greater when the access of the fluid to the " hinter-

land " is the more complete. Thus in an infinite strip of

width = h the layers of fluid adjacent to the face of the plane

are fed by a much greater stream area than in the case, say, of a

circular disc of which h is the diameter, and the spurting past

the edge of the plane will be correspondingly the more vigorous

;
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this is represented diagrammatically in Fig. 88. It is evident

that the plane that causes the greater displacement of the lines

of flow will experience the greater pressure.

(3) The viscous drag on the dead water will be greater when

the periphery is greater. Thus, the pressure on the rear face of

the plane will be less, that is, the vacuum will be greater for

planes of elongate or erratic form.

(Dmgramnmtic.i

Fig. 88.

§ 140. Comparison with Efflux Phenomena.—An analogous case

illustrating the foregoing principles is to be found in the efflux of

fluids under pressure (§ § 95—96).

In the case of a jet issuing from a

simple circular orifice we have a case

of three-dimensional motion, and as

the flow takes place inwardly the

layers of fluid in the vicinity of the

orifice will be fed by a greater stream

area than would be the case if the

orifice had the form of a slit and

the motion in two dimensions ; the

" spurting " at the edge will therefore

be more vigorous and the contrac-

tion of the jet will be greater. This

is found experimentally to be the case, the coefficient of con-

traction being usually taken, for the circular aperture, as from

"615 to "620, whereas for a slit aperture it is found to be about

•635, On the principles discussed in § 95, the greater the jet

contraction the less the pressure is relieved on the wall of the

vessel in the vicinity of the orifice.

We may follow the comparison further. In the case of the

Borda nozzle the access of the fluid to the jet is improved by the

arrangement of an inwardly projecting " lip " so that the

pressure on the wall of the vessel undergoes next to no reduction,

and the coefficient of contraction becomes (theoretically) = "5

or by experiment "515.

193 oA.F.



§ 140 AEEODYNAMICS.

By similarly fitting a lip or a projection to the edge of the

normal plane, opposed to the relative direction of the wind, its

pressm'e constant can be considerably increased. If the lip be of

sufficient height to render motions of the fluid adjacent to the

plane itself very small, so that the square of such velocity as it

may possess may be everywhere negligible, then the pressure on

the face of the plane will, on the hydrodynamic principle already

cited (§ 138), be everywhere that due to the Torricellian head,

and the pressure constant will be "5
; it would appear to be

impossible for it to rise above this value.

In viscous fluids there would be doubtless some departure from

strict theory, owing to the fact that the fluid in advance of the

plane has rotation impressed upon it by viscous stress, and the

hydrodynamic principle assumes irrotation ; in ordinary fluids

the error due to this cause should not be great. Beyond this

there is the separate phenomenon of the suction on the back

of the plane, which may be regarded as supplying an added

constant, the sum of this and the pressure constant making the

C of the equation.

§ 141. The auantitative Effect of a Projecting Lip.—For planes

of compact outhne. Dines obtained the following results :

—

Plane 1 foot diameter, circular.

Projection of lip or rim. Percentage increase.

^ inch 6 per cent.

3 108 »J
^ "

We have stated that the probable value of the pressure

constant on the Helmholtz basis for a plane of compact outline

is about '40 or somewhat less ; this would give a possible

augmentation of 25 per cent, or somewhat more (the limit being

•5 according to the preceding article) ; but Dines' result is the

percentage on the whole constant and requires to be multiplied

by 66/40, so that his figure for a f inch rim becomes 23 per cent.

This result is in harmony with the theory, but would seem to
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point to the probability of a lower value than "40 for the Helm-

holtz constant, in view of the probability of higher resistances

being experienced with greater depths of rim. It is worthy of

remark that Dines obtained, for a hemispherical cup, pressures

about 16 per cent, greater than for a plane circular disc.

In general, if we neglect the influence of rotational motion

wWiin the stream, let, as before, C be the experimentally

ascertained constant for any plane, and c, the pressure constant

on the Helmholtz hypothesis, and let C -{- n C he the total

augmented pressure for the same plane fitted with a deep rim, we

shall have the relation :

—

ci = '50 — n C or, n C = "50 — ci.

If we apply this to the two-dimensional case of the infinite

strip, we have Kirchhoflf's determination of the Helmholtz

constant ci = "440, and Dines' experimental result C = '16, so

that

—

•76 n = -50 — -44 or, n = '08.

That is to say, the maximum possible addition to the pressure is,

in this case, about 8 per cent.

Dealing with this problem in an analytical investigation,

Love^ has shown that if e be the ratio of height of lips

to breadth of plane, the pressure will be increased approxi-

mutely by an amount =yV7 of that for the same plane with-

out the lips. It is evident that this expression only holds good

for small or moderate values of c, for the limiting value would
_ r

otherwise be exceeded. This would occur when V e = 77 x "08
o

= '0666 or, e = '258, so that Love's approximate equation will

be perceptibly in error for some considerably smaller value.

§ 142. Planes of Intermediate Proportion.—We have so far dealt

with the two extreme cases of contour form typical of two-

^ "Theory of Discontinuous Fluid Motion," Proc. Camb. Phil See, VII..

1891.
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dimensional and three-dimensional motion, the infinite strip,

and the plane of compact outline.

Our knowledge of other forms is at present somewhat limited.

It may be fairly assumed that, just as the value of the constant

is, within the limits of observation, the same for the circular as

for the square form, so for an ellipse or other tolerably regular

elongate form it will be the same as for a rectangle of like

proportions. We will therefore confine our attention in the

present section to rectangular planes of different proportions.

+ .
I

Abscissae, = Len-^tli in ter^ms of Br-eadtfh
'

I

.
" " I

I

Ot-c/inates^ — C .

/(? 16

Fig. 89.

We have to rely chiefly on the observations of Dines for data.

Fig. 89 gives the value of C plotted as a function of the length of

the plane in terms of its breadth, the form of the plane being

represented graphically by the shaded area. The small circles

denote the observation data on which the curve is based. The

curve is not carried beyond the ordinate proper to the square

plane, as it obviously repeats itself, the corresponding abscissae

being in arithmetical and harmonical progression respectively.

For planes of highly irregular form no definite rules can be

laid down. An assumption that such planes are built up of

simpler components will sometimes enable the value of C to be
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assessed; but as the whole range of C values lies almost within

the admittedly possible allowance for experimental error, our

want of knowledge on this point is not so serious as might

otherwise appear.

§ 143. Perforated Plates.—Dines has investigated the effect of

perforations as affecting the resistance of the normal plane. In

one case a plane one foot square was taken and eight circular

holes, each one square inch area, were punched, as illustrated in

Fig. 90; no difference of pressure could be detected whether any

or all of the holes were covered or open. Mr. Dines remarks :

" The eight holes together take away

more than 5 per cent, of the plate, yet

a difference of 1 per cent, in the

pressure, had it existed, would cer-

tainly have been apparent." Further

experiments were made with two kinds

of perforated zinc, the one sample,

holes "08 inch diameter 77 per square

inch, having only 61 per cent, of the

total area, was found to give 91 per _
,

Fig- 90.
cent, of the total pressure; another

sample with perforations '22 inch diameter, 11 or 12 per square

inch, possessing only about 66 per cent, of the total area, gave

80 per cent, of the pressure on a solid plate.

The curve given in Fig. 91 is deduced principally from

Dines' experiments. Abscissae give percentage area removed,

and ordinates show the corresponding pressure as a percentage

of that on the same area intact. It is supposed that when the

percentage of area remaining becomes small, the perforations are

of square form as indicated.

The anomalous behaviour of the perforated plate is perfectly

explicable on theoretical grounds.

The region in the rear of the plane is occupied by the turbu-

lent "dead-water" at a pressure below that of the undisturbed
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fluid. When a hole is made in the plane, the air flows through

from the front to the rear under the influence of the difference of

pressure between its two faces. The stream of air finding its

way through the perforation carries with it an amount of

momentum per second, equal to the force of which the plane is

relieved. If there were a conduit to carry this efflux air away

without interfering with the dead-water, then the plane would

Q̂
o
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plane itself that prevents the dead-water from heing washed

bodily away. Consequently the vacuum on the rear of the plane

is increased to just the same extent as the pressure on the front

is diminished, both quantities being measured by their integra-

tion over the respective faces of the plane ; that is to say, the

existence of a perforation has no influence on the total reaction

on the plane.

When perforations are made of great size in proportion to

the dimensions of the plane, we can conceive of the efflux

stream passing en masse through the dead-water without parting

with the whole of its momentum, so that in such a case the

plane will be relieved of a portion of its resistance. The same

may be supposed to happen if the perforations become

sufficiently numerous.

Note.—In the present chapter the discussion is based prin-

cipally on the result of Mr. Dines' investigations, the value of

C for the plane of compact form being taken at '66. The

author has been influenced in this partly by the fact that in

all probability Dines' results are nearer the truth than those

of Professor Langley, but more particularly by the consideration

that when instituting a comparison it is safer to confine one's

attention to the work of a single investigator, and Langley's

experiments with the normal plane were not carried far enough

to give the information required.

For general employment in the subsequent volume ("Aero-

dromics ") the value of C is taken as '7, which is the result

given by Langley for a plane of square form and corresponds

with the result given by Dines for a plane 4x1.
In adopting this value it has been borne in mind that it

is desirable to have a general average figure that can be used

with safety without specifying the exact form of the plane, and,

taking C as '7, it will not matter seriously whether Langley's

or Dines' result should ultimately prove to be the nearer to

the truth.
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CHAPTEE VI.

THE INCLINED AEROPLANE.

§ 144. Introductory. Present State of Knowledge.—The problem

presented by the mclined aeroplane is of very great complexity,

and no general solution has at present been found. Our know-

ledge of the behaviour of the plane inclined to its direction

of motion is in the main confined to the immediate results of

experiment, extended it may be by the drawing of smooth curves

through the observed points plotted on a co-ordinate chart. In

certain extreme cases theoretical solutions have been found, and

in other instances empirical formulae have been proposed, in

fairly close agreement with the results on which they are based.

In addition to the considerations that weigh in the case of the

normal plane, we have now not only to deal with some unknown

law correlating pressure and angle, but we have also to take

account of the remarkable effects due to the influence of aspect}

The early writers on fluid dynamics did not draw a proper

distinction between an aerojilane and the surface of a solid of

similar form, such for example as the wall or roof of a building

;

this has resulted from a too literal application of the impact

theory of Newton. The pressure on a circumscribed area of the

surface of a solid cannot be given by any formula, or, in fact, at

all, unless the form of the remainder of the solid be known ; any

equation or theory that attempts to give a solution for the indi-

vidual elements of the surface of a body independently of its

^ A word due, in its present usage, to Langley. By asj^ed is meant the

arrangement of the plan-form of an aeroplane, or other aerofoil, in relation

to the direction of flight.
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whole form, is of necessity unreliable and in general entirely

misleading.

An aeroplane may be regarded as the special case of a body

whose whole form is defined by the shape of its face in pre-

sentation, and consequently in stated aspect its jjressure reaction

can be expressed as a function of its angle and velocity.

§ 145. The Sine^ Law of Newton.—The difference between the

behaviour of a real fluid and the Newtonian medium, sufficiently

evident in the case of the normal plane, is further accentuated

when the effect of inclining the plane is taken into account.

According to the hypothesis of the Newtonian medium the

Fig. 92.

pressure is due to the impact of the particles of which the

medium is composed. In the present case it is simplest to

presume, in the first instance, that the plane and particles are

perfectly elastic. Let Eig. 92 represent a plane the pressure

on which is due to the momentum communicated by a Newtonian

medium, whose relative path is that indicated by the arrows

making an angle ^ with the plane itself. Then if A be the area

of the plane, and V the velocity of the " medium " whose densit}^

is p, the total momentum of the stream per second = p A V'^ sin /3,

and component normal to plane, = p A Y- sin- (3, and on the

assumption of perfect elasticity the total momentum communi-

cated per second is :—2 p A V'~ sin'^ /3, or, if P^ = pressure per

unit area on the plane we have

—

Pp^2p V s/»2 /3. (1)

But for the normal plane, denoting the pressure by the
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symbol P90, we know that for the conditions of the present

hypothesis

—

P9o = 2pF2 (^si36),

or we have

—

Pfi = P90 X sin^ 13. (2)

If we modify the hypothesis to the extent of supposing the

plane inelastic both P^ and Pqq are diminished in the ratio 2:1,
or, Pp = p V- sin^ 13,

and P90 = P V~,

.-.the relation P^ = Pgo X sin^ /3 still holds good.

We may view this problem in another light with the same

result. If we regard the motion of the plane as compounded of

its edgewise and normal components, then the former can be

neglected since it does not involve any reaction on the plane.

Now if Vi be the value of the normal component, the mass dealt

with per second is p A Vi and the momentum per second is

P A Vi, or (on the elastic hypothesis),

Pp = 2p l\^ (3)

which is the same as (1), for T"i" = F- sin" /3.

So that the pressure in the Newtonian medium is independent

of the edgewise component of motion, and is the same as for a

normal plane of velocity equal to the normal component of the

actual motion.

An important consequence of this is that if we had to do with

a Newtonian medium, or if a real fluid behaved as such, then the

time of falling of a horizontal jDlane would be independent of any

horizontal motion impressed upon it. The " falling plane,"

therefore, becomes the experimentum crneis in respect of the

" sine square " law.

§ 146. The Sine'^ Law not in Harmony with Experience.—It has

long been known that in actual fluids the sine square law does

not hold good. Probably the first experimenter to ascertain this

fact was Vince in the year 1797 (Phil. Trans., 1798) ; later

we find an explicit statement by Eobinson (System of Mechanical
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Philosophy, 1822), that :
" The resistances do by no means vary

in the ratio of the squares of the sines of the angle of incidence

;

and for small angles the resistances are more nearly proportional

to the sines than to their squares." This is a very important

statement, from which a vast amount of inference may be

drawn ; it has been fully justified by the subsequent work of

Wenham, Dines, Langley, and others.

The most direct disproof of the Newtonian law is to be found

in experiments with thefaUing plane. It is found that if a hori-

zontal plane, suitably mounted in vertical guides, be allowed to

fall freely, the time of fall may be increased almost indefinitely

by imparting to it a simultaneous horizontal motion. This was

pointed out by Wenham in the year 1866, and has more recently

been brought into prominence by the experiments of the late

Professor Langley. Langley employed an appliance which he

termed a "plane dropj)er," mounted upon the arm of his

"whirling table" (§ 233), for making his determinations. It

is of interest to note that although Langley took occasion more

than once to comment upon the defects of the Newtonian law,

as a deduction from his other experiments, he did not apparently

appreciate that the falling plane really constitutes a direct

disproof.

§ 147. The Square Plane.—The nature of the Newtonian dis-

crepancy and the extent of agreement between the work of

different investigators may be exemplified in the case of the

plane of square form.

The square plane may be taken as the type of greatest sim-

plicity which includes generally planes of square j^rajwrtion ;

such planes are not affected seriously by considerations of

"aspect," although doubtless a square plane will not give exactly

the same results in diagonal as in square presentation. The

latter is always assumed in the absence of an explicit statement

to the contrary.

In Fig. 93, in which ordinates represent the relative pressure
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on the plane for all angles from degree to 90 degrees, we have

curves plotted as follows :

—

(A) The Newtonian or sine^ law— Pp = Pgo sin^ ^ ;

(B) According to an empirical formula proposed by Duchemin

T) _ T) 2 ^"^ ^
1 + sin^ p

{(J) From the experiments of Langley

;

(D) From the experiments of Dines.

SQUARE PLAME
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is normal. This is one of the many experimental disagreements

that at present are far too common in aerodynamics.

I r
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Fig. 94.
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§ 148. The Square Plane.—Centre of Pressure.—According to

the Newtonian hypothesis, the centre of pressure on an inclined

plane should be coincident with the geometric centre. In real

fluids this is found not to be the case.
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This point has been fully investigated, so far as the square

plane is concerned, by Joessel, Kummer, and Langley. It is

found that for the normal plane the geometric and pressure

centres are coincident, but that as the plane is inclined the latter

is displaced towards the leading edge, the displacement of the

centre of pressure increasing as the angle made by the plane to

its line of flight becomes less and less. This is shown in the

form of a diagram in Fig. 94, in which it is supposed that the

plane is swung through a quadrant, from zero to 90 degrees, the

locus of its centre of pressure, as determined by the different

observers, being indicated in the figure, in which also are given

the position of the plane at every 10 degrees angle, and one-tenth

divisions from which the position of the centre of pressure may

be read in terms of the width of the plane.

The general character of the curves of the square plane, both

as to magnitude and location of pressure, are shared to a greater

or less extent by planes of other proportions.

§ 149. Plausibility of the Sine'^ Law.—The general acceptance

of the experimental fact that the sine^ law is in error, has without

doubt been delayed by the very plausibility of the law itself.

If we suppose (as is quite customary in dealing with physical

problems) that the diagonal motion of the plane is compounded

of its edgewise and normal components, then, as in the previous

discussion (§ 145), we may, neglecting skin friction, regard the

former as of no influence and the pressure as due entirely to

the normal component. In greater detail, if we suppose the

motion of the plane to take place in steps, i.e., alternate edgewise

and normal movements, and if we assume the former to take

place with infinite rapidity, and the steps to become infinitely

numerous, then it would appear that the pressure due to the

inclined motion has been demonstrated to be, in effect, exactly

that due to the normal component of the whole motion.

The above reasoning is manifestly in error, since the result

does not accord with experience. The fallacy has been pointed
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out by Lord Kayleigh, whose explanation is substantially as

follows :

—

When the plane undergoes the edgew'ise component of its

motion, it abandons air which has been set in motion (normally)

at its trailing edge, and embraces air that has not been set in

motion at its leading edge. This exchange obviously results in

an augmentation in its resistance. This reasoning applied to the

" step by step " motion evidently continues to apply when the

steps become infinitely small and the motion continuous,

consequently the pressure will be greater than that due to the

normal com^ionent alone, as is found experimentally to be the

case.

It appears to the author that the augmentation of pressure

will be greater than might be supposed from the foregoing

reasoning, for the abandoned air, having motion in the same

direction as the plane, will impede the flow of air round the

followdng edge and so maintain a greater pressure difl'erence

between its two faces ; likewise the new air seized by the

advancing edge being already in circulation round that edge has

a higher velocity relatively to the plane than the normal com-

ponent of motion, so that the pressure it will develop will be

greater than if it had been merely new air coming into the grasp

of the plane. We are now evidently touchmg on the subject

of Chap. IV., and dealing with the pressure due to the cyclic

disturbance ; this aspect of the subject will be resumed later.

§ 150. The Sine-Squared Law ApplicaWe in a Particular Case.

—

It is evident from the foregoing reasoning that planes of different

aspect ratio^ will have their normal pressure components

augmented to different degrees, inasmuch as the relative extent

of their leading and trailing edges differ.

If we consider the case of a plane of extreme proportion it is

1 A term used in the present work to denote the lateral dimension of an
aeroplane, or other aerofoil, in terms of its fore and aft dimension, denoted by
the symbol n.
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obvious that in apteroid aspect'^ the augmentation will be very

small indeed, and if we go so far as to suppose the plane of

infinite length, then the augmentation vanishes.

Thus the infinite parallel lamina, in apteroid aspect, affords

the case of a plane that will conform to the sine''^ law, and the

pressure on its faces will be given by the expression : P^ = P90

X sin^ 13, or in full : P^ ^ C p V^ sin^ /3 where C is the constant

of the normal plane, or in absolute units for a plane of the form

under discussion in air, C = "76 or '78 (about).

The above result becomes self-evident from the point of view

of relative motion. The conditions of the problem will be fully

represented if we suppose an infinite parallel lamina in normal

presentation to slide along in the direction of its own length.

It is evident that such sliding motion, presuming no skin-friction,

can have no effect whatever upon the pressure reaction, and

therefore by § 145, the sine^ law holds good.

We might go so far as to suppose the above experiment to be

tried on a "whirling table" (Chap. X.), the plane being extended

to form a complete ring bounded by two concentric circles.

Assuming the method to be that of the falling plajie, it is evident

that the time of fall of such a ring will be substantially indepen-

dent of its velocity of rotation.

§ 151. Planes in Apteroid Aspect (Experimental).—In Fig. 95

we have plotted to a common maximum value : (A) the curve of

sine- as deduced in the preceding article for the special case

where the plane extends to infinity
;

(B) the Duchemin curve for

the square plane, the Dines curve also being shown dotted
;

{E) curve as plotted by Langley for plane, 6 inches by 24 inches

;

(F) curve as plotted by Dines for plane, 3 inches by 48 inches. If,

as there is every reason to suppose, the normal pressure is a co7i-

tinuous function of the aspect ratio of the plane, then as we suppose

the latter to undergo variation from the square to the infinite

^ Witli the greater dimension arranged in the direction of flight, in

contradistinction to pterygoid.
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lamina the curve will pass gradually from the form given b}^ (B)

to that given by (A), {E) and (F) being intermediate stages, and

we may expect that the whole intermediate series will be in most

part included within the area between the curves A and B, and

in their character the intermediate curves will form a homo-

geneous series ; thus a few accurate plottings from planes of

Planes in

80° 90

known proportions would enable the curve to be drawn for any

intermediate plane with a reasonable degree of certainty

The curves as plotted in Fig. 95 are to some extent misleading,

each curve being plotted in terms of the common maximum
ordinate. In Fig. 96 the necessary correction is made to reduce

the curves to a common scale, the maximum values being assigned

proper to each particular proportion of plane in accordance with

Fig. 89 (Chap. V.).

In Fig. 96 abscissae represent angles of inclination as before,

and ordinates give the values of the constant C generalised so

A.F. 209 p
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where P is the normalthat (in absolute units) P = C p V^

pressure on the plane for any angle.

There is some doubt as to the correct plotting of the Langley

curves owing to the fact that this observer was unaware of the

variation to which the C of the normal plane equation is subject,

as dependent upon the shape of the plane.

§ 152. The Infinite Lamina in Pterygoid^ Aspect.—The case of

the inclined infinite lamina in pterygoid aspect has been examined

by Kirchhoif and Eayleigh on the Helmholtz hypothesis.

According to this investigation the pressure is given by the

TT Sl7t /3

equation : P = —~ /-— p V^ from which the curve (Fig. 97)
^

I

TT ottt /J

^ Witli the lesser dimension in the direction of flight, as in the wing plan-

foim of birds.
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is calculated and plotted.^ The ordinate scale is given in terms of

maximum value = 1, and in terms of C, value in which case

becomes •440.

According to the theory advanced by the author (Chap. IV.),

the case now under discussion is indeterminate ; the reaction on

the plane is a function of the strength of the cyclic motion and

its velocity of translation, and is not dependent upon the angle

in the particular case of the plane of infinite lateral extent. If
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may predict the general character of the resulting flow (Fig. 98)

(a), which in all probahility would be accounted for by the Kirch-

hoff-Rayleigh analysis. There is, however, some probability that

when the inclination of the plane is small the viscous drag

ejects the dead-water from the region above the plane, as in the

case of the stream-line body, so that the motion will be approxi-

mately as represented in Fig. 98 (h), in which a small remnant of

the dead-water alone remains immediately above the front edge

of the plane. The resulting type of motion from a hydrodynamic

standpoint is somewhat obscure ; that a cyclic component exists

there can be no doubt, but it is difficult to frame a regime

Fig. 98.

which is in strict accord with hydrodynamic principles. It

is possible that the surface of junction of the two streams,

when they meet at the after edge of the plane, contains rota-

tion, there being a finite difference between the velocities,

and that this region of rotation modifies the lines of flow of

the cyclic system in a manner that remains for future

investigation.

If the author's theory is correct in its present application, the

Kirchhotf-Bayleigh result will break down for small angles, in the

direction of showing too low a reaction ; for it is evident that the

arrangement of flow Q)) (Fig. 98) will result in a greater downward

velocity being given to the air than in case (a). Experimental

evidence on this point is at present inconclusive.
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§ 153. Planes in Pterygoid Aspect (Experimental).—The experi-

mental information at present available relating to planes in

pterygoid aspect is very unsatisfactory and conflicting.

In Fig. 99 we have a plotting given by Langley in the case of

a plane 30 inches by 4'8 inches, with the curve for a square

plane given for comparison. It was pointed out by Langley that

the pressure on a plane in pterygoid aspect is greater for small

angles the more extreme the proportion, but that this rule does

10
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curves, so clearly brought out by the experiments of Langley.

It is possible that the form of the so-called "planes " employed

by Dines is responsible for much of the disagreement. Dines

employed slabs of triangular section (Fig. 100) (a), whereas

Langley adopted a flat section (h), his " planes " having square

edges, and being of about one-eighth inch thickness.

In Fig. 101 the curves are plotted B, B for a "plane" of square

form, and (F) for one measuring 48 inches by 3 inches in pterygoid

aspect, from Dines' paper (Proc. Royal Soc, Vol. 48). These

curves incidentally cross one another, but there is nothing

resembling Langley's reversal.

In experimental aerodynamics we are used to encountering

discrepancies of various kinds, but a disagreement of the present

(Ij

Fig. 100.

extent is most unsatisfactory. On the whole, for planes at small

and moderate angles, the author is disposed to accept Langley's

data as the more reliable.

§ 154. Superposed Planes.—The effect of the proximity of one

aeroplane to another has been investigated experimentally by

Langley. In a series of experiments carried out by the aid of

his whirling table and "Plane-Dropper," Langley showed that

two parallel planes, one above the other, will, at a given angle,

support as great a load as if they were entirely independent, so

long as they are separated by a certain minimum distance. In the

actual experiments two pairs of planes, each 15 inches by 4 inches,

were employed in pterygoid aspect (Fig. 102) ; it was found that

so long as the angle did not exceed a certain maximum value a

separation of four nches {i.e. equal to the fore and aft dimension
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of the planes) was sufficient to prevent any sensible interference

between the two pairs, so that each would carry the same load as

if the other were absent. Trials with the planes two inches

apart showed a falling-oflf of about 15 per cent, of the total load.

It would aj)pear that when the inclination of the plane exceeds

five or six degrees, some interference is felt even at four inches

1-2
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planes four inches apart, at the average speeds, the stratum of

air disturbed during its passage over it is, at any rate, less than

four inches thick. In other words, the plane is sustained by the

compression and elasticity of an air layer not deeper than this,

which we may treat for all our present purposes as resting on

a solid support less than four inches below the plane." " (The

reader is again reminded that this sustenance is also partly due

to the action of the air above the plane.)
"

In the author's opinion the whole of this inference is unsound.

Professor Langley a^Dpears to have overlooked the possibility of

1
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the latter would be much greater than the observed four inches

;

it would, in fact, at the average velocity employed, amount to

something like eight feet in either direction, that is to say, some

sixteen feet in all.

The employment of a series of superposed members for the

support of a load in flight was not new at the date of Langley's

experiments. This system appears to have been well known to,

if not actually employed by, Horatio Phillips, being foreshadowed

in bis specification of 1884, and further in 20,435 of 1890, and

very thoroughly developed in his captive machine at Harrow

about the same date. The supporting members adopted by

Phillips were rightly of curvilinear section (see Fig. 60), but the

critical distance of separation is evidently much the same for

such a form as for a plane ; at least Phillips appears to have

independently adopted for his aerofoil spacing substantially the

proportions subsequently proved by Langley to be admissible for

the aeroplane.

§ 155. The Centre of Pressure as affected by Aspect.—The general

behaviour of the centre of pressure as a function of the angle has

been discussed in respect of the square plane in § 148. It

remains for us to examine the subject in its relation to aspect.

So far as the author is aware, the only experimental deter-

minations other than for the square plane are those of Kummer
(Berlin, Akad. Abhandlungen, 1875— 6), from which it appears

that the displacement of the centre of pressure from its normal

position is less in planes in apteroid aspect than in the square

plane, and is greater in planes in pterygoid aspect. This is

substantially what might be anticipated, for in the case of the

infinite lamina in apteroid aspect the pressure distribution along

its length is uniform, so that the centre of pressure for a very

long plane will be sensibly undisturbed by its change of angle.

On the other hand, in i^lanes in pterygoid aspect the cyclic

motion results in an increased pressure region under the leading

edge, and in a partial vacuum in the region above. If the cyclic
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motion were perfect, as in Figs. 71, 72, 73, &c, (Chap. IV.), the

motion of the fluid would be symmetrical, and the centre of

pressure would not suffer displacement ; owing, however, to the

imperfection of real fluids, the pressure on the region of the

following edge is not materialised, the motion becoming dis-

continuous, as depicted in Fig. 98, so that the centre of pressure

is situated towards the forward edge of the plane.

Langley has observed that when the angle of flight exceeds a

critical value, the displacement of the centre of pressure is greater

for planes in apteroid than in pterygoid aspect, a reversal taking

place similar to that discovered by him in the case of the total

pressure reaction.

The position of the centre of pressure as a function of the

inclination is of most interest in the case of planes of extreme

proportion in pterygoid aspect. Under these conditions

experiment is most difficult ; no reliable data are at present

available.

Lord Eayleigh has given the theoretical solution in the case

of the infinite lamina in pterygoid aspect, on the Helmholtz

hypothesis (§ 97). It is a curious fact that, when plotted, Eay-

leigh's curve is almost identical with that based on Langley's

observations for the square ijlane, the departure only becoming

noticeable at small angles ; see Fig. 94 (L = Langley, E =
Eayleigh).

§ 156. Resolution of Forces.—It is one of the advantages

of the aeroplane as a medium of experiment that, if we

neglect any tangential forces acting on its surfaces, the total

pressure reaction, the resistance in the line of flight,

and the reaction at right angles thereto, are correlated

by an ordinary parallelogram of forces. Thus in Fig. 103,

assuming the direction of flight to be horizontal, if W be the

weight supported, R be the total normal reaction, and aS' be the

force of propulsion, the relative magnitude of these forces will be

given by the resolution shown. Expressing W and S in terms
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of R and the angle /3, we have :

—

W := E cos ^ and S := R
sin ^.

The quantity S is in many cases very small and difficult to

measure directly, so that it is usually, for small values of f3,

deduced from the normal reaction, values of \Yhich have been

given in Figs. 93 and 96.

It is evident that if the form of aerofoil under investigation be

other than plane no such simple relationship as the foregoing

exists ; the vertical and horizontal components require to be

measured independently.

The propriety of neglecting tangential forces has sometimes

Fig. 103.

been questioned ; such forces certainly cannot be neglected on

the grounds of their negligibility (an error actually fallen into by

Langley), and it is desirable to inquire into their exact nature

in order that the consequences may be clearly understood and a

correction provided.

If we had to deal with a plane devoid of thickness, so that its

whole boundary surfaces might be said to lie in one plane, then

there is only one possible kind of tangential force, i.e., that due

to the viscosity of the fluid ; there must not only be viscosity

within the fluid, but also physical continuity between the fluid

and the plane itself capable of transmitting viscous stress. We
could imagine this source of tangential force disposed of, either
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by making the fluid inviscid or by supposing the surfaces of the

plane frictionless and not attached to the fluid in any way.

"Whichever be the assumption, the quantity that is being ignored is

that known as "skin-friction," the general principles relating to

which have been discussed in Chap. II.

In actual planes it is impossible to do away with thickness, so

that in addition to skin friction there must be the possibility of a

longitudinal pressure component due to the shape of the plane.

Thus, if the plane be of " fair " form, i.e., a stream-line solid

based on an axis plane (Fig. 104), the pressure distribution, not

being in any sense symmetrically disposed, may conceivably

possess a longitudinal component of quite considerable value ; or

if the plane be of uniform thickness and square edges, as in the

planes of Langley, we have no means of computing the edge

-^^^^^^^
Fia. 104,

pressure resultant, for it is by no means certain that it can be

represented by the resistance of the edge equivalent divested of

its associations. There might, for example, in the types of

motion illustrated in Fig. 98, be a region of negative pressure

or suction on the front edge of the plane such as would entirely

invalidate any ordinary computation.

§ 157. The Coefficient of Skin-Friction.—The hypothetical case

of an aeroplane of zero thickness in edgewise motion offers tbe

simplest possible case of skin-friction. The magnitude of the

resistance due to this cause has been variously estimated, but at

present is not known with any great degree of certainty. The

value of skin-friction can be conveniently expressed as a co-

efficient, this coefiicient being the resistance of a plane moving

edgewise in terms of the resistance of the same plane when

normal to the direction of motion. Reasoning from the facts
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known in connection with skin-friction in the case of water, we

may infer that this form of resistance will vary approximately as

the square of the velocity, but more accurately, proportionately

to some power of the velocity rather less than the square, the

index being lower than in the case of the normal plane. A
consequence of this is that the " coefficient " will be greater

for small planes at low velocities and less for larger planes at

higher velocities.

Langley in his Memoir {"Experiments in Aerodynamics,'' '^^. 9

and 25), and Hiram Maxim {Century Mag. ,\\ii., 829 and 836, 1891)

have both stated explicitly that the influence of skin-friction in

its relation to flight is negligible. Langley gives this result as a

deduction from certain of his experiments, also as a matter of

calculation based on Clerk Maxwell's value of the viscosit}^ of air.

He concludes from the latter that the frictional resistance is

"less than 1/50 of one per cent, of that of the same plane

moving normally," that is to say, he arrives at a coefficient of

skin-friction of less than '0002.

The author finds that Langley' s deduction in this matter is

not justified by the experiments upon which it is founded, and,

further, that his calculation is based upon inadequate data and is

in error.^ The author has further shown, in Chap. YIL, that

skin-friction is a dominating factor in the economics of flight.

The direct measurement of skin-friction is a matter of con-

siderable difficulty, so much so that experiments specially devised

merely to detect its presence (as in the disc experiment of Dines) -

have proved abortive. The author, by means of experiments

(described in a subsequent chapter), has succeeded in measuring

approximately the value of the coefficient of skin-friction ^ the

following conclusions may be stated :

—

(1) For smooth planes of a few square inches area at low

velocities (about 10 feet per second), f = '02 to '025.

^ Compare Chap. X.
2 Dines, '• On Wind Pressure upon an Inclined Suiiace "' (Proc. Royal Soc,

XL r///., p. 243.
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(2) For larger planes, '5 to 1"5 square feet area, at higher

velocities (about 20 to 30 feet per second), f = -009 to 'CIS.

(3) A plane of about ^ square foot area, coated with No. 2^

(Oakey's) glass paper gave, $ = "02 (approx.).

(4) For single surfaces (as the surface of a stream-line body)

the half value of ^ must be employed.

The experiments upon which the above results are based were

made with planes of from 3 : 1 to 4 : 1 ratio in pterygoid aspect

;

the values are probably lower for square planes or planes in

apteroid aspect. These experiments are still in progress.

§ 158. Edge Resistance in its Relation to Skin-Friction.—There is

a subtle interaction between direct edge resistance and skin

friction which merits discussion. Where the plane is bounded

by square cut edges, or edges of bluff form, a certain amount of

direct resistance is experienced. The work done from this cause

is largely employed in setting in motion the air that impinges on

the leading edge of the plane, and which afterwards " washes "

its two surfaces. This has for a consequence the lessening of

the skin- or surface- friction, for the air in contact with the

plane, having already a velocity imparted to it, does not exercise

so great a viscous drag. The influence of this edge effect is

comparable to the diminution of the coefficient, as the distance

from the " cut-water " is increased (discovered by Froude in the

case of water) ; here the fluid, having been set in motion by the

first part of the plane, does not exercise so great a drag on

the part that follows. In a plane such as we are considering the

total resistance will not be the sum of the edge resistance and

skin-friction separately assessed, but will be less than this

amount, and may be very little greater than the one or the other

of the resistances measured separately.

It is probable that for planes of less than a certain 'proportionate

thickness the augmentation due to the edge area is imperceptible,

and that for such thin planes edge effect can be ignored.

Equally it is probable that for planes of rectangular section of
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more than a certain proportionate thickness the skin-friction

disappears and the total resistance may be assessed as edge

effect.

Amongst the former may be classified laminae of mica (such as

used by the author) of an inch or a few inches breadth and

1/1000 inch or 3/1000 inch thickness. To the latter might be

said to belong a plane of the proportions of a common floor-board.

Probably the planes employed by Langley, about one square foot

area, and of various proportions, by 1/10 inch thickness, would be

intermediate, where edge effect and skin-friction give a total

greater than either, but far less than their separately computed

sum.

§ 159. Planes at Small Angles.—It commonly happens in

physical problems that the conditions are greatly simplified

when limited to the case of some particular angle being small,

that is to say, within the range for which the angle (in circular

measure), its sine, and its tangent, are sensibly equal to one

another. In a case such as the present, where a high degree of

accuracy is not important, and not attainable, such a range may
be said to extend to as much as ten or fifteen degrees, and thus

include practically the whole range of angle that can be usefully

employed in the application of the aeroplane to aviation. It is

consequently of importance to examine the extent to which

simplification is possible under these restricted conditions.

It has been shown in the case of the square plane that

2 sill B
Duchemin's formula: Pp = P90 1—,

—

^^r^ does not greatlv
1 + sin" j3

to J

differ from the results of direct experiment, and we know that

for small values of (3 the quantity sin^ 13 may be neglected, so

that the expression becomes : P^ = P90 x 2 sin jB, or neglecting

the difference between 13 and sin /3 (which for 10 degrees is less

than 2 per cent.), we have : P^ = Pgo X 2 /3, where /3 is

expressed in circular measure.

The same form of expression is found to apply to planes
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generally for small angles, though the departure from the law

with increase of angle would appear to be less in the case of the

square plane than for planes of elongate form, whether in ptery-

goid or apteroid aspect. This is rendered evident by reference

to Figs. 95, 96, 99. If the above form of expression held good

each curve would be represented by a straight line passing

through the origin. The actual curves are, in the vicinity of the
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(0 5

12(876 1^32 I

Fig. 105 illustrates the manner in which c may be plotted as

a function of the aspect

ratio n. The values of c

are at present not known

with any pretence to ac-

curacy ; c is probably differ-

ent in the case of an aero-

plane from what it is in the

case of a pterygoid aero-

foil.^ For the former

Langley found that varia-

tions in n gave rise to

very considerable varia-

tions in c (Fig. 99) ; Dines

failed to discover any varia-

tion at all (Fig. 101).

The values given in Fig.

105 are " plausible values
"

(see Chap. VIII.) for a

pterygoid aerofoil. The

same data have been laid

out in Fig. 106, where abscissae give angle and ordinates

pressure reaction.

In addition to the equation,

c/3 (1)

3+56
Fig. 106.

P90

we may also formulate as a direct consequence of the small

angle hypothesis,
TT/

(2)^'-'
and from the resolution of forces we have,

where y = aerodynamic resistance.

Consequently,

(3)

W = cl3P, cCpl3V"

A.F.

1 See foot-note, § 172.
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or, JVo:/3AV^ /3 ^ 7^ (4)
K
A V

and by (3) and (4),

y = [3 W= ^^ ^ ^ T/2cC pAV

y^A
or for given value of W,

or, 2/ oc ^-^2 (5)

y Qc j-pa (5a)

Work done aerodynamically per second =: ?/ F, or a , or

for given values of IF and ^, Power (h.p.) a -7^. (6)

We may interpret and summarise the above as follows :

—

(1) The normal reaction of any given plane is proportional to

its angle. The constant connecting the quantities depends upon

the aspect ratio, and increases with the aspect ratio according to

a law not at present known.

(2) The weight supported is sensibly equal to the normal reaction.

(3) Neglecting skin-friction and edge effect, the resistance in

the line of flight varies as the angle multiplied by the weight

sustained.

(4) Other things being equal, the weight supported varies as

the square of the velocity.

(5) Neglecting skin-friction and edge effect, the resistance in

the line of flight is directly as the square of the weight sustained

and inversely as the area and the square of the velocity.

(6) Neglecting skin-friction and edge effect, the work done per

unit time, i.e., the power required for a given weight sustained

and a given area, varies inversely as the velocity offlight.

§ 160. The Newtonian Theory Modified; the Hypothesis of Constant

"Sweep."—In the theory of the Newtonian medium, for a given

velocity the mass of fluid dealt with is proportional to the sine of

the angle /3 ; in a real fluid it is evident that the particles cannot

cross each other's paths as depicted in Fig. 92, but will be
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constrained to move in a congruent manner. Thus if one layer

be supposed to strike the plane and follow its surface, the next

layer will be in turn deflected and move parallel to the first, and

so on. If the particles of fluid were artificially constrained so as

to be unable to undergo any change of velocity along the axis of

flight, or to spread laterally, this influence would be transmitted

from layer to layer with undiminished amplitude, or in the case

of an elastic fluid until the initial displacement had been absorbed

by compression. If we supjDOse the artificial constraint to be

removed, then the amplitude rapidly diminishes as we get further

Fig. 107.

from the plane owing to the longitudinal motions of the fluid

particles ; this may be regarded as a leakage of the fluid round

the plane from the compression to the rarefaction side. (Compare

Chap. IV., § 109.)

Now the facility with which the air or fluid can escape round

the plane from one side to the other is evidently, for small angles

at any rate, independent of the angle and dependent only on

the size and shape of the plane, and for planes of elongate form it

evidently depends largely upon the smaller dimension and to a

less extent upon the greater. Thus in the case of a plane in

pterygoid aspect the thickness of the laj^er afl'ected by the

passage of the plane will depend upon the dimensions of the
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latter and not upon its angle, and for a given plane the thickness

of the layer will be constant.

In the foregoing paragraph the term "thickness" is used some-

what loosely. It is evident that there is no definite point at which

the influence ceases altogether ; and this brings us to a convention

which it is found advantageous to adopt.

Let us suppose that the plane be supported by a definite

stratum of air to which a uniform downward motion is imparted

(Fig. 107)^ ; let us term the vertical cross-section of this stream

or stratum the " sweep " of the plane and denote its downward

velocity by v.

Then it is clear that for similar planes the siveep will bear a

definite constant relation to the area A ; let us, as in § 109, denote

the sweep by the symbol k A where k is a constant proper to the

shape of the plane ; in the case of rectangular planes a given

value of K will correspond to some definite aspect ratio.

Now the mass of air handled per second will he = p k A V,

and the momentum = p k A V v = p k A V^ sin /3, which for

small angles = p k A V^ fi, where /3 is in circular measure. We
p p K V^ B K

therefore have Pr = p k V^ /3, that is, fj- = —^—jr^- = 7, /^
-r 90 (j p y o

under the conditions of the present hypothesis.

But by § 159 we know from experiment that for small

P
angles (such as under discussion) j^ = c (i where c is a constant

depending uj)on the plane form and aspect ; thus our hypothesis

leads us to an expression of the correct form.

If we endeavour to deduce the constant k from c and G
(constants experimentally determined and known) from the

resulting equation, k = c 0, we obtain a value far in excess of

' The curved section shown in Fig. 107 relates to the subsequent discussion

(Chap. VIII.) ; it is perhaps easier to represent the conception on which the

hypothesis of coitstaiit sireep is based by showing a curved section than a

plane ; in the latter case the flow has to be shown of angular path. The

difference is otherwise unimportant.
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that indicated by the experiment of the supeqDOsed plane

(§ 154), hence it is evident that the hypothesis is insufficient.

§ 161. Extension of Hypothesis.—According to the principles

laid down in Chaps. III. and IV., the neighbourhood of a plane

or other aerofoil sustaining a load becomes the seat of a cyclic

disturbance, and the air in advance of the aerofoil is in a state

of upward motion ; it has been shown that this up-current con-

tributes to the supporting power of the plane or aerofoil, that

is to say, its momentum contributes to the total load carried.

Let us represent this cyclic disturbance by supposing that in

Fig. 107 the air stratum, instead of meeting the plane horizon-

tally, has an upward component so that its motion (plotted

relatively to the plane) be inclined at an angle a (Fig. 108), so

that its upward velocity will be V sin a, or for small angles V a.

Then the mass per second will he p k A F as before, and the

momentum = p k A V^ (a -\- /3) or -^ = — [a -\- 13).

But we know by § 159 that ^r = c /3, so that we now have

the equation

—

-^(a + /3) = c /3, whence - -^
a c C _,

or — = 1.
13 K

Thus for any given plane, C and c being known experiment-

ally, and K being estimated from trials of superposed planes,

we can calculate the equivalent up-current due to the cyclic

disturbance, u-itJiin the limits of the present hypothesis. This

qualifying phrase is necessary because the supposed motion of

the fluid, as depicted in Fig. 108, is conventional, and it is only

on this conventional basis that we have effected a solution.

The theory on the present lines is more fully developed in

Chap. VIIL, where it is made to perform useful work. The

author, however, does not regard it as by any means final ; the

theory of the future should be based on a more comprehensive
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treatment of the whole motion of the fluid, in which the pressure

reaction should appear as an integration ; the present theory

may be said to be based on the assumption that this integration

of the whole motion of the fluid may be fairly represented on

the hypothesis of a finite layer uniformly acted upon.

While pointing out the imperfect nature of the hypothesis at

present adopted, it is perhaps fair to say that its defects are

comparable to those of the Rankine-Froude method of dealing

with the problem of propulsion, and in common with that

Pig. 108.

method it may be found to perform all that is practically

required.

At present there are some difficulties, as will appear when the

method is more fully discussed ; these difficulties relate princi-

pally to the application of the somewhat unreliable data at

present available—in particular, estimates of the value of k from

existing data can be little more than guess-work, and it is

questionable whether experiments conducted with merely a pair

of planes are sufficient ; in all probability the true value can

only be obtained when a veritable screen ofplanes is employed.

It would appear highly probable that a separation that might

be sufficient to prevent loss of pressure where two planes only

are superposed would prove quite insufficient if a greater number

of planes were involved, for, according to § 122 (Fig. 73), the
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individual systems of flow fuse into one greater system, and are

not, as Langley supposed, independent, consequent!}' they will

each and all react on one another, and the more numerous they

become the wider they will require to be separated.

A limiting width will evidently be approached asymptotically

when the number of planes becomes very great, and the limiting

condition is that which most nearly resembles that of our hypo-

thesis, for the whole dejDth of the fluid is then acted on with

approximate uniformity, and the sweep of each plane will be

fairly represented by the area included between any two adjacent

planes. Hence the value of k deducedfrom experiments u-ith pairs

Fig. 109.

of superposed planes may he less than its true value according to the

requirements of hypothesis.

§ 162. The Ballasted Aeroplane.—It has long been known that

an aeroplane suitably ballasted will exhibit a certain degree of

stability, and may be regarded in fact as a rudimentary aero-

drome. This fact is mentioned by Moulliard in his " Empire

de I'Air " (1881), who, however, bases his discussion on a quite

fantastic theory involving a supposed change in the position of

the centre of gravity due to changes of velocity.^

^ Tliat so keen an observer as M. MoiiIIiard should have fallen into so

extraordinary an error is almost incredible ; tbe following passage, however,

occurs in his work: "Avant d'aller plus loin, je suis force d'enoncer une

propriete de rattraction sur les corps en mouvement : propriete qui est

connue ou inconnue, je ne sais; mais qui en tout cas existe, c'est celle-ci:

Quand un corps se meut, son centre de gravite se depJace, et se transporte en

231



§ 162 AERODYNAMICS.

Let an aeroplane (Fig. 109) be loaded in the manner shown

so as to bring its centre of gravity to a position from a quarter

to one-third of its width from one of its edges (we may assume

it to be a plane of about 4 : 1 ratio in pterygoid aspect), and let

it be launched in free flight with the ballasted edge leading to

its line of flight. It will then be found that, provided the air is

sufficiently calm, the plane will glide after the manner of a bird

in passive flight, and will show itself to be possessed of complete

stability.

The ballasted aeroplane in free flight may be employed for the

determination of aerodynamic data as follows^ :

—

(1) The value of c for planes of different aspect ratio in the

expression, P^-= c ^ Pc^y

(2) The determination and plotting of the position of the

centre of pressure as a function of the angle of inclination for

small angles.

(3) The determination of the value of the coefficient of skin-

friction, f.

The most satisfactory results can be obtained by employing

planes of mica, of only a few thousandths of an inch in thickness,

the ballasting being effected by a split lead shot, as shown in the

figure. Such planes show a perfection of equilibrium that appears

to be unattainable with any other material than mica ; it is also

important that the ballast should be applied in a compact mass

centrally and not distributed along the front edge. In order to

improve the " sense of direction " it is found to be advantageous

to " dog-ear " the front corners, slightly turning them upivards.

It may be further noted that the rectangular form is very

advantageous ; in general other forms give inferior stability.

The theory of the equilibrium of the ballasted aeroplane

belongs more correctly to the domain of aerodonetics, but the

arriere du sens dii mouvement." These words leave no loophole for a second

interpretation, and even if they did so, the subsequent argument leaves no

vestige of doubt.

^ See account of author's experiments, Chap. X.
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importance of the matter warrants its premature introduction

as touching the aerodynamic aspect of the subject.

Let us suppose that the position of the centre of gravity be

such as will coincide with the centre of pressure when the plane

makes an angle = /3^ with its direction of motion. Now we

know (§ 184) that the position of the centre of pressure

varies as a function of /3 and that its distance from the front

edge of the plane diminishes the less the angle; if then the

angle from any accidental cause becomes less than /3i the centre

of pressure will move forward in advance of the centre of gravity

so that the forces acting on the plane will form a couple tending

to increase the angle and so restore the condition of equilibrium.

Likewise if the angle become too great the centre of pressure

will recede and the resulting couple will tend to diminish the

angle, and again the equilibrium is restored ; thus the conditions

are those of stable equilibrium, the plane tends to maintain its

proper inclination to its line of flight.

There is not only equilibrium between the angle of the plane

and its direction of motion as above demonstrated, but also

between the gliding angle and the velociti/ of flight; thus if the

velocity is deficient, so that the weight is insufficiently sustained,

the gliding angle and the component of gravity in the line of

flight automatically increase and the aerodrome undergoes

acceleration. Conversely, if the velocity is excessive, the gliding

angle (and so the propulsive component) diminishes, and the

velocity is thereby reduced.-"-

^ The above explanation of the automatic stability of an aerodrome is, in

a condensed form, that given by the author in his paper to the Birmingham

Natural History and Philosophical Society in 1894.
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CHAPTEE VII.

THE ECONOMICS OF FLIGHT.

§ 163. Energy Expended in Flight.—There are certain general

propositions relating to the Economics of Flight that may
now be demonstrated, and which are essential to the further

development of our subject.

The energy expended in flight is utilised in two directions:

firstly, in the renewal of the aerodynamic disturbance, or wave

necessary to the support of the weight, that is, the energy

expended aerodynamically ; secondly, the energy expended in

overcoming the direct resistance, i.e., that due to skin friction

and eddy making, which varies approximately as the square

of the velocity. Let the latter be denoted by the symbol x,

and let y be the aerodynamic resistance.

Now we have seen that the aerodynamic resistance varies

approximately in the inverse ratio of the velocity squared

(§§ 159 and 160), for any given weight sustained, so that if we

take the case of an aerodrome supporting a given load (inclusive

of its own weight) we have the relation, y cc —^, and if we

further assume the factors which give rise to direct resistance to

undergo no change, we have, x a V". And the total resist-

ance = X -\- y, .'. the energy expended in flight per unit

distance = x -\- y, and energy per unit time, or power =

F X (a; + y).

§ 164. Minimum Energy. Two Propositions. — Taking the

achievement of flight for granted, the problem of least energy

presents itself in two forms :
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(1) To determine the conditions under which the greatest

distance may be covered on a given supply of energj^ that is to

say, the conditions of least resistance ;

(2) To remain in the air for the longest possible time on a

given supply of energy, that is, to determine the conditions of

least horse-power.

Prop. I.—We have

—

By § 157, X <x V^ and by § 159 (5), y ay^ or x cc -

Now conditions are fulfilled when x -]- y is minimum, that is

clx X
when clx = — dy, or -y- = — 1, .-. by (1), = — 1,

or, X = y

Therefore, under the conditions of hypothesis, an aerodrome

will travel the greatest distance on a given supply of energy when its

aerodynamic and direct resistances are equal to one another.

Prop. II.—We have

—

xV power expended (energy per second) in overcoming direct

resistance.

yV power expended (energy per second) in overcoming

aerodynamic resistance.

Then xV <x V^ and t/V o: ^^

Denote xV by X and yV by Y, we have X oc ^-^ or,

7 \^ \^

jy— ~ ^ T-'
^^'^^ when dX = — dY we have I' = 3 X

or, y = S X.

Therefore, an aerodrome u-ill remain in the air for the longest

possible time on a given supply of energy, that is to say, its fight

will be accomplisJied on least horse-power, whoi tlte resista)ice due to

aerodynamic sujijjort is three times the direct resistance.

On the foregoing propositions a third may be founded as

follows :

—
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Prop. III.—To determine the relation of the speed of greatest

range to the speed of least power.

Now X = kV^ and y = n y.^ > where k and n are constants.

When X = y let V = Vi.

When 3 X = y let V = V2. It is required to find the

relation of Vi to Fa.

When X = y yve have k Vi^ = 77-2 or k = -—^.
F 1 y I

When 3x = y vfe have 3 k V^ = ^^^

Substituting for k we have—

^yiYi= ~ or 3 = II', or
J^ = si = 1-815

yi y^ V2 Vi

That is to say, the speed of greatest range is 1*315 times the speed

of least poiver.

Corollary to Prop. III.—For a plane aerofoil the change in

value of the angle ^8 involved in the change of velocity from

Vi to Fa can be immediately deduced.

Vx = 3^ Fa, but by § 159, F^ ^ a TF (for small angles).

Consequently Fi^ /3i = Fa^ /?a where /?i and /Sg are the angles

appropriate to the velocities Vj and T^a respectively. Therefore

—

/3i (35)' Fa' = ^2 V2~

Thus calculations of /3 values for least resistance require to

be multiplied by V 3 to give appropriate values for least horse-

power. We may thus anticipate that birds wbose object in flight is

to fall as slowly as 2)ossihle (as birds whose habit is to be sustained

on an upcurrent, and so to take advantage of the least upward

velocity possible), will have wings of hollower form than those

whose object is to get from point to point.

§ 165. Examination of Hypothesis.—According to the hypothesis

on which the foregoing propositions are founded, it is supposed
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that a constant weight is sustained at a varying velocity by an

aerofoil of constant area, so that on the one hand the resistance

due to skin-friction for any stated velocity undergoes no change,

and on the other that the law y <x -^ shall be applicable, this law

being that ascertained as pertaining to an aeroplane for small

angles, and deduced generally in § 160 from the hypothesis of

constant " sweep."

So long as the foregoing hypothesis applies it is not important

whether the direct resistance is entirely due to the skin friction

of the aerofoil or whether it is in part due to the resistance of

the " body " of the aerodrome, i.e., that part that may be supposed

to constitute or contain the load. If we require to concern our-

selves with changes of aerofoil or " sail " area, it becomes neces-

sary to distinguish between these two kinds of resistance, the total

resistance x being supposed to be divided into two parts, the one

xi being defined as independent of the sail area and the other X2

as dependent and as directly proportional thereto. In all cases

the approximate assumption is made that this class of resistance

is proportional to velocity squared, the error that may result

from this assumption being considered later.

Prop. IV.

—

To determine the conditions controlling the aero-

foil area for an aerodrome of given weight travelling at a specified

velocity.

Let A = area, then, since xx is fixed by the conditions, x^, y,

and A are the variables with which we are concerned :

—

X2 cc A and y cc — (By § 159)
jri.

1
or, X2 oc —

y

that is, ^ = _ fg

and as in prop. i. we have the minimum condition fulfilled when

^2 = y,

Therefore tlte correct area has been given to the aerofoil uhen its

aerodynamic resistance is equal to its direct resistance.
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Thus, if for the given conditions of weight and velocity the

aerofoil be made too large, the skin friction will be in excess

of the aerodynamic resistance ; if insufficient surface is pro-

vided, the aerodynamic resistance will be in excess ; in neither

case will the energy required for a given distance be the least

possible.

It may be noticed that this result is in appearance out of

harmony with prop, i., for there it was shown that the most

favourable velocity at which to run an aerodrome in order to

cover the greatest distance on a given quantity of energy is

that at which the aerodynamic resistance is equal to the total

direct resistance, that is x ; whereas according to the present

proposition the most economical conditions are met with when

y = X2, which is only a portion of the total.

The explanation of this apparent paradox will be given in the

light of the subsequent proposition.

§ 166. Velocity and Area iDoth VariaWe.—Prop. V.—Given that

xi = 0, then, for an aerodrome of given weight, with V and A
both variable, yiwf? the velocity at ivhich a given flight {distance)

can be accomplished loith least energy.

By § 159 (5a) 2^ « 2^
and, ^2 a AV^

Now for Xci,-\-y minimum, we have x^ = y (by Prop. IV.), or,

—

^ AV^

{AV^)^ = constant.

hence, y = constant.

and, X2 — constant.

X2 -\- y is> constant,

or tlie resistance is independent of the velocity.

That is to say, if for an aerodrome of given weight the velocity

be supposed to undergo continuous variation, and the " sail area
"

also undergo corresponding variation, so that the latter is at every
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moment so proportioned to the former as to result in the least

possible resistance (in accordance with prop, iv.), then the

total resistance of the aerodrome will be constant in respect of

velocity and the energy required to pass from any one point

to any other point will be constant, no matter what the speed

may be.

Cor. I.—If the body resistance (xi) be taken into account,

the total resistance may be taken as composed of two parts,

the one part which includes the Xr^ and y of the equations and

which is constant, and the other part xi which varies approxi-

mately as the square of the velocity, and results in making llight

at high speeds, distance for distance, less economical than at

low speeds.

Cor. II.— The conditions of greatest economy for a given

aerodrome as enunciated in prop. i. will not be those of best

value of area A, as laid down in prop, iv., unless the aero-

drome have zero body resistance, for, the influence of body

resistance being always to make low velocities more economical

than high velocities, the velocity of least energy (per unit dis-

tance) will be less than that for which the aerodrome is correctly

proportioned. This is the explanation of the apparent paradox

of § 165. If we imagine an aerodrome designed for a given

velocity, so that X2 = y, then we could reduce its expendi-

ture of energy, for given distance, by reducing its velocity

till xi + X.2 = y (that is, x = y, prop, i.), then by re-designing

its area till once more x^ = ^ we can again render it more

economical ; this could be repeated ad infinitum, the economy

increasing at each step, the net result, however, merely being

the saving effected by transferring the " body " less rapidly

through the air.

Cor. III.—The constancy of Xo -\- y demonstrated in the

present proposition has for an immediate consequence the con-

stancy of the gliding angle (if X\ be ignored), that is to say, the

thrust required to maintain an aerodrome in flight will be

constant for a given value of W, and if this thrust be supplied
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by a component of gravity (Fig. 110), and if y be the angle of

Thrust . -•..•,= sm y, that is to say, y is con-descent, we have
Weight

stant. If we take account of the body resistance xi, we shall

find that the value of y will increase the higher the velocity.

This effect is more fully investigated in the subsequent

section.

§ 167. The Gliding Angle, as affected by Body Resistance.—Let y,

as before, stand for the theoretical (constant) gliding angle when
the body resistance is zero.

IZ

Fig. 110.

Let yi be the gliding angle

wdien the body resistance is

xi ; then :

—

When the total resistance

is x^ -\- y gliding angle = y,

and when total resistance is

3Ci + a-a + y gliding angle =
yi, the w^eight TV being the

same in both cases.

Consequently we have for small angles - = ——
_^ , which

for a correctly designed aerodrome, when X2 = y, becomes

—

yi _ xi + 2 Xq
,

y
~ 2 X2

Taking as an illustration the case of a bird, and estimating the

relation of xi to X2 on the basis of skin-friction alone (w^hich

is probably near the truth), we find by measurement of different

species that the body surface is at least ^ of the wing surface,

that is to say, we may take it that a-j = 3 xi and we have

—

'^ = -; that is to say, under the most favourable circumstances
y 6

in bird flight the gliding angle is increased about J by body

resistance above what it would be were such resistance absent.

In most game birds and other fast fliers the proportion would

work out very much higher.
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In the above illustration we have assumed that the bird has

been correctly designed by Nature on the basis of oar yyesent

liypotliesis. There is an item of some importance which we have

hitherto neglected and which will be subsequently taken into

account, i.e., the influence of sail area on total weight. We have

so far assumed that the weight is constant and that the sail

area may be increased or diminished at will, whereas in reality

a part of the total weight is due to the wings themselves, and the

total weight should be represented as some function of the area

(F) A, plus a constant. This extension of the subject will be left

for later investigation ; for the present we will continue to

exhaust the problem from the present standpoint.

§ 168. Relation of "Velocity of Design to Velocity of Least Energy.

It has been pointed out in respect of props, i. and iv., in

Cor. II., prop, v., that the velocity for whicJi an aerodrome is

correctly designed to cover the greatest distance on a given supply

of energy is not the velocity at which it will actually cover the

greatest distance, unless the body resistance is zero. Let us put

the matter in the form of a further proposition :

—

Prop. VI.—Given the relation of a^ito x.^, determine the velocity

of least resistance in terms of the velocity for which the aerodrome

is designed for least resistance.

Let us represent the designed velocity by the symbol V, and let

Fi (as in prop, iii.) represent the velocity of least resistance,

that is, when x =^ y (prop. i.). Then at velocity V we have

x^ = y, and at velocity F^ we have x^ -\- x^^ y, where x and y

are variables.

Let «! and a^ represent normal areas that will give rise to

resistances equal to x^ and x^.

Then, xi = n a^ V^

X2 = n a2 V^ where n is a const. '

and, y = m yja where m is a const.

When V = Y, X2 = y,
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n a2 Y^ = m —^ or aa V^ = -
(1)

1 tt4 "'^

When, T^ = T'l, xi + x^ = y,

1 m
.-. 7i (ai + aa) TV = m --^ or ((/i + (/a) I? = ^- (2)

^ 1
'*

By (1) and (2) we have

—

(ai + «2) V-^ = a„Y*

that is,

El — «2 _ ^0

V* ~ (ai + a2) ^ xi -\- X2

y - VVa-'a—J-
—

.

Xi + X2

The signification of this result is that if an aerodrome be

designed to travel at a velocity V, its " sail area " being such as

will involve the least total resistance at that velocity, such an

aerodrome will experience its least resistance when its velocity is

reduced to

—

vxy X2

Xi + X2

As an example we may, as before, assign relative values a'l = 1

X2 = 3, we have velocity of least resistance.

Fi = ^y I
X V r= -93 V.

If w^e take xi = X2 we shall have

—

Fi = ^ ^ X V = -84 V.

Least Horse-power.—If we require to know the velocity of least

power V2 we have by prop. iii. : V2 = -^ = '76 Vi, or in terms

of V we have

—

V2 = Y X ^ ""'

3 {xi + X2)

In the case of the values given above,

When a:2 = 3 a;i Fa = '706 V.

When X2 = X, Fa = '638 V.
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§ 169. Influence of Viscosity.—The influence of viscosity in the

resistance of bodies is to cause a departure from the V-square

law. It has been shown (Chap. II.) that the resistance in a

viscous fluid can be expressed as a power of the velocity whose

index must be less than 2, this form ot expression not repre-

senting a definite law that holds good over any wide range, but

rather defining the rate of change in the quantities round about

the values for which the index value may have been determined

(§ 40).

Adopting this approximate form of expression, we shall have

in prop. i. x oc F", and assuming (as we are probably justified

in assuming) that viscosity has only a negligible influence on the

aerodynamic resistance, we have :

—

n

.'. differentiating, we have

—

dx nx

dy~~ 2^'

Now x -\- y \Q minimum when dx = — dy, that is

—

—
7i— = — 1, or n a; ^ 2 y, or x = - y.

This is the solution to the equivalent of prop, i., on the modified

hypothesis.

Thus if n = 1*75, that is to say, it x = V'^''^^, we have the

minimum total resistance when x =^ - v.
7

-^

The necessary modifications to generalise the further pro-

positions in respect of the index of x may be easily effected ; the

matter, however, has not been pursued further in the present

work, the approximate assumption of w = 2 being deemed

sufficient for the needs of the practical application of the

theory.

§ 170. The Weight as a Function of the Sail Area.—It has been

pointed out, in § 166, that we cannot, strictly speaking, regard the
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weight of an aerodrome as constant in respect of the value of A,

for the supporting members themselves must possess weight, and

such weight must be some function of the area. This considera-

tion will not affect the results given by props, i., ii., iii., for in

these the hypothesis does not contemplate any change in the

value of the " sail area "A.
We may regard the total weight W of an aerodrome as con-

sisting of two parts, Wi and TF2, of which Wi is constant being

the weight of the essential load, and W2 as the weight of the

aerofoil which must vary in some way with the area A, or

W2 = (F) A where the nature of the function must depend upon

the conditions of design and construction.

Before any attempt can be made to investigate the influence

of the matter under consideration, some assumption must be

made as to the form of the function in question. The basis on

which we have to found our assumption is that of some probable

constructive method ; thus we might suppose that as the aerofoil

undergoes change of area its geometrical form is preserved and

remains constant. If we take L as representing the linear

dimension of the aerofoil {L may be chosen as any linear dimen-

sion so long as it is the same in all cases) ; then if the weight of

the aerofoil per unit area were constant, we should have W2
varies as L'^ ; or suppose we base our relationship on an assump-

tion of constant geometrical form, but all scantlings of ai3propriate

strength, investigation gives W2 varies as L. The actual

relation, whatever it may be, depends upon the exigencies of

design and can be established for any set of conditions empirically

by designing aerofoils of different area and plotting an L :

IF2 curve.

In detail we find that the weight of each element of the aerofoil

structure may be represented by the simple expression k L^ where

k and q are constants which are different for the different func-

tional elements. Now we know that an expression consisting of

the sum of a number of quantities of the form kiL^'^, k^L'^^,

ka L^'^, etc., may be approximated over a moderate range by a
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simple expression of like form, and the approximation is greater

the less the variation in the value of q in the component terms.

Now in the present case in any reasonable design q is found to

lie for every structural component between 1 and 2, so that we

shall be justified in assuming the expression W^ = k L^ as

approximately applicable.

§ 171. The Complete Equation of Least Resistance.—In prop. i. of

the present chapter we investigated the conditions of least resist-

ance in the simple case of an aerodrome of fixed weight and sail

area. In prop. v. (cors. i. and ii.) we liave dealt with the

influence of a body resistance independent of the aerofoil area. In

the present section it is proposed to generalise and include in the

investigation the influence of the weight of the aerofoil as a

variable, assuming the form of expression deduced in the

preceding section.

It has been shown that the eftect of body resistance is to make

the resistance at high speeds greater than that at lower speeds ;

but we know that at low velocities the sail area requires to be

increased and that consequently the weight becomes greater and

the resistance will be increased on this account, and when the

velocity becomes less than a certain value the increase of resist-

ance from this cause will more than compensate for the decrease

due to the reduction in the direct body resistance. We may
therefore anticipate that the resistance has a minimum value at

some definite velocity at which A, and consequently L, will have

some definite ascertainable value.

Let ir = total weight.

,, Wi = constant essential weight.

,, ^^-2 = variable weight, dependent upon L.

,, A ^ aerofoil area.

„ L := a, linear dimension which we may take to be Va.

„ y = aerodynamic resistance, of which

—

2/1 is that due to ir and

?/a is that due to IF,.
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Let X = direct resistance, of which

—

xi is that due to body resistance, and

X2 is that due to aerofoil area.

,, (2^ = a normal plane area whose resistance is the

equivalent of xi, and

,, fla = a normal plane area whose resistance is the

equivalent of x^.

,, F = velocity of flight.

., ^ = coefficient of sldn friction.

k and q are constants, as in preceding section, and Ci C^ C3 are

further constants.

It can be shown that

—

Jf72

y — ^1 T2 T72 ' ^1^^ *' = ^2 «1 T" + C3 i F^ L^.

We require to know the minimum value oi x -\- y ; or, we

require to solve for minimum value the expression

—

Ci ^^2 + C2 «i V + Cg f r' L\

Now W = TFi + IFa, and TF2 = k L\ so that expression

becomes

Ci ^^'^2 y!^'^' + C, a, F^ + O3 ^ F^ L^

or

<^inV^+CiTFi2/. ^^^^ + Ci F -^^J^^

+ C2 ai T'2 + C3 ^ V L\
where L and F are variables.

Making a temporary substitution of constants in order to

abbreviate, we have

—

jj. y2 "1 jji-q y2 + iJ-'^i J/
2 + ^ ^ ~\~ f ^^ L .

Differentiating in respect of L and F gives simultaneous

equations as follows :

—

- 2 -j^^ - i^- q) ^3-. y2
- (2 - 2 g) ^3-2! p.2

+ 2/LF'- = 0. (1)
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e V + f V L^ = 0. (2)
L^ V" L'^-^ P L^-'' r

-R n\ i-i
g (2 -q)h (1 — q) c ,

Or, eliminating V, we have

—

2 I /., I + 7-2\ r2-g ~

a (2-(?)& (1 - ?) c

Simplifying and substituting for a, h, c, etc., we obtain-

Cs$ _ Wi - iq-l) k U
(5)

This is the solution in its most general form, and gives the

condition of least resistance. All the quantities except L are

known to the designer of the aerodrome ; the value of L
determined from the equation gives the value of V from either

Equation (3) or (4) ; it also immediately defines the area. The

form of Equation (5) is such that it can only be solved by

plotting.

If the necessary data to any aerodrome are known we can thus

ascertain the velocity of least resistance and prescribe the correct

" sail area." It is not always, however, that the general solution

of the problem is desired—in fact, more frequently than not the

value of T" is prescribed by considerations external to the aero-

dynamics of the subject, when the problem becomes to determine

the area of least resistance corresponding to the stated value of V.

In this case the differentiation in respect of L is all that is

necessary, and we fall back on Equation (1), V being a constant.

The practical application of the present investigation and

the employment of the foregoing equation are discussed in the

subsequent chapter.
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CHAPTEE VIII.

THE AEROFOIL/

§ 172. Introductory.—x\.t some future period it may be found

possible to rationalise the treatment of the theory concerned with

the form of the aerofoil on a comprehensive basis, so that the

sectional form at every point shall be correlated to the pressure

reaction and the strength of the cyclic disturbance. At present

we are compelled to take our stand on a simplified and some-

what conventional hypothesis.

In the case of the aeroplane, in respect of which a certain

amount of experimental data is available, we can at once proceed

to apply the fundamental propositions of the preceding chapter,

to determine the angle of least resistance, thus :

—

Let, as before (§ 163), x -{- y he the total resistance in the

line of flight, where x is the direct resistance (due to skin friction,

etc.) and y that due to work expended dynamically.

Then the condition of least resistance is that x = y.

Now X = ^ APqo, and y = 13W = c fi'^ AP^q (for small values of

/3), or f = c/3'^, that is, /3 = ^J — where /3 is the angle of

inclination in radians
; £ is the coefficient of skin friction

(§ 157), and c is the constant according to § 15.9.

If /3° be the value of the angle expressed in degrees, the

expression becomes /8,
= /y -.

Taking for example the case of a square plane for which the

value of c is 2, and taking f = "02, we have

—

y8° = -—
. X Y -2" = 5-7° approximately.

^ See footnote, § 128.
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A plane of elongate form in j^terygoid aspect -^hose value of c

is = 3 would thus have an angle of least resistance of slightly

over -If^. This is about the minimum value that would in the

ordinary way be obtained, assuming that correct values^ have been

assigned to c and ^.

When we have to deal with an aerofoil of curvilinear section

adapted to the form of the lines of flow, we may obtain useful

results by adopting the hypothesis of constant su-eep (§ 160).

According to this hypothesis it is assumed that the support is

derived from a layer or stratum of fluid uniformly acted on by the

aerofoil, and whose cross-sectional area is constant. This area, for

a given plan-form of aerofoil in stated aspect, is equal to the aero-

foil area A multiplied by the constant k, or, as given in § 160, we

have, siceejj = k A.

It will be further assumed that the relation — (§ 161) is

constant for any given plan-form and aspect.

§ 173. The Pterygoid Aerofoil. Best Value of /3—

.

Let € = -r and, as before,

„ A = aerofoil area,

„ kA = sweep,

,, f = coefficient of skin friction.

C is the constant of the normal plane (§ 136).

Now the direct resistance x = ^ A C p V^, and the aerody-

namic resistance?/ is equal to the energy expended aerodynamically

per second dirided by the velocity, or y = ^ p k A V X V'^ (/3^ — a^)

^ r = i P <A r- i^-- a2).

^ The values of c for the aeroplane are probably not the same as for a

pterygoid aerofoil of the same aspect ratio. Neither value has yet been

detennined with any degree of accuracy ; the values given in Figs. 105 and

106 and in tabular form in ^ 177 are probably more nearly correct for the

pterygoid form. «

It will be shown subsequently that the effective value of | in the case of

an inclined plane may be less than its true value.
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But condition of least total energy is that x = y. Let /3 = /3i

and a =L ai when x = y.

Now,
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is this probable if the angle j8 is considerable. Apart from the

practical considerations introduced by the necessity for thickness

in the aerofoil, which probably imposes a minimum limit on its

fore and aft dimension, there are reasons (which will be discussed

hereafter) for supposing that perfect continuity of motion is not

possible under the conditions of jinite lateral extent. "Whatever

defect in the theory may he introduced by considerations of this

nature may be legitimately ignored at the present stage.^

§ 174. Grliding Angle.—Let y represent, in circular measure, the

gliding angle—that is, the angle of flight path at which the force

to overcome the resistance is exactly provided for by the com-

ponent of gravity in the path of flight. It will be assumed that

y comes within the definition of a small angle, i.e., y ^ sin y ^
tan y with suflicient approximation. Then

—

_ Resistance
^ ~ "Weightr-

Now weight (W) = p k A V~ {a -\- /3) and resistance comprises

—

(1) Aerodvnamic resistance = ^^\ .,

'-

V elocity

_ p K A y (/32 - g^~
2

and

(2) Skin frictional = ^C p A V^, and

(3) Body resistance C p a V'^ where a is a normal plane area

to which the body resistance is equivalent.

Now (3) is a superadded resistance with which for the moment

we will not concern ourselves, so that we have

—

' O r^ _1_ /Q\ ^ .- /^ _1_ :j\ O /^ I2 (a + /3) ^ K (a + ;3) 2 ^ ' (e -f 1)

But we know that for Least Resistance these terms are equal,

consequently under the conditions of Least Gliding Angle (= yO we

have yi = (1 — e) /3i, that is to say, the least gliding angle vdW be

1 Compare § 189.
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If Yi be expressed in degrees this will require to be multiplied

180

§ 175. Taking Account of Body Resistance.—The foregoing in-

vestigation has included the temporary assumption that the whole

direct resistance is constituted by the skin friction of the aerofoil,

as in prop. i. of the preceding chapter. We will now take into

account the influence of a resistance independent of the surface

of the aerofoil, the body resistance or x^ of § 165.

14-

12"-

10"-

8°-

6°-

4"-

2°-

ol 120 140 fed
"

Fig. 111.

We know that such a resistance, which may be-represented by

an equivalent normal plane, inevitably results in an increase

of the gliding angle ; also that this increase will be less the lower

the velocity, for, according to the equation of the foregoing

section (and Prop. V. of § 166), the gliding angle is constant,

neglecting body resistance, so long as the aerofoil is properly

designed, and does not depend u^Don the velocity ; we may

therefore regard the gliding angle as made up of two parts

:

the part which is constant in respect of velocity, and the part

due to body resistance, which varies as the velocity squared,
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The resistances, and therefore the ghding angles, may be pre-

sented in the form of a diagram (Fig. Ill), in which abscissae

represent velocity and ordinates the gliding angle ; the dotted

line represents the constant resistance, and the curve (struck

from the dotted line as datum to the equation y a V'^) shows

the manner in which the resistance increases with the velocity.

Values of V and y have been assigned for a supposititious

case.

§ 176. Value of /3 and y for Least Horse-power.—By prop, ii.,

§ 164, we know that the condition for least horse-power is

—

y = 3x, when y = 3x let (3 = ^2-

Then, following § 173—

or Q " =
P2 K (1 - e-)

(1 - er

A result that otherwise follows from corollary to prop. iii.

—

Let 72 = gliding angle for least horse-power. Following § 174

we have

—

y2 = where y = S x

y
•* 2 082 + a)

72 = § ^2 (1 - e)

or in terms of /3r

2
or, ya = -^ yi = 1-155 y^. (approx.).

In Fig. 112 the x and y resistances are shown as curves

separately and superposed. In the lower portion of the figure
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abscissae represent velocity and ordinates y values. It is

evident that so long as we are confined to the small angle

hypothesis the resistances may be thus represented and the sum
of the separate y angles will give the resultant angle.

In the upper part of Fig. 112 the y angle is represented

graphically, it being supposed that the aerodrome is launched

from the point a.

Thus, if a h represent the gliding angle of least resistance

(shown for example as 10°) then a c will represent the gliding

angle for least power, the angle being ll°-55. If we suppose

that two aerodromes are launched simultaneously from the point a

(of equal w^eight and " sail" area and plan-form), the one being

designed for least resistance and the other for least power, their

respective trajectories will be the two straight lines a b and a c,

and their positions after the lapse of a certain definite time

will be given by the j)oints h and c where a h is to a c in the

relation ^^ : 1 (prop, iii., § 164). We may draw a curve

e c h d through the points c and b, which will represent the

position occupied by aerodromes simultaneously launched from

the point a, for other values of /3.

Now since the angle of least resistance is the minimum gliding

angle, the line a b will be a tangent to the curve e b d at the

point b, and since the least power expenditure corresponds to the

slowest rate of fall, the tangent to the curve at the point c will

be horizontal ; we have thus defined the character of the curve

in question, which represents the simultaneous loci for similar

aerodromes of different j3 values.

The existence or otherwise of body resistance does not affect the

problem as here presented ; it is included in the plotting as one

of the resistances that vary as V^.

§ 177. The Values of the Constants.—The paucity of reliable data

has already been made the subject of comment, and the values

of many of the constants here given can only be regarded as

rough approximations. To prevent misapprehension on this
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point, the tabulated figures,, where not considered reliable, have

been entitled "plausible vakies," and accompanied by a sign of

interrogation ('?).

It has been demonstrated in § 161 that, on the hypothesis

of constant sweep, the constants C c and k are related to one

another according to the equation

—

^ _ c_C _
13
~ K

or, employing as before, the symbol e to denote a//5, we

have

—

c C ,
e = 1,

K.

that is to say, theory supplies us with a link connecting the

whole of the constants involved in the equations of best value

of /3 and least value of y.

Of the above constants the value of C is known for planes of

different aspect ratio from the experiments of Dines, the results

being given in the form of a curve in Fig. 89 (Chap. V.). These

values tabulated are as follows :

—

Table I.

Aspect Ratio
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given plotted for different values of aspect ratio in Figs. 105 and

106, and, tabulated, are as follows :

—

Table II.

Aspect Ratio " n."
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state that it is almost unnecessary to specify the precise form to

which n values are supposed to relate ; we may take it that we

are dealing with a rectangular plan-form, and that n denotes the

lateral breadth in terms of the fore and aft dimension ; thus, for

planes in pterygoid aspect n has a value greater than unity, and

for planes in apteroid aspect, less.

Now if K is a function of n alone, e is also a function of n

€—
^ rz

€.

_ t? c
•7

Pig. 113.

alone, and if we can by experiment or theory establish a form of

expression in the one case, the other follows from the equation.

It is evident that the circumstances determining e are foreign to

our present hypothesis, and we shall require to temporarily take our

stand outside this hypothesis in order to investigate the question.

§ 179. An Auxiliary Hypothesis.—Let us suppose an aerofoil

represented in plan in Fig. 113 supported in a continuous

medium ; then if M^. be the upward momentum communi-

cated to the air passing between planes represented by the

lines h b and h^ bi at the time when its upward momentum is a

maximum—that is, when it comes within the direct influence of

the aerofoil (the descending field of Chap. IV.) ; then, assuming a
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field of force symmetrical about the plane zz, Ma will also repre-

sent the upward momentum communicated to the air in partially

arresting its downward motion during recess.

And the air outside the surfaces b b and bi bi will be receiving

upward momentum the whole time it is in the field. Let the

sum of this momentum be denoted by Mi.

Now, since the total residuary momentum must be zero

(§§5 and 117) the downward momentum remaining in the

air between the surfaces b b and b b is also equal to Mi, and if

Mp be the downward momentum in the air when it quits the

descending field we shall have : M^ = Ma + Mi.

But according to the main hypothesis we may represent

M, ^y ^'^^^*^'

^Ma Ma
' M^ - Ma + Ml ^^^

It remains for us to assess the value of M^ in terms of M^

.

Let us suppose that, in a manner analogous to the limitation

of the sweep, the air external to the surfaces b b bi bi be repre-

sented by the limited region cut off by two further surfaces c c

and Ci Ci ; then it is evident that the distance separating these

surfaces will be greater the greater the lateral extension of the

aerofoil.

Calling the fore and aft dimension of the aerofoil unity, so

that its lateral dimension will = n, let us assume that the distance

between b b and c c is proportional to k, and let it be denoted by

a K. We have no direct means of testing the accuracy of this

assumption ; we can only say that it is a reasonable assumption,

since the conditions that influence the depth of the layer of air

acted upon obviously affect the extent of the disturbance of the

fluid in other directions.

Then the upward momentum received by the air at the time of

its crossing the plane z z is, from considerations of field symmetry,

1/
just half the total eventually imparted, that is = ~, but we
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are supposing that the ah- that reaches the plane z z between & h

and c c has received momentum "pro rata with that within the

region bounded hj h b hi bi, that is to say :

—

Ma /^ = n / 2 a k,

,^ 4 a K

or Ml = ill"
n

Ma
that is, by (1) e = ^^^

M.(l+lf^)

or
n + 4 a K*

We may take a constant e to represent 4a, and our expression

is

—

n -\- e K

§ 180. K and e, PlausiWe Values.—We are now able to find an

expression for k in terms of c, C, and n, for we already have the

equation

—

c C ^
^

n c C ^

K ' ' ' n -\- e K K

„ 2 K n + e K^
or cC = r^n -\- e K

cCii-\-eCeK. = 2, K TO. -\- e K^

e K^ + 2 n K — c C e K = c C n

/ \ c C n , / n c C\^\ n. , c C
whence-

<< = ± V
]
^+ (-, " "2 J }

- ^ + "2"'

the rest is a matter of choosing such a value of e as fits in best

with experience. The author has taken e = 3'3, and this is the

basis on which the following Table of plausible values of k and e

is founded.

§ 181. Best Value of (3. Least Value of y.—Assuming the

values given in the Tables (I., II. and III.), we are now in
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a position to obtain numerical values for the best values of

the angle /5 for aerofoils of different aspect value. Table IV.

illustrates the process of calculation in the case of the pterygoid

Table III.

Plausible Values, k and e.

n.
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columns ; both Tables IV. and V. being values of (3 appropriate

to least gliding angle, that is, for y = minimum.

Table VI. gives the theoretical values of y corresponding to

Table V.

Values of /3i {continued).

10

12

f = -025

•210 =
•219 =
•226 =
•230 =
•236 =
•244 =

12-0°

12^5°

12-9°

13-2°

13-5°

14-0°

•256 = 14-7°

•268 = 15-3°

^ = -020

•189 =
•196 =

10-8°

11^2°

•202 = 11^6°

•206 =
•212 =:

•218 =

11-8°

12^15^

12^5°

•228 = 13-0°

•239 = 13-7°

i = -015

•163

•169

•174

•178

•183

•189

•198

•207

9^3°

9-7°

10^0°

10^2°

10^5°

10-8°

11-3°

11^8°

^ = •OlO

•133 = 7-6°

•138 = 7-9°

•142 = 8^1°

•145 = 8^3°

•149 = 8^5°

•154 = 8-8°

•161 = 9^2°

•169 = 9^7°

Table VI.

Least Gliding Angle (^ y-^ {Theoretical)

.

Minimum value of y or yi = (1 — e) / ^ ^ ^
V K (1 — e"^

n.
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In Tables lY. and Y. the angle is given both in circular

measure and in degrees ; in the case of the gliding angle Table YI.

the equivalent is given in the inverse form, i.e., as a gradient.

In all cases the assumption is that of the small angle as already

stated.

In actual aerodrome models, owing to the necessity for organs

of equilibrium the resistance is greater than that due to the con-

siderations taken into account in the foregoing Table ; there is

Table YII. (Aeroplane).

Least Resistance. Values of /3i°.

From Equation— (3i° = —-- ^ - .

Values of c assumed from Table II. {Plausible Values).
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resistance, that is to say, least gliding angle, is given by the

expression f3i = x/ ~
, and since the aerodynamic and direct

resistances are equal we have least value of y = 2 /y - . In

Tables VII. and VIII. the calculated angles are given for values

of i ranging from '01 to "OS.

§ 182. The Aeroplane. Anomalous Value of £.— The actual

behaviour of an aeroplane presents an anomaly with regard to

Table VIII. (Aeroplane).

Theoretical Least Gliding Angles, (y = min.).

n.
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applicable.^ The result is that the aeroplane shows results far

better than theory would indicate unless a diminished value of $

be employed in the equation.

The probable explanation of this anomaly is to be found in the

supposition that for the angles investigated the flow is of the

Eayleigh-Kirchhoff type, as illustrated diagrammatically in

Fig. 98 (a), the result being that the effect of skin friction is

only felt on the one face of the plane instead of on both faces, as

would be the case if the flow were conformable, and consequently

the apparent value of f is only about half its real value.

There is a serious but not insuperable difficulty attached to the

foregoing explanation. It would appear that since the " dead

water " is itself subject to a tangential drag at its free surfaces,

and since, as a whole, it has no influence to keep it in position

other than the reaction of the aeroplane itself, this frictional

drag must be transmitted to the aeroplane, and so in some way

take the place of the missing skin friction.

On examining the matter in greater detail, it is evident that

the form of the dead water region is determined primarily by the

dynamics of the live stream, and if the fluid be supposed friction-

less the dead water will extend indefinitely rearward, and its

pressure will throughout be uniform. If now we take into account

the effects of viscosity there will be a frictional or viscous drag

acting tangentially at the surface of discontinuity between the

dead water and the live stream, and referring to Fig. 114, it is

evident that the cumulative effect of this drag will be to

create a pressure gradient, the pressure at A being less than that

at B, and that at B less than that at C, and so on. In con-

sequence of this pressure difference the dead water will become

1 The results so far obtained by the author on the value of | by different

methods are not altogether in harmony. Since writing this and the follow-

ing sections (§§ 182, 183, and 184), certain experiments made with a new
instrument, the aerodynamic balance (Ch. X.), seem to indicate that the

conclusions here formulated may require qualifying ; the results at present

available, however, are not conclusive, and it has been thought best to

present the argument in its original form.
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the seat of a lively circulation as indicated by the arrows, the

motion of the fluid in the vicinity of the plane being in

the direction of flight, and that in the vicinity of the free surface

being in the opposite direction. Now the result of this will be

to produce a tangential drag in a forward direction ,- in fact, any

sliin friction experienced on the upper face or ''back" of the

plane will be of negative sign ; we are thus unable to attribute the

" retention " of the dead water to the direct influence of the

plane.

On following the matter further it is evident that it is the partial

vacuum in and about the region a a a that supplies the necessary

Fig. 114.

reaction to prevent the dead water from being washed away, the

lines of flow being at this point in close proximity to one another,

as indicated in the figure. We thus find that the back of the

plane is not only apparently, but is really, relieved of the

frictional drag, which is actually borne in some way dynamically

by the fluid itself.

§ 183. Aeroplane Skin Friction. Further Investigation.—The

present stage of our explanation cannot be regarded as entirely

satisfactory. It would appear to be essential, if we suppose the

aeroplane to be maintained in steady motion by an applied force,

that all reactions experienced by the fluid must be eventually

traceable to the applied force. In the case under ccmsideration
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we have traced the action and reaction merely from one part of

the live stream to another part. It remains to be shown in what

manner the motion of the fluid in the region a a a (Fig. 114)

is counterpart to some component resistance in the line of flight

not otherwise essential.

Let us suppose a limited stratum of fluid to be dealt with,

firstly, by a system of superposed aeroplanes ; and secondly, by

a kind of honeycomb of curved tubes whose leading orifices point

in the direction of flight, and whose trailing or discharge orifices

make the same angle with the line of flight as the angle /3 of the

aeroplane system. Then, if W be the total weight supported in

either case, the resistance in the case of the aeroplanes will be

(for small values of /3) = W ft, but in the case of the curved tubes

it will only amount to half this quantity, or = W ^ ,theoperating

surfaces in either case being supposed frictionless.

It is therefore evident that the aeroplane involves twice as

great a resistance to traction as that aerodynamically necessary,^

and from what we know of the Kirchhofl' form of flow we can see

that this added traction is employed in generating and main-

taining the spurting forward of the fluid round the leading edge,

indicated by the lines a a a a in the figure. ^Yhen the work

expended in traction is entirely devoted to diverting the stream,

as in the theoretical case of the curved pipe system, then there

is no spurting forward of the fluid, and no discontinuity in the

system of flow; and on the other hand, the operating surfaces

are fully exposed to frictional resistance. "When the stream is

brusquely diverted by an aeroplane there is an aerodynamic

resistance involved in excess of that necessary to divert the flow,

and this, by giving rise to a form of flow of the discontinuous

type, diminishes the frictional resistance.

Owing in part to the return current in the dead water region,

and in part to the forward motion of the fluid on the front face

1 This is on the basis of ignoring the cyclic reaction ; if this be taken into

account the aeroplane is at a still greater disadvantage.
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of the plane in the vicinity of its leading edge, and again in part

to the slowing of the flow over the remainder of the face (owing

to its being a pressure region), it would appear that the net skin

friction might even be less than that computed on the basis of a

single surface.

§ 184. Some Consequences of the foregoing Aeroplane Theory.

—

The consequences of the peculiar behaviour of the aeroplane in

respect of skin friction are of considerable moment.

The aeroplane, thanks to its power of evading a considerable

portion of the resistance due to skin friction, is capable of being

utilised for the support of the load without any very great loss

of efficiency. Considered thus, and compared to an aerofoil of

pterygoid form, it is found to give results that are really remark-

able. Experimenting on a small scale, it is difficult to construct

a model with a pterygoid aerofoil that, so far as gliding angle is

concerned, will perform better than a ballasted aeroplane of the

most crude description. An analogous example is found in the

case of the screw propeller. Most of the theory relating to the

aeroplane, wing form, and peripteral motion, finds its analogue in

the theory of the screw propeller (Chap. IX.), and it is well

known to designers of the latter that, so long as the pitch is

rightly chosen in view of the torque and thrust, and provided

that the angle, area, and proportions, of the 'blades are suitable,

there is but a moderate gain in efficiency to be obtained by

departure from the simple helical form of blade.

It is probable that the relative advantage of the pterygoid

form becomes greater when the size of the aerodrome is increased,

owing to the relations of weight and area discussed in § 196,

and the relatively less importance of skin friction. If this should

prove to be the case the present theory would account for the

remarkable difference between the flight and wing form of birds and

insects, showing in detail that which was anticipated in Chap. II.

(Compare § 196.) In general the wings of flies, dragon flies,

moths, etc., are approximately flat—they are in fact aeroplanes

;
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and further, when flexed by the jDressure to which they are subjected

in flight it is probable that the}' actuall}^ present a convex surface

to the "wind." On the contrary, the wings of birds are always

concave on the under side and convex above ; they are in fact

true pterygoid forms. This is not only the case when the wing

is quiescent but is visibly the case when the bird is in flight. It

is of particular interest that some of the larger butterflies and

moths—for example, many of the ornithoptera—show clearly a

rudimentary development of the dipping front edge, proving that

this feature is not merely an incident of a different method of

construction.

§ 185. The Weight per Unit Area as related to the Best Value

of ^.—We may now resume the main subject from the point to

which it was carried in § 181, and we can show that the value

of jS corresponding to a minimum gliding angle denotes a

definite relationship between the area A, the velocity V, and

the load carried W.

According to the hypothesis of constant sweep, we know

that the mass dealt with per second is given by the expression

pk AV, and the velocity of the up-current is a V, and that of

downward discharge = /3 F, on the assumption that we are

dealing with small angles.

Consequently the weight supported (TF) which is equal to the

momentum communicated per second, will he p k. A V^ {p. -\- (i);

but we have a = e yS, so that our expression becomes

—

TF = p . .1 F^ /3 (e + 1),

or

—

,
= p K /3 (e + 1)> which is constant.

IF P
Now , y2 may be written^ where P2 denotes pressure, i.e.,

weight per unit area sustained by the aerofoil. In Table IX.

P
are given values of -^ for aerofoil of pterygoid form and of

different aspect ratio, calculated from values of /3 given in

269



§185 AERODYNAMICS.

Tables IV. and V., for $ taken as '03, '025, '02, '015, and -010

in the respective columns.

Table IX.

Pterygoid Aerofoil.

Values of P^/V^ for Least Resistance.
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Table X.

Pterygoid Aeeofoil.

Load ij^ounds) per Square Foot for Least Eesistance.
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For the aeroplane we know that the weight supported per unit

area is (for small angles) given by the expression—c f^ X
C p V^, which is = P3.

pWe therefore have -p ^ p c C l^x.

For values of ^ respectively '02, "015, "0125, and '01, and

taking p as before = '078, the values of -y^iox least resistance

are given in Table XI.

Table XI.

Aeroplane.

Values of Ps/V^ for Least Resistance.

n.
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Table XII.

—

Aeeoplane Data.

Pounds per square foot for different values of V for Least

Resistance.
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units, for the pressures in kilos per square metre can be obtained

with a sufficient degree of approximation by multiplying by five

the figures given in Tables X. and XII.

§ 187. Comparison with Actual Measurements.—The portent of

the preceding sections may be illustrated by a few examples from

Nature.

The herring gull, according to the system of measurement

adopted by the author and subsequently explained, carries its

load at the rate of about 1*3 to 1*4 pounds per square foot ; its

n value is 7. Eeferring to Table X. (^ = '02) we find this load

corresponds to 38 feet per

second or about 26 miles

per hour, which is probably

a fair approximation to its

actual speed.

The albatros carries about

Half- s/z£. ~\ 3 pouuds per square foot,

tvj-. '68 offAK^. y and has an n value of 12

;

referring to the Table we find

the corresponding velocity to

be about 50 feet per second or slightly over 84 miles per hour,

which again is probably not far from the truth.

If now we take the case of a dragon-fly: an example

weighed and measured by the author (Fig. 115) gave a result,

from a planimeter measurement of the whole wing surface,

of '68 grammes on 3*5 square inches, which is *062 pounds

per square foot. The "n" value may fairly be taken as

about = 4.

Keferring to the Tables and taking i = '02, we have for

pterygoid form the corresponding velocity = 9*1 feet per second,

or according to Table XIL, considering the wings as planes, the

velocity should be from 13 to 15*6 feet per second, according

as f is taken as '02 or '01.

Unfortunately no scientific measurement of the flight of this
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insect appears to be availaljle, but its velocity is certainly nearer

the latter than the former estimate.

In the case of birds such as those above cited, the soaring mode

of flight is so extensively employed that without doubt the process

of natural selection, or whatever other method Nature may
employ, may be relied upon to have approximated the proportions

of least resistance proper to the ordinary velocity of flight of

the species. In the case of smaller birds or insects, such as the

dragon-fly cited, it is an open question to what extent the

problem is modified by the exigencies of active flight, and so

the evidence, as confirming or otherwise the present theory, is

at the best inconclusive.

§ 188. Considerations Relating to the Form of the Aerofoil.—We
have so far specified the form of the aerofoil only so far as the

angles a and /3 are concerned, and have now not only to discuss

the other attributes of the fore and aft section, but also the plan

form of the aerofoil and its variation of section from point to

point, and in addition the shape it presents when viewed along

the axis of flight.

Many of the influences at work to affect the form of the

aerofoil do not belong to the province of aerodynamics. The

question of form, as viewed along the axis of flight, is governed

almost entirely by aerodonetic considerations, and the discussion

of this point will therefore be reserved.

The present subject has already been examined in Chap. IV.,

§ 120 ; it remains for us now to continue the discussion in the

light of the present theory.

If we suppose, provisionally, that the aerofoil section is of the

form of the arc of a circle, then such a form would manifestly

carry out the requirements of hypothesis with a uniform distri-

bution of pressure on its surface, for we are supposing that the

" fluid " consists of a limited layer composed of a number of

strata whose individual continuity is preserved, after the manner

of Fig. 108. If we suppose such an aerofoil to be gliding in a
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frictionless fluid, then its trailing and leading edges will be at

the same level, for owing to considerations of symmetry it is then

that the reaction is vertical. Under these conditions we see

(Fig. 116) that the gliding angle will be = ^—^— •

a r-^-r 0^, r=^
Fig. 116.

This result may be deinonstrated more generally for, x resist-

ances being absent,— y ^ W
/3^ — a" /3 — a

Compare §§ 174, 176.
/iir,

2 (^ + a) 2

Now the ratio of the angles a and /? does not depend upon the

leading and trailing angles given to the aerofoil, but upon the

aspect ratio, so that the design of the aerofoil requires to conform

to the ratio so imposed. If we take an aerofoil of arc section

there is a particular direction in which it must be propelled in

order that it should fulfil the necessary condition, and this

direction is in practice determined by a directive organ which

usually takes the form of a tail plane.

Let us examine the effect of an incorrect adjustment of

the directive organ ; that is to say, we will examine the effect of

incorrectly designing the aerofoil in respect to the value of e

(= aj^). Firstly, suppose it be adjusted so that the " dip" of the
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front edge is insufficient, then the iip-cnrrent will no longer strike

the edge conformably, and, in the case of a real fluid, a discon-

tinuity will result, as illustrated in Fig. 117 ; such a discontinuity

may be a trivial matter involving only a small pocket of " dead

water" (a), or it may be more serious so that the form of flow

resembles that generated by an aeroplane (h) ; in either case we

Fig. 117a.

know, from the great efficiency obtainable from the aeroplane,

that the effects are not disastrous.

If, secondly, we suppose that the leading edge has too much

Fig. 117b.

" dip," the want of conformity is in the opposite direction, and the

surface of discontinuity springs from beneath the leading edge as

depicted in Fig. 118 ; the result of this is destructive to the whole

peripteral system of flow, for the moment the pressure region

commences to occupy the upper surface of the aerofoil a condition

of instability arises and a new system of flow is inaugurated

which produces a downward instead of an upward reaction. This

is a fact easily demonstrated experimentally : a model in which
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the adjustment has been carried to its limits will behave in a

most capricious manner, sometimes gliding perfectly and at

others dropping suddenly in the midst of a flight like a bird

when shot.

§ 189. The Hydrodynamic Standpoint.—Let us revert to the

Hydrodynamic aspect of the subject as expounded in Chap. IV.

We have seen that the supporting reaction is due to a cyclic

motion in the fluid which is maintained by, and is in equilibrium

with, the load on the aerofoil ; it is of course understood that

there is a superposed motion of translation, i.e., the motion of

flight. Now in the case of an aerofoil of infinite lateral breadth

we have seen that this equilibrium is permanent, and we have in

Fig. 118.

several instances plotted the resulting field of flow. When we

have to deal with a case of finite lateral extent we have seen that

there must be a continual dissipation of the cyclic motion, which

vanishes in the manufacture of the trailing vortex filaments

which the aerofoil is continually shedding on either hand.

In the Eulerian fluid there is no reaction on the aerofoil

possible except that due to the cyclic motion, but in a real fluid

this is not the case ; a reaction may always be generated and

always is generated when the motion gives rise to discontinuity,

whether kinetic or physical.

Now the cyclic motion is in equilibrium with the reaction to

which it gives rise, so that if we suppose an aerofoil supported

entirely by the cyclic reaction and in equilibrium at any instant

with the cyclic reaction, then if, firstly, it be supposed of infinite

extent it will be in equilibrium at every other instant of time

;
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if, secondly, it be supposed of nniie extent, then, since the e3'clic

motion is decaying, its equiHbrium must vanish. In the case of

the finite aerofoil we must consequently have the load in part

supported by a reaction due to discontinuity, and in part only

to the cyclic motion ; the part of the reaction sustained by the

discontinuity of motion may be regarded as that required to

augment the cyclic motion at the same constant rate as its rate

of decay. Hence : an aerofoil of finite lateral extent cannot be

so designed that it shall be everywhere conformable to the lines

of flow, and any such aerofoil must give rise to discontinuity

in the motion of the fluid, involving surfaces of discontinuity,

and presumably dead water regions.

We thus see that a perfectly conformable motion, such as we

Fig. 119.

have tacitly supposed possible, is not possible when dealing with

a real fluid, and at some point or points along its length the

aerofoil must give rise to a discontinuity. This does not afl'ect

the validity of the foregoing theory, which has been founded on

a hypothesis that admittedly does not fully represent the actual

conditions ; but it may be found that the matter now under

discussion renders this hypothesis less valid than would other-

wise be the case, especially where we are concerned with the

quantitative estimation of the work done, i.e., the computation

of the gliding angle.

§ 190. Discontinuous Motion in the Periptery.—We may take as

a simple example of the phenomenon under discussion the case

of an aeroplane where, as we have seen, we have a system of

flow of the Eayleigh-Kirchhofl" type (Fig. 98). Let Fig. 119

represent such a plane in front elevation, then surfaces of

279



§ 190 AEEODYNAMICS.

discontinuity will spring from the ends in the manner shown,

and these surfaces, constituting at first a Helmholtz vortex

sheet, will break up into a number of vortex filaments which

conceivably become the vortex cores discussed in Chap, IV. with

reference to Figs. 83—86.

This view must at present be regarded as tentative, and is

not altogether in agreement with the explanation put forward

in the chapter to which reference has been made; it is highly

suggestive, however, and on that account requires to be recorded;

thus if we examine the wing of a bird we find that the middle

portion is of a very characteristic arched section, but towards

the extremities the arching is very much less pronounced ; in

fact, the form becomes such as might easily become the seat of

discontinuity. This observation applies more particularly to the

soaring birds, which in all respects constitute the best criterion.

If the view put forward in § 106 is correct, as to the cause

of the noise made by bodies in rapid motion, then the " whirring
"

noise made by the wing of a bird in flight is a direct proof of the

existence of discontinuity.

Of the two explanations of the genesis of the vortex con-

tinuations offered here and in Chap. IV., it is not necessary

that either should be in error. The previous explanation also

opens out a possibility that must not be lost sight of as bearing

on the phenomenon now under discussion.

Let us suppose that the two air streams passing under and

over the aerofoil find themselves when they meet at the trailing

edge possessed of different velocities. Then their common surface

would constitute a surface of discontinuity which might in itself

fulfil the requirements of theory. But such a condition is

impossible in an irrotational mass of fluid, for where there is

a difference of velocity there is also a difference of pressure;

and the fluid in the periptery is certainly irrotational in the sense

of the argument.^ But let us modify the supposition and take

^ The continuity of tlie system of flow cut by a path taken round the

aerofoil at some distance away, from one side to the other of the supposed
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it that the two streams, although moving with the same velocity,

are moving in different directions along the surface of separa-

tion ; there would appear to be nothing contrary to hj-drodynamic

principles in this supposition ; and the result would be a surface

of discontinuity which migltt conceivably satisfy the condition.

The subject is one of very great difficulty, and it is impossible

to do more than point out the more probable interpretations.

§ 191, Sectional Form.—The simple arc form of section

employed as an illustration in § 188 is, qualitative!}' speaking,

representative of that which may be considered essential,

although the actual section more commonly resembles that

given in Fig. 57, which may be regarded as typical.

We have seen that the consequence of an excessive " dip " on

Fig. 120.

the front edge is a loss of sustaining reaction, and it would

appear that the trouble is not so much due to the excessive angle

of dip but to the fact tbat the leading edge comes doicn too loic ; it

is evident, therefore, that the leading edge, after being allotted the

theoretical angle and position, as in Fig. 120 (indicated by the

dotted line), shoidd be curtailed somewhat in the manner shown.

In the wings of birds the elastic nature of the trailing

portion probably acts as a considerable safeguard, for should the

pressure reaction show any sign of falling off", the elasticity of

the plumage will immediatel}' rectify matters ; it is at least

impossible to get any sudden reversal as may hapj)en when the

aerofoil is a rigid structure.

In § 120 it was suggested that the form of section might be

surface of discontinuity, points to tliis conclusion ; the motion in tlie region

traversed by such a path would be sensibly iiTotational.
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uniform throughout the length of the aerofoil, but of changing

scale, i.e., that it should tail off to a point at each extremity.

Such a form is not generally found in Nature ; the section nearly

always becomes flatter and the angles of dip and trail become

less as the extremities are approached. It is not known whether

this fact is due to the reasons suggested in the preceding section,

or whether it is attributable to aerodromic considerations alone, or

whether there is some further subtle reason that has hitherto

escaped detection. It is certain that the feature in question is

valuable from the aerodonetic standpoint, and that is all that can

be said with certaintj' at present.

§ 192. A Standard of Form.—In 1894 the author, with a view

to embarking on some experiments in flight, took measurements

of the plan-form of several of the soaring birds, including an

albatros, a herring gull, and a kittiwake gull, with the result

that an elliptical form was adopted as being a simple geometrical

form whose ordinates approximate very closely to the average of

those adopted by Nature. No attempt was made to imitate the

" sinuosity " of the bird wing plan-form, this being regarded as

an anatomical accident.

The form of section adopted has been given in Fig. 58 ; the

aerofoil being made of timber, it was necessary to adopt a form

easy to produce ; on this account the hollow in the underside was

very soon abandoned owing to the results not justifying the

additional labour.

The "grading " is segmental or parabolic', that is to say, the

maximum thickness of the section at difl'erent points along the

length of the aerofoil is given by the ordinates of the segment of

a circle whose cord is constituted by the flat face. This method

of grading, independently of the plan-form to which it is applied,

ensures the proper tailing off of the load towards the extremities

as set forth in § 120. It is evident that if the thickness of the

stratum at different points along the aerofoil is in constant

1 For small amplitude the two curves do not sensibly differ.
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relation to its width at each point, the mass dealt with per unit

length will be everywhere as the width. But for a given height

of the arched section the values of a and ft will be inversely as

the width, and consequently the load sustained for any particular

element of the length will be constant in respect of width ; that

is to say, the sustaining power of the aerofoil for a given mid-

section and a given grading is constant, no matter what the

plan-form, both as to total and as to each element of length.

This is a very convenient rule to remember, but one which,

from the nature of the assumptions made, is more or less

approximate ; it can be applied legitimately to all ordinary

modifications of plan-form.

When an aerofoil is designed according to the foregoing

Fig. 122.

specification, whether as a solid as in the case in point, or as a

lamina of the same mean section, the equivalent area tor uniform

values of a and ft will evidently be that of a plane whose plan

ordinates are those of a segment, that is, proportional to the

thickness ordinates. Such a form may be taken as having

two-thirds the area of the circumscribed rectangle ; that is, if L
be the length of the aerofoil the equivalent area will be :

—

2 L^
ttX —

.

3 n

By adopting and adhering to some standard such as that

above defined, the experimental information obtainable becomes

of greater value than when a variety of forms are employed. It
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is only desirable to modify the design when the data for some

defined form is fully established and available as a standard of

reference.

In experimenting with mica models the author has frequently

adopted the form of natural flexion of an elliptical mica plate

secured to a central bolster, to give the desired mid-section form

;

the grading is found to take the form given approximately in

Fig, 121. In other cases the mica plate has been artificially

graded to approximate to the standard given above, by fitting

additional ribs as shown in Fig. 122.

Fig. 123.

§ 193. On the Measurement of " Sail Area."—The appropriate

measurement of the sail area or wing area of birds of various

species is a rather vexed question. Some writers have regarded

the wings as the sole organs of support, and the actual wing

area alone has been reckoned as effective. Others (notably

M. MouUiard) have assumed that the whole plan area (or ombre)

of the bird contributes to the support, and have made pressure

computations on this basis.

The author's view is that the influence of the body as a

supporting member cannot be ignored, but that probably its

effect can be best estimated as equivalent to an imaginary band

of appropriate width forming a junction between the two extended

wings as represented in Fig. 123. This view is based on the

knowledge that the cyclic system must be continuous from wing

to wing, and, on the whole, will produce a reaction on the body
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just as if the wing were continued in the manner shown ; also

on the improbabihty that there is any augmentation due to

discontinuity, for the body is of a rounded form little likely to

produce motion of a discontinuous type, and the tail is essentially

a directive organ.^

We have seen that the different portions of a bird's wing

are of different sectional form and adajDted to carry different

pressure values at different points. It sometimes happens that,

for the purposes of comparison, in place of the actual area the

equivalent area is required, as for example when comparing the

results of theory, as in § 185, with the proportions adopted by

Nature ; this area being the area that would be required on an

assumption of uniform pressure distribution, or constant values

of a and 13 throughout the length.

In order to rightly assess this equivalent area we require to

know the grading of the aerofoil, a knowledge which we do not

possess, and which, owing to the flexibility of the wing structure,

it is almost impossible to obtain.

The probability is that for birds of similar habits the grading

will be found to be similar ; that is to say, the distribution of the

load along the length of the outstretched wings will be identical.

In the absence of more definite knowledge, a rough assumption

has been made for the purposes of the present work, i.e., that

the grading is substantially that of the standard form adoj^ted

by the author, and consequently the effective area is given by the

. 2L2
expression p;—

.

§ 194. The Weight of the Aerofoil as influencing the Conditions

of Least Kesistance.—The subject of the influence of aerofoil

weight as affecting the conditions of least resistance has been

discussed in a previous chapter (§ 171), and a general equation

has been deduced from the conditions.

^ This point will be better appreciated when the aerodromic aspect of the

subject has been discussed.
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The most important application of the foregoing mathematical

theory is found in the case where V is fixed by external conditions

and where the area {A) is the variable ; this application gives

rise to pressure values greater than those given in Table X., the

difference being dependent upon the extent to which aerofoil area

is " penalised " by the direct effect of its weight in causing

additional resistance.

We start the present continuation with Equation (3) of

§ 171:-

yi _ _«_ , C^ — q) b {1 — q) c

Substituting the constants in full we have

—

y, _ Ci W ,
(2 - q) Ci TFi k Oi U' (1 - q)

whence

L' = .^1- (W + rfi k (2 -q)L'^-\- k' (1 - q) U"). (6)

We now require to substitute for Ci and C3. These values

were not investigated in § 171 ; they are obtained as follows :

—

We know that

—

W = p kA F^ (e + 1) /5

p K A V (1 - e2) /32

and y = ^

we require y in terms of W eliminating /5, hence

—

1 - 2e 1 _ ey_
PF2

— 2 p K ^ 72 (1 + e)2 2 p K ^ F (1 + e)

1 - e ^ W 72

2 p K (1 + e) ^ AV^

and if we define L as being = V~A', Ci is defined by expression

y = Cijiy,- (§171.)

r - ^-'
'-' 2pK(l + e)-

Now C3 (see § 171) is defined as such that the quantity

C3 i y^ L^ is the skin friction on the aerofoil, but we know that
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this is given in full by the expression— e C p V^ A and L^ =: A,

therefore C3 = (7 p.

Substituting for Ci and C3 in Equation (6) we have

—

^' =-F^rW(f+iyic ^ <'^'' + ' "'' <2 - «'
^'

+ P (1 — (2) L2«).

§ 195. A Numerical Example.—The employment of this equa-

tion may be illustrated by a numerical example. Let us take

the case of an aerodrome of 1,000 poundals essential weight

(31 lbs. approximately), to be designed for a velocity of 50 feet

per second. The remaining data are as follows :

—

n taken as 12

therefore

—

C = '75

€ = -75

K = 1-2.

It is found by trial design or by calculation that in the

expression Tr2 = k L^ that

—

k = 50

and q = 1'5.

We take f = -03

and p = -078.

Substituting values in Equation (7) we obtain —

6,250,000 X 2-4 X '0061 X 1-75 X '03 X '75

X (1,000,000 + 25,000 L^-s - 1,250 L^)

= 70 + 1-75 Li-5 — -0875 L^ (approx.).

This form of equation can only be solved by plotting or by

guessing^ ; the solution gives L = 2'96, that is to say, the area

A {= U) is 8-76.

Now the total weight sustained by this area is IFi + TF2 and

TF2 = 50 n-^ =254 (poundals), or IFi + W^ = 1,254, or 39 lbs.

almost exactly. We therefore have pressure per square foot

^ The particular case of </ = 1'5 is an exception.
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39
for least resistance = ^77^ = 4*45 as against 3'70 as given in

Table X.

We can calculate the corresponding value of /5 from the expres-

sion^ = p K (e + 1) /? (§ 185), or /3 =
^ ^ ^/_^ -^^ y2

which

... , ^ R -0585 -0585 „_
ni the present example gives p = -.

—r-^rr = ..^ . = 35b, or^ i- o
p K (e + 1) *lb4

20'4 degrees against 16"8 degrees according to Table IV.

It would thus appear that unless the aerofoil weight in the

above example has been greatly exaggerated, its influence on the

conditions of least resistance is a fact that should certainly be

taken into account. At present the accuracy with which the

fundamental data have been ascertained would scarcely justify

the preparation of Tables to include the influence of this factor.

§ 196. The Eelative Importance of Aerofoil Weight.—The

importance of the present branch of the subject evidently

becomes greater with any increase in the size of the aerodrome,

for the necessary proportionate weight of the aerofoil will be

greater on a large aerodrome than on a small one ; this fact is

almost self-evident, but is in any case easy of proof.

Let the weight of the aerofoil, as in the preceding section, be

represented by W2, and as before let Wi be the essential load
;

then we have seen that we can represent W2 by the approximate

expression— W2 = k U^ . We assume that the weight of the

aerofoil itself does not materially add to its stresses, being

supported directly.

Now let us suppose, as is the case for similar bodies, that Wx

varies as 17", then W^ will vary as W\ k U , that is, as

k L^+^ , or the relation of TV^I W\ will be represented by

-yg- X constant, tbat is, L'^ X constant. Now, if the

index q were as low as 1 (and it is improbable that it is

lower) the relative weight of the aerofoil WJWi will increase as
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the linear dimension. If q be greater the increase will be

appropriatel}' more rapid.

The relation W2/W1 could only remain constant if the value

of q were to sink to zero, a condition which is manifestly

impossible.

It is probable that for an aerodrome the size of that chosen as

an example in the preceding section the value of TfyTFi, is in

excess of that necessary, but it is questionable whether it would

be possible to construct a machine of moderate velocity capable

of bearing a man, without the aerofoil considerabl}" exceeding

one-fifth of the total weight.

The question of aerofoil weight as affecting the phenomenon

of flight as presented by Nature takes its place in the later

portion of the work. It is only necessary here to point out that

the larger birds must, in general, be more influenced than the

smaller ones, just as in the case of other forms of aerodrome ;

and in the matter under discussion we have one of the causes,

if not the most important cause, that constitute determining

factors of that critical point at which Nature finds it advantageous

to change from the insect mode to the avian mode of flight : that

is, from the aeroplane to the ptery.iroid form.

Note.—Tables, etc., in present chapter relate stiictly to incompressible

fluid. Foi' method of taking compressibility of air into account, see

Appendix I.

A.F. 289



CHAPTEE IX.

ON PROPULSION, THE SCREW PROPELLER, AND THE POWER EXPENDED

IN FLIGHT.

§ 197. Introductory.—The employment of the Newtonian

method (§ 2) in the theory of propulsion has been already

mentioned (§ 8). The application of this method, which

constitutes the foundation of modern theory, owes its

development principally to the work of Eankine and W.

Froude.

In the general theory of propulsion we are not concerned with

the machinery of propulsion, i.e., the form of propeller—paddle,

screw, jet, or other known or unknown mechanism ; we merely

take account of the fact that forces are exerted between the

propelled body and certain parts of the fluid, and investigate the

conditions that obtain and the proportion of power that may be

utilised and lost. The theory of propulsion on this broad basis

is the common foundation of propeller theory generally, and the

conditions deduced from the Newtonian principle are essential

to every form of propeller. It is convenient, in the initial

consideration of the problem, to introduce the notion of action at

a distance, and to suppose the propulsive forces to consist of

repulsions (or attractions), acting in the direction of motion

between the propelled body and the particles of the fluid.

§ 198. The Newtonian Method as applied by Eankine and

Froude.—It is supposed in the first instance that the fluid on

which the propeller operates is at rest at the time the propulsive

forces commence to act ; this condition is intended to exclude
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any possible disturbances that may be set up in the fluid by the

body in motion.

Let F be the sum of the propulsive forces.

,, m ,, mass of fluid handled per second.

,, V ,, velocity of vessel, the term vessel being used to

denote the body propelled.

„ V „ a uniform sternward velocity imparted to the fluid

operated upon.

All in Absolute Units.

Then we have (§3) F = m v, and the work done usefully per

second is

F F = m V F (1)

and the energy left in the fluid per second, that is, lost j^ower,

is

or total energy per second

,
m v^= m V F + —:j—

or efficiency

Useful work _ V ,„.

Total work ~
t7 _i_ v

This, according to Rankine,^ is tJie theoretical limit to the efficiency

of a propeller. It will be shown subsequently that this assertion

requires qualification.

If we depart from the simplicity of the assumption and

suppose that the different portions of the fluid acted upon receive

different velocities, the foregoing demonstration requires appro-

priate modification ; the v of expression (1) and the v of

expression (2) are not the same quantity, the v^ in the latter

expression becoming the mean square of the velocity v instead of

the square of the mean. For a given value of m the efficiency

must thus be less than if the velocity v were uniform over the

^ " Miscellaneous Scientific Papers," Eankine, XXXIII.
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mass, for the mean square is always greater than the square of

ihe mean.

The full expression where the velocity is variable throughout

the mass m is,

V Sm(.;^T
^^^

"*"
2

"•" 2m V

where x represents the velocity communicated to the particles of

fluid in excess or in deficit of the mean, x being accordingly

2)liis or minus. It will be noted that since x'^ must be always

positive the quantity -^ -^ will be always positive, so that

the efficiency will be less than if the mass were handled

uniformly. The above expression is of but slight utility from

a quantitative standpoint ; it is given here as being conducive

to exact thought and as being the more complete form of

expression (3).

§ 199. Propulsion in its Relation to the Body Propelled.—In

the preceding section the subject of propulsion has been treated in

the abstract ; it has been assumed that the body pro^Delled is far

away so that the fluid is unaffected by its presence, and that the

fluid as a whole receives momentum.

Now we know from the Principle of No Momentum (§ 6) that,

as a whole, the fluid does not receive momentum, and that if it

receive momentum in one direction in one part it simultaneously

receives equal and opposite momentum in some other part. The

result of this is two-fold : (a) we know that the whole of the

energy expended in the fluid does not appear as sternward

motion, as assumed by Eankine; and (b), the problem becomes

complicated by the reaction and motions produced in the fluid

by the vessel itself as affecting the conditions under which the

propeller is working.

For reasons stated in § 8 it is doubtful whether, under the

conditions that ordinarily obtain, the error that arises from
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(a), neglecting the counter-current, is sensible ; if, however, the

proportion v/T^ were to become considerable, the departure from

theory would become serious. The validity of the present

application of the Newtonian method depends definitely upon

the fact that v/V is small.

Considering next (h) the jDroblem of proiDulsion in its full rela-

tion to the body 23roj)elled : if a vessel be totred through a fluid, the

pull on the tow line being api^lied/Vo/;; iritltoiif, the whole energy

is, in the sense of § 198, usefully employed, and the condition

of affairs is that tacitly taken in § 198 to represent unit

efficiency.

The energy expended j)asses into the fluid and is swallowed up

partly in overcoming viscous stress and partly in setting the

fluid in motion ; the first part vanishes at once into the thermo-

dynamic system and is lost ; the second j)art remains in the fluid

as kinetic energy until in turn it is spent in overcoming viscosity,

when by degrees it also vanishes.

Xow the energy that is left in the kinetic form takes some

time to disapj)ear, and in the meantime it constitutes a wake

current with a corresponding countfricake whose momenta are

equal and opposite, the wake current being situated in the

immediate track of the vessel, and the counterwake further afield

and extending theoreticall}^ to the confines of the fluid region,

but only sensible for a limited distance. This kinetic energy

is not irretrievably lost ; after the fluid has passed in eject out

of dynamic connection with the vessel, there is ample time for

the recover}' of the energy if a suitable method could be devised,

and then, by returning it to the source of jDOwer, it is evident that

the vessel will be propelled with a less expenditure of power than

previously, and the "efficiency" will become greater than that

somewhat arbitrarily chosen as unity.

§ 200. A Hypothetical Study in PropxQsion.—Let us consider

the case in which the propeller is constrained to act on the wake

current (or, as it is sometimes termed, "the frictional wake"),
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and in the first instance let us suppose that this current consists

of a quantity of fluid moving en masse -with a velocity = v^. Now
the force of propulsion is essentially equal, and of opposite sign,

to the resistance experienced by the vessel, action and reaction

being equal and opposite ; consequently, on the Newtonian basis,

the learward momentum communicated by the propeller will be

equal to the forward momentum communicated by the vessel, so

that the conditions of propulsion will be satisfied if the propeller

impart to the wake current a rearward velocity v equal to v^; that

is to say, the fluid will be brought to rest.

Let us now re-calculate the efficiency as in § 198 : we have

work done usefully per second = F V = mv V; and energy taken
o

HI V
out of the fluid, that is, energy received per second, is =—^r-^;or,

or,

(5)

This is greater than unity ; the result being, as anticipated, that

it is theoretically possible that a vessel should be pro^ielled for a

less expenditure of power than that by which it can be toioed.

This important result, although not generally known,^ is not

new ; it was previously pointed out by Mr. W. Froude in the

discussion on a jDaper by Sir F. C. Knowles {Proc. Inst, C. E.

1871). Froude evidently had also treated the matter quantita-

tively, since he mentions the theoretical possibility of a negative

slip of a screw propeller, from the cause stated, equal to half the

positive slip as ordinarily computed.

In the present hypothetical case the influence of the counter-

wake has not been taken into account, it forming no part of the

Newtonian scheme ; the conditions are too artificial for the

omission to be a matter of any importance, apart from the fact

^ The author has known this result received with open incredulity by
persons considered to be authorities on propulsion.
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already pointed out that the consequences of such an omission

will not be serious.

It has been assumed that the whole resistance of the vessel is

due to its skin friction. In marine propulsion "wave making "

plays a prominent part ; the resistance from this cause may be

regarded as a force applied from ivitlioiit, since the waves travel

away, taking their momentum with them ; the consideration of

wave making resistance would destroy the precise balance between

V and vi, on which expression (5) is based ; the matter of wave

making has, however, no interest to us from an aerodynamic

standpoint.

§ 201. Propulsion under Actual Conditions.—Under actual con-

ditions neither of the hypotheses discussed in §§ 198 and 200

applies in its entirety. The requirements of the former

hypothesis are most nearly met in the case of a paddle boat (with

the paddles at the sides) ; the latter case is best exemplified

in the stern-wheeler, a flat-bottomed type of craft whose

propeller is particularly well placed for capturing the frictional

wake. In the forms that succeed in practice the propeller is

usually behind in the frictional wake, never in front ; and the

successful forms of propulsion are those in which a sufl&cient

mass of w^ater per second can be conveniently handled ; thus, jet

propulsion has become practically extinct. We are, therefore,

led to appreciate the soundness of the Newtonian method.

There are many methods of mechanical propulsion, that is to

say, there are several known mechanical devices for producing

the reaction on the fluid which we have so far regarded as being

accomplished by action at a distance. Firstly, we have the

numerous devices employed by nature in the locomotive

mechanism of birds, fishes, etc. ; secondly, we have the primitive

devices employed by man—the paddle, the oar, etc. ; and finally,

we have the two great inventions of marine engineering, the

paddle wheel and the screw propeller. Of these various types of

propeller, only two will be discussed as of interest in connection
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with the subject of the present work, the screw propeller and wing

jjropulsion ; the former alone being deemed suitable for treat-

ment in the present volume, the latter being reserved for the

section on " Avian Flight " which will form part of Vol. II.

§ 202. The Screw Propeller.—We will presume a general

knowledge of the screw propeller, and proceed at once to the

attack.

The theory of the screw propeller will be discussed on the basis

of the peripteral theory of the foregoing chapters ; this constitutes

a new method which

sheds considerable light

on a hitherto somewhat

obscure subject.

We shall in the follow-

ing demonstration take

the helical surface of

uniform pitch as strictly

the analogue of a plane

in the foregoing theory,

and we shall presume

that the various proposi-

tions already proved in the case of the aerofoil apply mutatis

mutandis to the helical equivalent. Thus the blade of a

propeller becomes an aerofoil of a form suitable to glide in a

helical path, the reaction on the blade (whose resolution is the

torque and thrust) is the analogue of the iceight, the helical

surface at right angles to the blade reaction is the analogue of

the horizontal plane, and concentric cylindrical surfaces represent

vertical planes in the axis of flight.

We will begin by an examination of an element of a propeller

blade represented by its section on one of the aforesaid cylin-

drical surfaces, of which we will suppose the development is

given in Fig. 124. Now, on this development a helical surface

will appear as an inclined straight line ; let a rej)resent tbe
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helical surface which we regard as the analogue of the horizontal,

and W (the analogue of ]]') the force at right angles thereto. Let

5 be the helical flight path, and y the glidnig angle ; then 6,

the angle cut off between h and the axis of x, will be the

effective pitch angle ; that is to say, the line h represents the

helix along which the blade of the propeller will actually travel,

and its pitch will be the efectire pitch of the propeller.

Draw the line F parallel to the axis of y to represent the com-

ponent of W in the direction of motion of the vessel, cut off" a

= W, and draw a c perj)endicular to y, draw a h perpen-

dicular to a, and h d jDerpendicular to x.

Then a being equal to W, we have a c equal to P, the two

triangles being equal in every respect. Let us denote a h = /,

and h d = h.

Now while the blade moves from to h the energy lost will be

= W /',- that is to say, we regard the matter as a case of gliding, to

which it is strictly analogous. The energy utilised in propulsion

during the same period will be := P //. (These quantities are

indicated by the shaded areas in the figure.)

Now it follows from the construction that

—

p = W COS (6 + y),

/ = W tan y,

, .„ sin 6
h = W

cos y
Wf tan y cos y

or.

F }i cos (6 + y) sin 6

Energy last sin y

Energy utilised [cos cos y — sin 6 sin y) sin 6

= I _. (1)
cot y cos 6 sill 6 — sin?'

§ 203. Conditions of Maximum Efficiency.—The conditions of

maximum eliiciency are attained for the element of the propeller

under consideration, when (1) is solved for minimum value.

Firstly, we may note from Equation (1) (and it is otherwise

self-e\T[dent) that y should be made as small as ]30ssible ; that is
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to say, the propeller blade should be designed as an aerofoil for

minimum gliding ; we shall therefore take y from this point to

denote the minimum gliding angle as independently ascertained.

If the conditions of least gliding angle are infringed, the present

theory continues to apply, but the result will be the best efficiency

possible under the adverse conditions imposed, and not the real

maximum.

Now y, and therefore cot y, is constant in our expression
;

consequently we have to solve

—

cot y sin 6 cos 6 — sin- 6

for maximum value where 6 is the only variable. Differentiating

in respect of 6 we get

—

cot y cos 2 <9 — 2 sin 6 cos 6 =
or cos 2 ^ = 2 sill 6 cos 6 tan y

transforming we get

—

cot 2 9 = tan y,

hence
90° - 7

2

which we may express in another way and say : The angle oj

greatest efficiency is 45 degrees, minus half the least gliding

angle.

^

Thus, if we take the gliding angle in the case of air to be 10

degrees for any particular aspect proportions, the anj^le of

greatest efficiency will be 40 degrees ; or, taking the probable

equivalent for water as 6 degrees, the appropriate angle becomes

42 degrees. The figures cited are probable figures for blades of

about 4 : 1 ratio, as founded on experiment ; it is known that the

tabulated theoretical figures of § 181 are too low, from causes

already discussed.

§ 204. Efl&ciency of the Screw Propeller, General Solution.—From

Equation (1), § 202, we obtain

1 It is worthy of remark that the solution is the same as for a solid screiv ;

the constancy of the gliding angle renders it analogous to the angle of

friction.
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Efficiency
cot y cos 6 siji 6— siii^ ^ + 1

From which by transformation,

L,fjiciencii = ——

;

-.
'^ •' tan {6 + y)

This expression may be deduced directly from the conditions.

Let Fig. 125 represent, by the Hnes a and h, the hehces of

horizontal and gliding path respectively ; then, since the reaction

W is normal to the path a, the icork done when the propeller is

rotated through an angle represented by the line d will be

F X ad; but the work utilised is repre-

sented hy F X b d ; the efficiency is

tan 6
that, la —

a d

result

therefore—3, that is.

Fig. 125.

tan {6 + y)

The result is thus obtained in a

more direct manner, all trigonometrical

transformations being dispensed with

;

the original demonstration is, however,

of a more exact nature and is based on

a clearer conception of the conditions

involved. The identity of the two

methods may be demonstrated geometrically by showing that

the shaded areas of Fig. 124 are proportional to the ordinates

b d and b a oi Fig. 125, a matter of perfect simplicity.

The present theory enables us to define the slip of the propeller

as the difiference between the ordinates b d and a d, the slip ratio

being represented by—%. The term slip as here defined is not

identical with the slij) of the naval architect, which is derived

from the mean pitch angle of the blades, a basis that can have no

justification in theory. The conception of slij) originated with

the propeller of true helical form and then denoted the difference

between the geometrical and effective pitch ; when blades were

given an increasing pitch the mean j)itch angle was taken as the

basis of calculation of the geometrical pitch ; hence the present
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usage. The term slip, in its application to a screw propeller, is

one that leads to confusion of thought ; it is unscientific in its

present usage, and would be better abolished.

Let us estimate the possible efficiency in the case of the

maximum conditions of the preceding section. Employing

equation, E (efficiency) = -r, r we have —
Air {0 = 40°) E = 70-4 per cent.

Water {6 = 42°) E = SM per cent.

Now these efficiencies are only obtainable at the particular

section of the blade where the angle 6 is correct for maximum
efficiency, and at all other points the efficiency must be less. A
section of the blade here discussed is the section on a cylindrical

surface which may be fully defined by its radius r.

In Figs. 126 and 127 we have plotted the calculated efficiency

for different values of r on the basis of the y values assumed for

water and air. Abscissae represent radius in terms of pitch, the

ordinates give corresponding efficiency values. The abscissae

are also figured for values of 0. The efficiency falls to zero

when = 0, and again when 6 + y = 90 degrees, for in the first

place tan = 0, and in the second tan {6 -\- y) becomes infinite.

§ 205. The Propeller Blade Considered as the Sum of its Elements.

—

Much of the faulty work of early writers on hydrodynamic

problems has been due to the treatment of a body or surface

as the equivalent of the sum of elements into which it may be

arbitrarily divided, and this form of error is one against which it

is important to be on guard.

We have already adopted in substance the principle of regarding

an aerofoil as the sum of its sectional elements in the sense now

contemplated in respect to the propeller blade (§ 192), but we do

not suppose, in assessing the individual elements, that they are

removed from their environment}

^ A frequent cause of error in the work of writers of some forty or

fifty years ago.

300



THE SCEEW PROPELLER. §206

Let us examine our former procedure. We have an aerofoil

whose aspect ratio is of considerable magnitude, and whose grading

is specified, and we prove that the reaction due to each increment

of length is proportional to the grading ordinate proper to that

increment, irrespectively of the fore-and-aft dimension. The

proof involves the tacit assumption that for the smooth curve

form of grading specified, a geometrical si)nilariti/ of section at all

points involves a uniform pressure distribution.

Now, so long as the aspect ratio is great and the grading a

smooth curve, there can be little question as to the propriet}^ of

this assumption; if, however, the aspect ratio be small, or the

changes in the grading curve sudden, then the grading curve and

the relative reaction curve ma}^ cease to coincide. Our assump-

tion may therefore be considered as an approximation—a close

approximation when the value of n is great (say upwards of -i or

5), and a rough approximation when the aspect ratio is small.

§ 206. Efficiency Computed over the Wliole Blade.—On the basis

of the efficiency curve (Figs. 126 and 127) and a knowledge of

the radial distribution of the thrust reaction (the F of § 202),

the computation of the efficiency for the whole blade is merely a

matter of integration.

We have first to settle how much of the efficiency curve we

propose to emplo5% i.e., the radial limits of the blade length. If

we make the blades too long, the efficiency at the extremities

would be so low as to involve an extravagant expenditure of

power ; if, on the other hand, we confine the length of the blade

to the region where the efficiency is about its maximum, in order

to reap the benefit of the full value (as given in § 204), we

encounter practical disadvantages in the increased propeller

diameter required to deal with a given quantity of fluid (the

proportion of the "disc" area utilised becoming small), and in

the length (and consequent resistance) of the arm necessary to

attach the blade to its boss.

In Figs. 126 and 127 we have taken the blade length,
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indicated b}' the horizontal line, as confined to a zone in which

the inferior limit of the efficiency is 90 per cent, of its maximum.

It may be noted that this procedure gives for water a pitch

almost exactly equal to the diameter ; this is somewhat less than

is customary, the generally accepted proportion being, pitch

= Ij diameter (approximatel}^). It would appear that designers

unconsciously reject the whole of the curve where of less value

than about 95 per cent, of the maximum possible. In sj)ite of

this fact, the efficiencies so far recorded leave much to be desired,

and, apart from practical limitations, would apj)ear to show that

there is still considerable room for improvement. The defects in

existing practice would seem, according to the present theory, to

be found in the want of attention to the requirements of ptery-

goid section, in the low value of n (aspect ratio) commonly

adopted (possibly from practical requirements not included in

the present hypothesis), and to undue fulness of plan-form

towards the blade tips,^ and consequent excessive frictional

loss.

The value of the total efficiency, having selected the blade

limits, depends not only upon the efficiency curve, but also on

the distribution of the thrust over the length of the blade, or the

thrust grading, as it may be conveniently termed. If the range

of efficiency were very great, we should have to specify the

thrust grading before the total efficiency could be computed;

but as the variation does not usually exceed 10 per cent, or

so, and as the general character of the grading curve cannot

be in doubt, we can arrive immediately at a close approxi-

mation.

On the 90 per cent, basis, if the thrust grading were uniform

over the length of the blade, the mean efficiency would, for the

character of the curve given (Figs. 126, 127), be 96 or 97 per

cent, of its maximum. If, as must be the case, the thrust grading

fall to zero at the extremities, the efficiency will be increased

;

1 Compare §§ 214-216.
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hence we may take it as probably about 97|^ per cent, of its

maximum. On the basis of § 204 this gives

For air ..... 68*6 per cent.

For water ..... 79"0 per cent.

We have no data of comparison in the case of air ; in the case

of water, so far as the author is informed, the highest actual

efficiency recorded is somewhat over 70 per cent.

§ 207. Pressure Distribution.—It is evident that, according to

the present theory, the propeller blade is amenable to precisely

the same laws so far as its pressure-velocity relation is concerned

as the ordinary aerofoil, and we presumably also have the two

alternative types of fluid motion, the continuous and the discon-

tinuous, according as the blade is given a pterygoid form (based

on a helix) or whether a simple helical surface or sheet (the

analogue of an aeroplane) is employed. We may read the

appropriate pressure for air from either Table X. or XII., as

the case may be.

A complication is introduced in the propeller blade by the fact

that its different portions are moving at different velocities

through the fluid, so that the pressures proper to least y vary at

the different points along the length of the blade. This velocity,

the V of the propeller blade, will be given by the expression

V
V = —.—^ where V is the velocity of the vessel, or, in terms of

r, we have V = ^^J^V^E+Zy
P

where j? is the pitch, or

and since p and V are constants the curve is of the form

y ^ x^ -\- const., when plotted (Fig. 128), where abscissae give

radius in terms of pitch and ordinates give V'^ values. Now by

§ 185, for any aerofoil P^ — V" X const., values of the con-

stant being given in Table IX. Hence the curve (Fig. 128) may
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be taken to give the correct pressure value for all points along

the blade, the pressure scale being determined by assigning a

value to some convenient point from the Table.

§ 208. " Load Grading."—Reference has already been made to

the term thrust grading as representing the distribution of the

sternward reaction along the length of the blade. ^ We have now

to discuss the considerations governing the form of the thrust

grading curve, and also the curve of distribution of the normal

ftacfius m tei-tns t/f Pitch.

Fig. 128.

reaction from point to point, which we may term the load

grading.

Dividing the propeller disc into a number of concentric areas,

"we have, on the principle discussed in § 198, to distribute the

momentum as nearly as may be possible in proportion to the

mass of fluid passing through each annular element : that is,

the force exerted by each small linear element of the blade

should be proportional to the area it sweeps ; that is to say,

it will be proportional to r.

Our thrust grading curve on this basis would be that shown in

Fig. 129 (a)—simply an inclined line. But we must complete

A.F.

1 § 206.
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this curve at the blade extremities. This has been done

arbitrarily by a pair of ordinates, the thrust grading curve thus

completed being the contour of the shaded area, the area itself

representing the total thrust. But this "curve" infringes a

condition already laid down, that the grading must constitute

a smooth curve with no sudden changes of ordinate. Hence we

must compromise, and we find that the combined conditions

indicate a form such as that illustrated by Fig. 129 (b).

Now the reaction normal to the blade will at every point be

equal to the sternward component multiplied by sec {6 + y),

that is to say, if we multiply the ordinates of the thrust grading

curve at every point by sec {0 -\- y) we shall have the load grading

Fig. 129.

curve Fig. 130 (compare Fig. 136), which represents the distribu-

tion of the pressure normal reaction along the length of the

blade.

§ 209. Linear Grading and Blade Plan Form.—The linear grading

for any radius is the quotient when the load value is divided by

the pressure value for that radius ; thus the linear grading curve

may be plotted from the other two, the ordinates being calculated

by simple division (Fig. 130).

This linear grading is analogous to the aerofoil grading of

§ 192, and likewise represents the ordinates of the blade plan,

i.e., the width of the blade from point to point for constant /or»i of

section ; that is to say, all sections become geometrically similar.

Whether or not the similarity of sectional form is essential, as

it would theoretically appear to be for best economy, must be
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rer^arded to a certain extent as an open question. The same

query has arisen in the case of the aerofoil, but the objections

in that case are partly concerned with aerodromic and other

considerations. Should future experience show that flattening

of the section (compare § 191) and diminution of pressure

\

y /

//
\"e>.

<J^.

/

/

/
/ ,.

/ J Qraainp-

^2 '-3 ".4

"r'jn terms of Pitch.

Fig. 130.

towards the extremities is advantageous from the aerodynamic

point of view, the whole matter will require to be thoroughly

reinvestigated before we can regard the theory of peripteral

motion as complete.

§ 210. The Peripteral Zone.—Before we are in a position to

discuss the conditions that regulate the numher of blades
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permissible in a propeller we require to somewhat extend our

knowledge of the dynamics of the periptery.

At first sight it might be supposed that the blades of a pro-

peller in their helical paths are related in a similar manner to a

number of superposed aeroplanes, and the law of maximum
proximity will be the same in both cases. Such is not the case.

Where we have to deal with a battery of superposed planes or

aerofoils, whether vertically over one another, as in Fig. 131 (a),

or (in order to better simulate the conditions) like a flight of

steps (Fig. 131 (h)), the supporting reaction is continually derived

from the virgin fluid, and the line of pressure reaction of any

plane, or any component of it, only cuts the path of that ijlane once.

In the case of the propeller, on

^ the contrary, the component of

the pressure reaction of any

blade in the line of motion cuts

(w) ({>) the paths of that blade an in-

definite number of times. We
have here to deal with a fact

Fig. 131. , ,inew to our theory.

Let us suppose that we substitute for our propeller blade some

device that acts directly on the fluid without involving the com-

plexity of the cyclic or i^ervpteral motion, and let us stipulate that

this hypothetical deviceproduce thQsame total reaction with the same

expenditure of energy as the original aerofoil or propeller blade.

On the Newtonian basis we know (§ 3) that if W be the total

reaction, m the mass per second of the fluid dealt with, and v be

the velocity imparted in the direction of the reaction

—

WW = m V or V ^ —

.

m
m V

But the energy per second = —

^

'2 mEnergy per second = ^— or if W is constant, energy per

second <x — (1)m
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Now, energy per second for pterygoid aerofoil handling mass

per second = lui is

7»i T^^ (li^ - a^)

and energy per second on the simple Newtonian basis for the

same mass handled per second would be

mi V^ (jS + af

or, by (1), if m.2 is the mass per second dealt with b}' our

hypothetical device, we shall have

y>i, m, V' (/3 + ay~ (/3 + a) (/3 + a)

mi mi V^ (/3^ - a') (/3 -\- a) [{3 - a)

13 + a 1 + e
(2)

/3 — a 1 — e

That is to say, the sectional area of the fluid stratum which

would be acted upon will be

—

1 — e

Now, we may evidently regard the aerofoil, with its accom-

panying peripteral system, as the equicalent of the hypothetical

device which ice liave temjjorarily assumed. The peripteral system

actually constitutes a kind of tool or appliance by which the

aerofoil is able to deal in effect with more air than actually comes

within its sweep. This extended "sphere of influence" of the

aerofoil will be termed the peripteral zone, and its cross-section,

1 + e

1 - e
K A is the peripteird area.

§ 211. The Screw Propeller : Number of Blades.—The number of

blades in a propeller must be determined by the conditions of

their non-interference. It is evident that if the peripteral areas

of adjacent blades overlap, the total amount of fluid operated

upon will be insufficient and the efficiency must diminish. We
must therefore secure that the hehces on which the different

blades are based are separated in efect by an area, measured on
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a helical surface at right angles, equal to or greater than the

peripteral area.

Now this is not an altogether clear proposition, for we are

lacking definite information as to tbe distribulion of the perip-

teral area, and it is evident that we might conceivably have over-

lapping in one place and clearance at other places. Moreover,

the peripteral zone is not in reality a dearly defined region such

as, as a matter of convenience, we have supposed. On the other

hand, we only require an approximate solution ; for even if we

could gauge to a nicety the spacing of the blades required, we

could not take advantage of our knowledge, for we are confined

to whole numbers : we cannot employ fractional blades.

We will assume that if a propeller is designed so that no inter-

ference is to be anticipated at about the region of greatest

efficiency, say 45 degrees, then no interference will take place

at all. Furthermore, ive ivill assume that the maximum thickness

of the peripteral zone can be expressed in terms of the length of

the blade according to the expression

—

n

Eeferring to Table XIII., in which values are given as

calculated from the j)lausible values of k and e, for
^ _ k and

1 _ e -^e may note that the latter varies from about unity

n

for an aspect ratio n = 3 to about | for n = 8. Taking the

assumed angle of 45 degrees, and converting these into their

circumferenti(d equivalents, that is, multiplying by V2, we have

1-4 and 1-05. If we presume that the propeller is of the

customary proportions, based on a 95 per cent, discard as to

diameter, pitch, etc., the length of the blade (in the sense here

employed) is approximately twice the radius at the point chosen,

so that, expressing tbe circuu)ferential spacing of the blades
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in terms of the radius, we shall have for n = 3, radius X 2*8,

180
which, multiplied by

,
gives 160 degrees apart, or two blades

Ik

nearest whole number, and for n= 8 we get 2*1, which gives 120

degrees, or three blades almost exactly.

In view of experience, it is evident that these results are lower

than necessary ; it is found advantageous to employ more

blades than here stated. This discrepancy is perfectly explic-

able, for the assumptions we have made all tend towards a

minimum value. The desirability of keeping the propeller circle

as small as possible is probably responsible for the employment

of 2, fourth blade in the marine propeller. Four blades doubtless

give rise to some slight interference and loss of power, but not

sufficient to be seriously detrimental.

If we take three blades as a standard for the marine propeller

where n = 3, the corresponding value when n = 8 (a probably

impracticable proportion) would be four blades almost exactly.

Carrying the matter further on the same basis, if we design an

aerial propeller, discarding below 95 per cent, of maximum, the

blade length will be approximately 1*2 times the radius (at

45 degrees), so that the proportional number will be 5 blades

for n = 3, and 6^ blades for n = 8 ; that is to say, six blades

can be carried. If we lower the discard point to 90 per cent,

the conditions as to number of blades will become approxi-

mately the same as for the marine propeller discarding from the

higher percentage ; extending the comparison, it would be very

difficult to distinguish the one propeller from the other, both

being fashioned in accordance with the present theory for the

same n value.

It is probable that, owing to the much lighter pressures

required, it will be practicable to employ greater values of n

in the aerial propeller than in the marine propeller : an aspect

ratio of 6 or 8 does not appear to present any difficulty. This

being the case, it is highly probable that the aerial propeller in

practice may become almost as economical as, if not more
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economical than, its marine prototype. The whole question

depends upon whether the gUdivg angle for the proportions of

blade employed in the two types is in favour of the one or the

other.

If the aspect ratio employed is as high as that here suggested,

and if it is found advantageous to discard from as high a point

as 95 per cent., it may with some confidence be predicted

that it will be found advantageous to employ as many as six

blades.

Table XIII.

n.
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with the Newtonian principle) to operate on a given cross-

sectional area of fluid. Then this area is represented by an

annulus whose inner and outer boundaries are of the radii of

the blade limits.

Let us, firstly, assume the straight line thrust grading curve of

Fig. 129, so that the whole of the fluid within the annular area

will be uniforml}' accelerated ; and let us regard the thrust

Fig. 132.

grading curve as representing the useful work of propulsion

over one unit distance, and let the curve a a a a (Fig. 132)

represent the work expended in the same time. Let E repre-

sent the efficiency as a vaiiable, i.e., the ordinate of the efficiency

curve, and let ic represent the useful work per unit length of

the blade, i.e., the thrust grading ordinate (Fig. 132) ; then the

ordinate y of the curve a a a a will be ^ = vr-

Now, if we suppose the limits of the blade length be moved

from place to place, so that, however, the annular disc area of
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the propeller remains contant (which is our fundamental con-

dition), it is a matter of simple geometry to show that the area

of the thrust grading curve (of which w is the ordinate) must

remain constant ; consequently, if we suppose any small variation

to take place, and represent the various quantities as given on

Fig. 132, we have, for the condition of minimum expenditure

of energy

—

A vi X yi = A ra X ;?/2,

A Vi _ ?/2 _ «^ _^ ^ _ ^'2 El
A 7-2

~
yi A'2 * -^1 ii'i -E2'

But, since the area of the load grading curve is constant, we

have A vi wi = A 1-2 tV2,

,, ,
. A n 1V2

that IS -— = —

,

A 7-2 IVi

ii , 1 W2 El u-2 El .

so that we have— —^n- = ^, or ^rr = 1,
Wi L2 iVi E2

or El = E2,

'proving that for the conditions of greatest economy, the blade limits

are points of equal efficiency.

Hence, although different proportions may be chosen for the

ratio n/ra (the inner and outer radial limits of the blades), there

are a2')pro2)riate conjugate values which are conducive to the

maximum efficiency, and these values are determined by the

points of equal efficiency on a curve plotted from the equation

of efficiency (§ 204, Figs. 126, 127).

§ 213. The Thrust Grading Curve.—We know that the square-

ended form of grading curve assumed in the preceding section is

inadmissible, and in order that the principle of conjugate blade

limits should apply strictly to a real propeller blade we must

extend the demonstration to include other forms.

Let us suppose that we regard the thrust grading as made up

of a number of small component distributions of load, each of

which is strictly in accordance with the hypothesis (Fig. 133).

Then we can approximate as closely as we please to a smooth
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curve, such as we know to be essential, by employing a great

number of distributions of individually small magnitude.

But it is evident that each component distribution should in

itself obey the conjugate law, hence we may formulate a rule for

laying out the load grading curve as follows :

—

On the efficiency curve (Figs. 126, 127), cut off by a horizontal

line, the portion of the curve defined by the maximum blade

limits selected.

Divide the maximum ordinate of the part so cut off (Fig. 133)

into some convenient number of equal parts, and draw hori-

FiG. 133.

zontal lines cutting the efficiency curve at s s s. Draw a number

of lines through the origin 0, making small angles with the axis

of X and with one another, to represent the component incre-

ments of the thrust grading distribution, and drop perpendiculars

from the points s s s {.o indicate the limits of each increment.

Through the intersections of the perpendiculars let fall, and

the inclined lines drawn through the origin, draw the thrust

grading curve.

It will be noted that the angular increments of the thrust

distribution (the angles between the lines passing through the

origin) need not bo equal to one another ; it may be considered

within the province of the designer to vary these as he may
think fit. In genei'al, owing to the desirability of utilising as
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uniformly as possible the whole of the fluid, the angle allotted

to successive increments will be diminished as shown in the

figure ; the loss of efficiency resulting from modifying the curve in

this manner, or even of making serious departures from the

theoretical curve, is probably microscopic. The theory as here

presented will prove of more value to the designer by letting

him realise exactly ivhat he is doing, than from its too rigid and

literal application.

§ 214. On the Marine Propeller.—The marine propeller, which

has already been made the subject of comparison, is of especial

interest as representing in a concentrated form the experience

of over half a century. Beyond the advantages to be gained

from an examination of established practice as a quantitative

check on our investigation, there is some reasonable probability

that we may arrive at facts having a bearing on the future

evolution of screw propeller design.

The conclusions to which theory has led have in many cases

been already tested by appeal to experience, with, on the whole,

satisfactory results, but we have so far made no comparison on

the very vital subject of pressure-velocity relationship.

The pressures proper to the conditions of least resistance

(minimum gliding angle), given in Tables X. and XII., will be

very much greater where water is concerned, owing to the

greater density. On the other hand, the coefficient f is less,

which will have a slight effect in the opposite direction.

The form of blade emj)loyed in the marine propeller is of

necessity confined to low values of n ; long slender forms such

as may be well suited to an air propeller will be too weak

(unless made of disproportionate thickness) to stand the pres-

sure required. In practice the value of n employed is less than

3, usually very much less ; we will therefore confine our attention

to blades of this proportion with the knowledge that the results

as to pressures and efficiency ought in general to be higher than

those that obtain in practice.

316



THE SCEEW PEOPELLEPt. §215

Eeferring to § 181, we have the angle (3 given by the expression

Taking f for water as = '01 and density = 64 lbs.

132 (radians) or, = 7 '6°, and the

V 2 ec
K (1 - .2)-

per cubic foot we obtain, (3

theoretical minimum gliding angle is 3'95°, which in practice

becomes 6° about. The P^/V^ relation (given for air in Table IX.)

will become p k (e + 1) i^ = 12*5.

The' above are the data on the pterygoid basis ; similarly on

the plane basis, that is, for blades of perfect helical form, we

have, taking f = '005, on the principle explained in § 182,

13 = -048, or, /3° 2-75°, that is y (least value) = '096, or y° = 5-5°

The P3/F- relation is given by the expression

—

^r=c/3 0p(§186) =4-55.

The above results may be tabulated as follows :

—

(
(3° .

(

(calculated)

Pterygoid basis.

Plane basis.

I
(probable)

7-6°

6°

12-5

2-75=

5-52°

4-55

The P/V^ values given above are in absolute units. The

pressure value is extended in Table XIV. as j^ounds per square

foot for values of V in feet per second.

§ 215. The Marine Propeller (continued).—Cavitation.—It is very

questionable to what extent the plane basis of operation is

applicable in the case of a screw propeller. There seems to be

a grave theoretical objection that does not exist when the motion

is rectilinear, as in the analogous case of a weight supported by

an aeroplane.

When we have to deal with the propeller blade on the
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assumption of a discontinuous system of flow, it is evident that

the fluid in the dead-water region must be following the blade in

its spiral path and must consequently be subject to centrifugal

force. So much is this the case that it is hardly possible to

conceive of the same fluid remaining in the dead-water region

for any considerable length of time, so that the resistance on

this basis will be very greatly augmented, and it will not be

fairly represented by the figures deduced from rectilinear theory.

This objection does not apply to the calculations made on the

Table XIV.

Pressures Proper to Greatest Effi-eiency

for Blade Velocity = V.

V.
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between the face and back of the blade. But we know that under

real conditions a fluid is only competent to bear a certain

maximum negative pressure (that is, a certain absolute minimum)

without giving rise to 'physical discontinuity ; that is to say, the

formation of a void. Consequently there will be some critical

pressure which cannot be exceeded without destroying the

peripteral system of flow. The velocity at which this critical

pressure is reached marks the limit of speed at which full pro-

peller efficiency can be obtained ; for speeds involving any higher

velocity the design of a screw propeller becomes a compromise.

The production of a physical discontinuity by the screw

propeller was discovered by Messrs. Thornycroft,^ and is termed

"cavitation"; the jphenomenon is one that has given consider-

able trouble to naval architects where high speeds have to be

developed. We will endeavour to estimate the critical value of V
and show what modifications of design are indicated when the

said critical value is exceeded.

We do not know definitely how much of the total reaction is

carried as pressure on the face, and how much as vacuum on the

back of the blade, but assuming pterygoid form and neglecting

the effect of thickness, it is probable that the reaction is equally

divided. The influence of thickness will be to superpose a

streamline system of flow on the peripteral system which will

result in a general diminution of pressure on both faces, so that the

reaction will be more than half borne by the vacuum on the back

of the blade. If the peripteral system comprises any discon-

tinuity it is probable that this will tend in the opposite direction.

On the whole, it is perhaps best to assume the equal division of

the reaction ; and in making this assumption, to bear in mind that

if the blade is of heavy section, cavitation will probably commence

at a lower velocity than that which theory leads us to expect.

Let us assume that the propeller is working under a head of

2 feet of water in addition to the atmospheric pressure, that is,

let us take the total pressure to be 16 pounds per square inch.

1 Trials of destroyer Daring.
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Converting this into square foot units, we have permissible

vacuum 2,300 pounds per square foot, or maximum total reaction

= 4,600, which corresponds to a velocity of approximately 108

feet per second. If we take the pitch as equal to 1;^ times the

diameter, this velocity, at the extremity of the blade, corresponds

to 39"7 feet per second for speed of vessel, that is, approximately,

27 miles per hour or 23J knots. In practice, the blade of a pro-

peller is never brought to a point as we are now supposing ; the

end of the blade is always rounded and the pressure con-

sequently less than contemplated by our theory. It is probable

that from this cause cavitation does not commence to give trouble

till a somewhat higher speed is reached.

It is evident that at speeds above the cavitation limit the

design will need modification. It will be necessary to give an

area to the blades in excess of that proper to greatest economy,

the additional area being required first at the tip of the blade,

and as the speed becomes higher the blade will become affected

over a greater portion of its length. The secondary consequences

of this will be that it will no longer pay to employ the outer

blade extremities, and the diameter of the propeller in terms of

its pitch will have to be diminished ; in ordinary parlance, the

screw will become of quicker pitch. Beyond this the aspect

ratio of the blades will cease to be of the same importance, since

we are unable to employ the higher pressures to which the

greater values of n give rise. We may therefore expect to find

the blade form becoming of more compact outline as higher

speeds come into vogue.

It is manifest that for marine work at high speeds it is

impossible to construct a fine pitch propeller to give any reason-

able economy, for at a comparatively low vessel speed the velocity

of the blades will begin to exceed the limiting value, and it will

be necessary to add so much extra surface to reduce the pressure

that the efficiency will be poor.

In aerial propellers we are fortunately not concerned with the

phenomenon of cavitation.
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§ 216. The Influence tf the Frictional "Wake.—It has already-

been shown that the efficiency of a propeller of any kmd is

increased by the fact of its operating on the frictional wake.

The efficiency that we have been discussing, the E of the

screw propeller, represents the efficiency on the basis of § 198
;

that is to say, the propeller is supposed to act on virgin water,

and the toicing efficiency is that taken as unity.

When we consider the wake as influencing the efficiency we

have to adopt a convention. It is known that the wake is in

reality a very disturbed region whose velocity varies greatly from

point to point. Mr. R. E. Froude has shown that the mean icake

velocity over the area swept by the propeller may be taken as its

effective velocity without serious error, and he has also intro-

duced the useful conception of a 'phantom ship having a speed

equal to the actual velocity minus the mean w^ake velocity, that

is, V — V.

The resistance of the phantom ship is supposed, at its velocity

V — V, to be equal to that of the real ship at its velocity = V, so

that the propeller designed for the phantom ship on the basis of

simple theory will be correct for the real ship to work in its

frictional wake. The important fact is thus rendered apparent,

that the form of the propeller proper to highest efficiency is

independent of the existence or otherwise of a frictional wake.

Now the useful ivork is proportional to the actual velocity of

the vessel, since the resistance (and therefore the thrust) is the

same in both the phantom and the reality ; consequently the

useful work is in the relation

—

Real _ V
Phantom V — vi'

But the total work done in propulsion is the same in both

cases, therefore if E\ is the efficiency under real conditions, we

have

—

V
El = -- E.

V — vi

The value of vi depends upon the lines of the vessel and
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position of the propeller, the essential point being the extent to

which the frictional wake is led into the periptery of the

propeller blades. It is manifest that Vi is limited to a value less

than the sternward component of the impressed velocity

(compare § 200).

In the hypothetical case chosen in § 200, where it is assumed

that the whole of the irake current is utilised by the propeller,

we have

—

Phantom ship velocity = V — vi, or by § 198

—

V - vi V - vi ,, ,E = = , (for vi = V,)

V - V, +- V -
^

but for real ship Ex = E,
V — Vi

^ V V - vi V
or El = X^-^1 V--^ V-^

2 2

which is the result already deduced in § 200 by the direct

application of the Newtonian principle.

The device of the j^hantom ship is in reality merely a method

of expressing a simple problem in relative motion in a palatable

form ; it is obvious that the argument treats the wake current as

a favourable tidal current, or as the flow of a river, the ship's

motion being credited in respect of its change of position

relatively to some fixed mark ; the method of the " phantom

ship " presents the problem in a clear and precise form.

The question of wake influence is probably of less importance

in connection with aerial flight than it is in the problem of

marine propulsion.

§ 217. The Hydrodjmamic Standpoint. Superposed Cyclic

Systems.—It is of interest to form a mental picture of the

hydrodynamic system of flow that accompanies a screw

propeller.

It is evident that according to peripteral theory each blade of

the propeller forms the axial core of a cyclic system and that the
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necessary condition of multiple connectivity is carried out by

vortex filaments containing rotation trailing from the ends of

each blade.

There will need to be as many cyclic systems as there are

blades, so that if there are n blades the region will require to be

n-ply connected. In the case, for example, of a two-bladed

propeller the two cyclic paths are represented in Fig. 134- by

^
Fm. 134. Fig. 135.

the two circuits drawn round the blades ; the trailing vortices

are shown diagrammatically.

It is possible that the inner end vortices are unnecessary, for

the boss and shaft may be found to determine the connectivity of

the region at the axis end of the blades (Fig. 135).

The vortex filaments are presumed to persist in the region of

the wake till they have, metaphorically speaking, "taken root"

in the fluid, so that the conditions of multiple connectivity are

simulated. It would appear to be only necessary to suppose

rotation to become generally distributed (through the agency of

viscous stress) in the wake of the propeller to bring a'bout the

necessary condition. (Compare Chaps. III. and IV.)

In propellers giving rise to cavitation, or when air is sucked

down owing to insufficient immersion, the dependent vortices
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become visible by their empty cores, and may be seen as inter-

lacing helices following in the track of the extremity of each

blade, like adherent strings of sea-weed.^

The vortices from the external extremities of the blades are all

of the same " hand " and consequently tend to wind round one

another ; they may be conceived to break up into spiral groups

and perhaps sub-groups, as they are left behind in the propeller

race, after the manner indicated already in the case of the

aerofoil (Fig. 86).

§ 218. On the Design of an Aerial Propeller.—A few simple rules

may be formulated for the design of an aerial propeller ; these

rules will be applicable mutatis mutandis to the marine propeller.

(1) From the conditions, assess the probable value of y

(usually about 10 degrees), and (Fig. 136) plot the efficiency curve

from the equation (§ 204). Any arbitrary scale may be employed.

(2) Decide on " discard point " ; that is, the minimum

percentage of maximum available efficiency, and so determine

blade length.

(3) Draw the thrust grading curve, h b h (Fig. 136), as in § 218

(Fig. 133). At this point the designer has to exercise his judg-

ment; it is perhaps best to draw a trial curve freehand, the

object being a smooth curve beginning and ending at zero, but

in general character to simulate tlie truncated wedge form based

on the Newtonian theory ; then let fall perpendiculars from the

conjugate points of equal efficiency, and draw radial lines

through the origin to suit the freehand curve as nearly as

possible ; then correct the freehand curve to pass through

the intersections.

(4) From the thrust grading curve h h h (Fig. 136) derive the

load grading curve ccc; the ordinates being calculated by multi-

plying the thrust ordinates by the corresponding values of sec

(d + y) (Fig. 136).

1 The author has, for example, observed such air-core vortices from the

after-deck of twin-screw /S.S. New York.
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(5) Calculate the values of V^ for different points along the

blade (§ 207), and divide the values of the ordinates of the load

grading curve c c c by the corresponding values of V^, and

draw a curve representing the quotient. This is the linear

grading curve d d d and represents the relative height of the

arched section at every point along the blade. (Compare

§ 192.)

(6) The "plan form" or "development" of the blade may

now be laid out. If we proceed on the lines indicated by present

theory, the plan form will be everywhere proportional to the

linear grading ; thus we have to settle the aspect ratio of the

blade, lay off the maximum width, and draw a curve whose

ordinates from point to point are proportional to the linear

Fig. 138.

grading ordinates (Fig, 137 (a) ). If we adopt this design of

blade the sectional form, will be constant throughout the length,

varying only in its scale ; that is to say, the materialised a and /3

angles will be everywhere the same (Fig. 137).

The theory may possibly be incomplete ; as discussed in

§§ 190, 191, 192, etc., there may be some unformulated

objection to the pointed extremities to which present theory

gives rise. If this is the case the section will become flatter

towards the extremities, the linear grading remaining the

same and the width of the blade becoming greater. If we take

the elliptical aerofoil as our model we may derive the

corresponding blade form by the construction given in Fig. 138,

elliptical ordinates being substituted at every point for the

corresponding parabolic or segmental ordinate.

(7) If such a modified plan form is adopted the sectional form
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of the blade should be designed at every point to suit the width

and grading, the angles a and /3 having appropriate values

assigned from point to point, according to the value of the

constant c. It is possible that the constant e ought to vary from

point to point along the blade ; if this is so it is a matter on

which we have so far no information ; for the present it should

be taken as the aerofoil value of e proper to the value of n

employed.

In Fig. 137 the blade is sujDposed continued to connect to

the boss. Such continuation is always necessary, unless a

boss of very large diameter is emj)loyed, the continuation being

of stream-line section symmetrically disposed about the pitch

helix. It will be observed that the linear grading falls with

extreme rapidity as the inner "extremity" of the blade is

approached, and thus the change of form from the pterj^goid

to the symmetrical stream-line section is very aljrupt. It is

probably advantageous to carry the pterygoid section beyond the

theoretical blade limit and so merge it more gradually into the

simple form. No cognisance of this structural feature has been

taken in the hypothesis.

It should be remembered that the 6 -\- y spiral is at every point

the analogue of the horizontal line, and the one from which the

a 13 angles are laid off ; on this basis the setting out of the section

is the same as for an ordinary aerofoil, but the full " dip

"

forward can be given to the section, since the possibility of the

loss of equilibrium is no longer a factor (§ 138).

Parenthetically it may be remarked that the ^ + y series of

spirals does not form a helix, for the angle y is constant at all

points. This would usually be expressed by saying that the

pitch of the blade increases towards the tip, but we know that

the ordinary manner of defining the pitch by the mean angle of

the blade is unscientific.

(7) Number of blades. The determination of the maximum

number of blades permissible has been discussed in § 211,

and it has been shown that this depends but little upon the
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value of "n," being chiefly dependent upon the relative

length of the blade as compared to the diameter; the number

of blades thus depends upon the discard percentage. For a

90 per cent, discard four blades are the appropriate number

;

if the discard be 95 per cent, six blades may be employed.

In general the following rough-and-ready rule may be employed

:

Let Ti and r^ be the radii of the inner and outer extremities of

the blades, then the number of blades permissible will be

= 2*5 -^-^—
^, fractions being neglected,

rg — n
(8) All that remains to be done is now to give a scale to the

design that will render the propeller suitable for the intended

load. To this end any convenient scale should first be assumed

and the load calculated, for the actual value of V (the velocity of

flight), which it is intended to employ. The linear dimension

will then be in the ratio to the dimension required as the square

root of the calculated thrust is to the square root of the thrust

required. That is to say, the scale unit will be in the inverse ratio.

An example of the design of an aerial propeller on the fore-

going principles is given in Figs. 136, 137, 138, 139 ; the supposed

data being as follows :—Velocity 70 feet per second ; thrust =

100 lbs. ; discard 90 per cent. ; n = 6 ; y taken = 10 degrees.

§ 219. Power Expended in Flight.—The principles governing the

expenditure of power in flight have, in this and the preceding

chapters, been fully expounded, and it now only remains to draw

certain elementary deductions.

The power essential to flight or tlinist lio7'se-pou-er may be

defined as that represented by the thrust multiplied by the

velocity of flight, that is to say, the equivalent of the tow-rope

expenditure. The actual power required will then be a tit rust or

essential power divided by the efficiency of the propulsion.

We have seen (§ 200) that the efiiciency of propulsion may
theoretically be greater than unittj, so that the term essential

must not be construed as meaning the minimum theoretically

necessary on the Newtonian basis.
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Now, the essential power will be given by the expression

TV y V, where y (assumed to come within the definition of a small

angle) is expressed in circular measure. Now, if y is constant

in respect of T", as has been proved to be the case so long as the

body resistance is regarded as negligible, or separately computed,

the following deductions may immediately be made :

—

(1) The energy required to travel from point to 'point is

independent of the velocity and is constant}

(2) The poivcr (horse-power) required is directly as the velocity.

(3) From (1) it follows that the maximum range of flight of a

flying machine must depend upon the fuel carrying capacity, the

energy value of the fuel, and the total efficiency of the prime

mover and propelling mechanism, and is independent of the

speed of flight.

(4) From (2) it follows that the velocity of flight is limited by

the relation of horse-power to weight, and, other things being

equal, is proportional to the horse-power per unit weight of the

prime mover.

These conclusions are of considerable importance, and are

illustrated in the Tables as follows :

—

Table XV., column (1), gives, for values of y° = 6°, 7°, 8°, 9°,

and 10°, the distance that could be run if an aerodrome had at

its disposal the total energy of its own weight of hydrogen taken as

giving 48,000,000 foot lbs. per lb. Column (2) gives the same

information for petroleum spirit, taken as equal 16,000,000 foot lbs.

per lb. ; column (3) is based on the assumption that 25 per cent,

only of the total heat is available, as representing the thermal

efiiciency of the petrol engine. Column (4) the distance after an

allowance of 75 per cent, mechanical efficiency of engine and

transmission, and a 66*6 jDer cent, efficiency of propulsion.

Lastly, column (5) gives the actual range, or maximum possible

distance, on the basis of columns (2) to (4) on the assumption

1 It is understood that the proportions of the aerodrome are varied with

changes of velocity to comply alvrays with the conditions of least resistance,

§§ 165, 176, 185.
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that the aerodrome or flying machine carries 10 per cent, of its

mean weight as fuel, i.e., petroleum spirit. The mean weight

is, under these conditions, 5 per cent, less than the initial

and 5 per cent, more than the final weight, the loss of weight

being due to the fuel consumption.

As a maximum estimate of the range of flight conceivably pos-

sible without some fundamental discovery in fuel and prime

movers we may take the following supposititious case. Using

liquid hydrogen as fuel, and carrying 25 per cent, of the total

mean weight, and assuming a j^et- unheard-of thermal efficiency

of 50 per cent., a total mechanical efficiency of 90 per cent., and

a propeller efficiency of 70 })er cent., with the minimum angle of

7 given in the Table (= 6°), the exhaustion of fuel will be

complete after a flight of 6,800 miles distance.

The above estimate is based on an assumed development of the

heat engine and other mechanical refinements not yet within

sight, and indeed such as may never be realised. If we confine

ourselves to existing appliances and existing methods it is

doubtful whether the maximum range of flight can (without

devoting the whole resources of the machine to the carrying of

fuel), ever exceed 1,000 miles, and for the present this may be

regarded as the probable extreme outside limit.

Table XV.

Possible Range of Flight on Basis of Computation given in Text.

(Column 5 gives coin]mted range in miles, assuming propulsion by petrol motor and screw
propeller, for fuel capacity equal one-tenth of total weight.)
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§ 220. Power Expended in Flight (continued),—It has been shown

that, neglectmg body resistance, the power per unit weight

requires to increase directly as the velocity. Table XVI. gives

the calculated indicated horsepower per 100 lbs. iceight for

velocities ranging from 15 to 100 feet per second, the Table also

being figured for the thrust horse-power for velocities from

30 to 200 feet per second. The vahie taken for the total efficiency

is the same as employed in calculating column (4) of the preceding

Table, i.e., 75 X Q^'Q per cent. = 50 per cent., so that the

velocities for a given horse-power value are in the ratio of

2 : 1.

The calculation has been made for values of y extending from

6 degrees to 12 degrees, as in the preceding Table ; experiment

would appear to show that 10 degrees is as low a value of y

as can be obtained under practical conditions ; it is, however,

possible that with increased experience lower values may be

obtained. An aerodrome whose y is greater than 12 degrees is

certainly of inefficient design.

Table XVI.

Indicated Horse-poicer and Thrust Horse-jiower loer 100 lbs.

2veigJit at difevent Velocities and for different Values of y.
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resistance increases as V^, so that the angle y is no longer

constant in respect of V. We also know (§ 171) that the

influence of the weight of the aerofoil, as additional to the

load carried, is to place a lower limit on the velocity that may be

usefully employed.

The Equation (5) of § 171 gives tlie condition of least

resistance. The value of y can thus be calculated for any set of

conditions, and the power data obtained from the Table.^ By
plotting from the equations the conditions other than for least

resistance may be examined with equal facility and the y values

determined.

Before leaving the subject of power expenditure it is desirable

to point out the extent to which the future of flight and the uses

of a flying machine are circumscribed by economic considera-

tions.

Leaving all attendant difficulties on one side, it is evident that

the conveyance of goods by flying machine would be comparable,

so far as power expenditure is concerned, with drawing them on

a sleigh over a common road, so that where any other method of

transport is possible, flight may be regarded as out of the

question. In addition to this, the range of a flying machine

must, unless after the manner of a soaring bird it derives its

energy from wind pulsation, be strictly limited to a few hundred

miles between each replenishment of fuel ; and consequently we

cannot at present regard aerial flight as a means of ocean trans-

port, or even as a means of exploring inaccessible regions where

the distance to be accomplished exceeds that stated.

Beyond this the velocity of flight is limited by the horse-power

wei'^ht factor. If, as an example, we suppose that 25 per cent, of

the weight of the machine is taken up by the motor itself, and if the

motor weigh only 2^ lbs. per horse-power, it is improbable, taking

everything into account, that seventy miles per hour can be

^ In §^ 181 and 189 it has been pointed out that the -y value, independently

of body resistance, is in practice greater than can at present be deduced from

pure theory.
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exceeded. Flying is comparable to hill climbing on a road auto-

mobile where y represents the gradient, this being about 1 in 5

or 1 in 6, and where the transmission efficiency is limited to

about 66 per cent. The velocity limit rests entirely on the

weight per horse-power, the aerodrome being presumed designed

for least resistance ; any continued improvement in prime movers,

tending to a reduction of weight, will react in the direction of

rendering higher aerial speeds practicable.

If it should be found possible to " soar " on a large scale after

the manner of an albatros or gull, the limitation of range may,

in certain exceptional cases, be partially or wholly removed.

It may be noted that on the liquid hydrogen estimate of

maximum possible range, no allowance has been made for the

possible power to be derived directly from the expansion prior to

combustion. We have also omitted to discuss the possible

increase of thermal efficiency theoretically availal)le by the

employment of the low temperature of the boiling point of

hydrogen as a refrigerator, that is, as the temperature at which

the heat engine discards. The use of liquid hydrogen is at

present too daring and distant a suggestion to be taken quite

seriously ; it has here been put forward merely as representing

the maximum known fuel value in a possibly available form.
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CHAPTEE X.

EXPERIMENTAL AERODYNAMICS.

§ 221. Introductory.—Experimental aerodynamics must at

present be regarded as in its infancy. The methods employed

up to date have not yielded results of an exactitude comparable

to that readily obtainable in other branches of physical science.

There are in the main three methods of investigation open.

Firstly, experiments upon planes or other bodies propelled

through still air, the subject of experiment and the measuring

appliances being mounted either on the arm of a tchh-ling table

or on the front of a locomotive vehicle. Secondly, the measure-

ment of the reactions produced by a fluid in uniform motion on

a fixed body. Thirdly, by measurement and deduction from

experiments in free flight.

The first method is that most generally adopted, admirable

work having been done in this direction by Dines, Langley and

others. The second method has been used to some extent by

Dines, and the third (the method of free flight) has been deve-

loped to a certain extent by the author.

The earlier experimenters, Kobins (1761), Hutton (1787), and

Vince (1794—5, 1797—8), employed a primitive form of whirling

table, the invention of which is attributed by Hutton to Robins,

and no earlier record appears to exist of the employment of this

device for the purjDose contemplated. The whirling table as

known to Hutton is represented diagrammatically in Fig. 140, in

which a horizontal arm A is mounted on a vertical axis B, which

is caused to rotate by the silk cord C and weight D ; the body on

which experiments are to be made is mounted at the extremity
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of the arm as at E, and the determination of its resistance is

made by altering the weight D until a certain definite speed of

rotation is attained. It is evident that, knowing the length of

the arm, the diameter of the axle on which the cord is wound,

and the weight employed, the calculation of the resistance is a

matter of simple arithmetic. The resistance of the body under

Fig. 140.

investigation only forms part of the total resistance, and a pre-

liminary experiment is necessary to determine the Resistance

proper to the apparatus itself. Precautions were usually taken

to prevent so far as possible frictional resistance, the variations

of which would otherwise give rise to error of sensible

magnitude.

§ 222. Early Investigations. Hutton—Vince.—One of the

objects on which considerable experimental attention was

focussed at an early period was the investigation of the solid
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hemisphere in plane and in spherical presentation. This is pro-

bably due to the fact that this problem forms the basis of

prop, xxxiv., Book IL, of the " Principia " as touching the

Netvtonian Mediiun. It was evidently the aim of the early

workers to ascertain the extent to which Newton's results would

prove applicable to a real fluid.

In the case in question it was found by Hutton that

—

(1) The pressure on the hemisphere in either presentation

varies, according to the Newtonian law, that is as the square of

the velocity ; and,

(2) The resistance in plane presentation is approximately two-

and-a half times as great as in spherical presentation, instead of

only twice as great as demonstrated by Newton. This result was

subsequently confirmed by Vince, whose relative figures were

1 to 2-46.

These results were considered at the time as a substantial con-

firmation of prop, xxxiv., or, rather, as showing that the

behaviour of a real fluid does not greatly differ from that of the

discontinuous medium
;
probably we have here the reason why

many subsequent writers have been misled into assuming the

applicability of the Newtonian sine'^ law in the case of the

inclined aeroplane. In point of fact the coincidence, had it

been far more complete, would be of no significance whatever;

the system of flow in actuality bears no resemblance to the

dynamic system of Newton.

The fallacy of the sine^ law was first clearly demonstrated by

Yince in his paper (to which reference has already been made)

;

he gives experimental data showing that the resistance in

the line of flight varies, for small angles, as sine^*^^ of the

angle; this, if we neglect the influence of skin-friction, corre-

sponds to a pressure normal to the plane varying as the sine*'^^.

The fact that the index here is less than unity can be reason-

ably accounted for on the assumption that part of the resist-

ance is due to skin-friction, which is roughly constant in respect

of the inclination.
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§ 233. Dines' Experiments.^ Method.—Coming now to the

modern period, we have to examine two independent series of

experiments, made almost simultaneously, respectively by Mr.

W. H. Dines in England and by the late Prof. S. P. Langley in

America.

To Dines we owe a particularly beautiful and original method

of employing the ivhirling table for the determination of aero-

dynamic data. In all the modern applications of the whirling

table, the determination of the resistance of the object of

'^-^^^fTy^^^^^^y^^

Fig. 141.

experiment is made quite independently of the propulsion of the

table, some form of balance being employed mounted at the extre-

mity of the rotating arm, the motion of the latter being main-

tained by the application of a power installation, and the speed

of rotation accurately recorded by a chronograph. Dines con-

ceived the possibility of balancing the aerodynamic reaction,

which varies approximately as the square of the velocity,

* In the present account of the investigations of Mr. Dines, the following

publications have been consulted :
— " Some Experiments made to Investigate

the Connection between the Pressure and the Velocity of the Wind " (Dines,

Quart. Journ. Royal Met. Svc, Yol. XV., October, 1889), and " On Wind
Pressure upon an Inclined Surface" (Dines, Proc. Roijal Soc, Vol. XLVIII.,

1890). Further particulars of Mr. Dines' experiments of aerodynamic
interest will be found in the following:—"Mutual Influence of two
Pressure Plates upon each other," and " On the Variations of Pressure

caused by the Wind Blowing across the Mouth of the Tube " (Dines, Quart.

Journ. Royal Met. Soc, Vol. XVL, October, 1890).
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against the centrifugal force of an appropriately arranged

weight, which varies in like ratio. By this means the measure-

ment of the reaction is made virtually independent of the

velocity of flight, so that a possible source of error is avoided

and the conduct of experiments is greatly simplified.

The Dines apparatus is illustrated in the form of a rudimentary

diagram in Fig. 141, in which A is an arm of the whirling table

pivoted at and revolving about the point B, a bell crank lever

C D, delicately centred at E, carries on its two arms respectively

the pressure plane, F (or other body whose resistance it is desired

to ascertain), and the bob weight G whose centrifugal force forms

the measure of the pressure reaction. The condition of equilibrium

is that the resultant of the two forces passes through the pivot

centre E. It is evident that these two forces, in equilibrium at

any one speed, will be in equilibrium for all speeds, for their

relative direction undergoes no change, and they are each

proportional to the velocity squared and so are proportional

to one another. The bob weight D is made adjustable on the

arm D and the condition of equilibrium is ascertained by trial.

In one modification the instrument is made to perform auto-

matically its own adjustment.

§ 224.—Dines' Method (Mathematical Expression).

Let, A = area of plane.

,, F = velocity of the bob weight.

,, ci F = velocity of the centre of pressure of the plane.

„ r = radius of the path of the weight.

„ E = resistance (poundals) acting on the plane.

„ F = centrifugal force of the bob weight (poundals).

,, C2 = lever ratio, so that R = c^ F.

„ M = mass of bob weight.

„ P = pressure on plane (poundals per square foot.)

,, C = constant in expression, P = C p V^ {^ 134).

Then— P = C p {ci F)^ and E = A P
E = ACpci'y^
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But— F = ^^^-f-, and R = c^F,

ACpc.^V^ = '-^^^ or C= :^\ ^

r A p ci^ r

all of which are known quantities ; consequently the value of the

constant C is determined.

§ 225. Dines' Method (continued).—Of the practical working of

the foregoing apparatus, which may not inaptly be termed a

centrifugal balance, Mr. Dines says :
—" It had been assumed in

the above that the wind pressure varies as the square of the

velocity. The experiments have proved this to be the case, for

when upon a calm day equilibrium for any plate is once attained,

it has been found impossible to disturb it by any alteration of

the velocity of rotation, and since the centrifugal force varies

as the square of the velocity the wind pressure must do so also.

For the smaller planes the maximum velocity of which the

machine is capable is about seventy miles per hour."

We may consequently infer that the F^ law of resistance

holds good as a very close approximation over a very consider-

able range of speed, certainly as great a range as concerns the

problem of flight. This is a result previously considered in

doubt.

The arrangement of the centrifugal balance figured is not one

altogether suited to planes of large size, owing to the fact that

the different portions of the plane are situated at different

distances from the centre of the whirler, and the position of

the centre of pressure becomes uncertain. In such cases a

modified design is adopted (Fig. 142), of which the description

is given in § 227.

The obvious difficulty of observing the position of the plate

1 This expression differs somewhat in form from that given by Dines, the

difference being due firstly to the introduction of the area {A) of the plane,

and the restriction of the use of the term pressure as being of the dimensions

force divided area, and secondly to the difference in the units employed, the

use of absolute units eliminating the gravitation constant.
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when in rapid motion is overcome electrically, the range of

motion permitted to the lever being limited by stops to about one

degree, the stops forming at the same time electrical connections

to alternative circuits. The two circuits are arranged in

connection with a galvanometer so that contact with one stop

causes a current in one direction and contact with the other

Fig. 142.

causes a current in the opposite direction. When equilibrium

is established the galvanometer needle either remains unaffected,

or oscillates from one side to the other indicating that the

current flows about equally in either direction.

§ 226. Dines' ResxQts. Direct Resistance. — A considerable

number of experiments on the resistances of planes and solids of

various forms are found summarised in the following table, which

is taken intact from the "Experiments on the Pressure^and
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Velocity of Wind." Many of these results have been already

referred to in a previous chapter.

Table XVII.

Showing the pressure upon various plates at a velocity o/20'86 miles

per hour. The values are reduced to the standard temperature

and 2^^'^^siire. The flat pilates were cut out of hard wood

§ inch thick. Allowance has been made for the arm ichich

carried them.
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§ 227. Dines' Experiments (continued). Aeroplane Investigations

(Apparatus).—The description and results of these experiments

are given in Mr. Dines paper on " Wind Pressure upon an

IncHned Surface," {P roc. Royal Soc, Vol.XLVIIL). The apparatus

employed is a form of the centrifugal balance described in § 223,

and the "planes" employed are of the triangular section already

illustrated in Fig. 100 (a).

Two diagrammatic views of the centrifugal balance employed

are given in Fig. 142, which is reproduced from Mr. Dines'

paper. In this, like letters refer to like parts in the two views
;

and we have the pressure plane P mounted on the arm E F
pivoted to turn about the axis M N, which is arranged radial to

the axis of the whirling table. We have the bar A B, which is

the mass whose centrifugal force is employed to measure the

reaction, mounted slidably in a pivot piece free to turn about the

vertical axis C D, and the pivot piece and the pressure plane

arm are geared together by a stud projecting from the former

and engaging with the latter. This may be looked upon as

equivalent to a single tooth of an imaginary pair of bevel gears.

A counterpoise weightK performs the double function of statically

balancing the pressure plane, and of rendering the arm E F
symmetrical in respect of wind pressure.

The adjustment of the bar A B hy an ingenious device was

arranged to take place automatically. This automatic arrange-

ment consists of a windmill carried on the arm of a whirling

table, arranged to drive ichenever possible a crown wheel, by

means of a long pinion engaging with the crown wheel on both

sides. The crown wheel is carried on the pivot piece, and by

means of a rack and pinion moves the bar A B in the one

direction or the other. When the pivot piece reaches either of

its extreme positions (the total range being a few degrees), the

crown wheel becomes disengaged from its pinion on the one side

or the other, the windmill immediately begins to operate, and

the bar undergoes displacement in the direction required to

restore equilibrium. So long as the balance is perfect and
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undisturbed, the pivot piece remains in an intermediate position,

and the crown wheel is locked by the double engagement of its

pinion.

In this centrifugal balance, as in all apparatus of its type, the

precise speed at which the whirhng table is propelled is unim-

portant for the reasons already given. It is, however, necessary

tbat the velocity should be steady, i.e., the whirling table

should not be undergoing acceleration when the experiment is

made. The reason of this precaution is that the pivot piece and

bar possess moment of inertia, and change of speed of rotation

involves a torque about the axis C D foreign to the conditions.

This effect could be minimised by concentrating the mass as a

bob weight, and making the lever and pivot piece carrying it as

light as possible. The difficulty could be entirely eliminated by

arranging a duplex apparatus, in which two sliding bars are

employed, having opposite rotation, their preponderating weights

being arranged at opposite ends.

§ 228. Dines' Experiments (continued). Aeroplane Experiments.

—In the determination of aeroplane data, other than in the

special case of the normal plane, tbe Dines method presents

certain difficulties. It may have been noticed from the mechanical

disposition of the parts, that it is the moment of the pressure

reaction about the axis M N that is the quantity measured,

consequently before the magnitude of the pressure reaction can

be ascertained the position of the centre of pressure must be

known. In order to avoid the necessity of independently

determining the centre of pressure, observations are made with

the adjustable arm in two complementary positions (Fig. 143 (a)),

the angle of incidence being the same in both cases. It is

evident that the arithmetical mean of the two readings will give

the moment of the pressure reaction as if the total force were

applied at the geometrical centre.

By investigating two further positions (Fig. 143 {b) ), an

attempt was made to compute the tangential force or skin-
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friction on the plane : this, however, proved abortive. Mr. Dines

attributes the faihire of this portion of his investigation to the

existence of eddy currents subsequently discovered to have been

set up by the frame of the machine.

Experiments with roughened surfaces and with the planes

thoroughly wetted showed a diminished reaction, in both cases

Fig. 143.

equal to about a 20 per cent, drop for the angle of maximum
moment when compared with the same plane polished and dry.

Experiments are also recorded, made with the object of

determining, in a rough and ready manner, the direction of the

stream lines in the immediate vicinity of the surfaces of an

inclined plane. A number of pins were driven into the face and

back of the plane, and short lengths of coloured silk attached to

act as weather-cocks from point to point, and show the local

direction of the air currents. The results were drawn from

observation ; sample diagrams for a square plane at 45 degrees
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are given, for front and rear aspect, in Fig. 144. It is evident

that we have strong evidence here of the centrifugal shedding of

the " dead-icater," the influence of which has ah-eady been the

subject of comment in connection with the theory of the screw

propeller.

The quantitative results of Mr. Dines' pressure reaction

experiments have been given in most part in Chap. VI.

§ 229. Dines' Experiments Discussed.—The simplification result-

ing from the employment of the centrifugal balance in the

Plane at 45".
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Incidentally the employment of the centrifugal method seems

to have demonstrated that the velocity squared law is in all

ordinary cases a nearly perfect approximation to the truth.

One of the most remarkable results brought out b}^ these

experiments is the peculiar " kick up " in the pressure curve

(Figs. 93—101, Chap. YL). This "kick up " seems to have been

entirely missed until pointed out by Mr. Dines, although the

matter has been investigated by other careful observers. It

might be thought that the peculiarity of the Dines curve is

related in some way to the triangular section "plane " employed

in these experiments, but this hardly seems possible. It would

certainly have been more satisfactory if the experiments had

been repeated with " planes " of more usual form. For small

angles it is highly probable that Dines' results are not accurate,

but when once the motion is frankly discontinuous it is difficult

to believe that the form of the back of the planes employed can

account for so marked a departure of the curve as that observed.

It is therefore most probable that the " kick up " is a real feature

in the pressure-velocity curve that has escaped the notice of

other experimenters.

Dines concludes from his experiments that the effect of skin

friction is negligible ; one experiment, especially directed as a

quantitative test, gave an entirel}" negative result : no tangential

component could be detected. If it were not for the extreme

subtlety of the subject it would be difficult to resist the conclusion

stated ; the pitfalls connected with skin-friction are, however,

numerous, and the evidence is inconclusive. It is fair to remark

that on this point Dines is in agreement with the late Professor

Langley and Sir Hiram Maxim.

§ 230. Langley's Experiments. Method.—The method of experi-

ment adopted by the late Professor Langley resembles that of

Mr. Dines in the employment of a whirling table driven by power,

and in the use of independent measuring appliances to determine

the resistances or reactions on the body subject to investigation.
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The following account of these experiments is condensed from

Professor Langley's Memoir, " Experiments in Aerodynamics,"

published by the Smithsonian Institute, Washington, 1891.

The site chosen for these experiments was situated in the

grounds of the observatory at Allegheny, Pa., U.S.A., some

1,145 ft. above sea level.

The whirling table, erected in the open air, consisted of a

trussed cantilever beam, arranged to rotate about a central

vertical axis, being driven by an underground horizontal shaft

from a separate power house through the medium of bevel

gearing. The total length of the beam is given as 60 ft., that is

to say, the extremities describe a circle of 30 ft. radius. In

construction the beam itself is figured as resembling a light

ladder, laid horizontally and stayed from a point about 9 ft.

above its centre by a vertical strut, and a number of wire guys

taken out to various points along its length. Lateral stiffness is

given to the structure by a pair of guys on either side stretched

from each extremity to a central outrigger. Provision is made

for obtaining at will peripheral speeds from 15 to 100 ft.

per second, and for chronograph ically recording each quarter-

revolution by electrical means.

The mode of employment of the whirling table above described

involves the use of a number of distinct apparatus, each specially

schemed and designed by Prof. Langley for the particular

purpose in view.

It is impossible to altogether detach the description of the

apparatus from the discussion of its employment and results.

In the Memoir a chapter is devoted to each instrument, and

in the present precis and discussion the author has followed a

similar arrangement, a separate section being devoted to each

chapter of Professor Langley's work.

§ 231. Langley's Experiments, " The Suspended Plane."—This

instrument consists of a square plane of thin brass, mounted
" slidably " on anti-friction rollers in a frame and suspended by a
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spring, the frame being mounted on horizontal trunnions. The

function of this device is not clear ; in the words of the text, its

object is " to illustrate an unfamiliar application of a known prin-

ciple," but the employment of the apparatus does not seem to

lead to any results of importance.

§ 232. Langley's Experiments. " The Resultant Pressure

Eecorder."—This instrument is designed, in the words of the

Memoir, " for the purpose of obtaining graphically the direction

of the total pressure on an inclined plane (in practice a square

plane), and roughly measuring its amount." The instrument

consists of a beam (Fig. 145) hung symmetrically at its centre in

gimbal joints, and carrying at its outer extremity the " wind

plane," that is, the plane under investigation, and at its opposite

end a tracing point or pencil adapted to record on a sheet of

diagram paper, arranged at right angles to the beam itself. A
co-ordinate combination of tension sj)rings is emj^loyed to hold

the beam radial to the whirling table, and the whole is accur-

ately counterpoised so that the plane is virtually weightless

;

thus, so long as the apparatus is at rest the pencil point is

central or at the co-ordinate zero, but when the whirling table is

in motion the total reaction on the plane is measured, both as to

direction and magnitude, by the resulting displacement of the

pencil point. In order to obviate friction the pencil is held

away from the recording paper until the desired velocity is

reached, when it is released by means of an electro-magnet.

Due precautions are taken to ensure proper calibration ; to this

end the entire spring system is carried in a revoluble frame shown

in the figure.

The method of employment is described as follows :
" The

wind plane is set at an angle of elevation /3 ; a disc of paper is

placed upon the recording board and oriented so that a line

drawn through its centre to serve as a reference line is exactly

vertical. The whirling table is then set in motion, and when a

uniform velocity has been attained a current is passed through
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the electro-magnet, and the pencil records its jjosition on the

registering sheet. Since gravity is virtually inoperative on the

counterpoised plane, the position of this trace is affected by wind

pressure alone. Thus the instrument shows at the same time

the direction and magnitude of the resultant wind pressure on

the plane and for different velocities of the whirling table.

The results achieved with this instrument were as follows :

—

(1) The confirmation of the law of j)ressure as : P = ^ V^, and

the determination of the value of k for the normal plane.

(2) The determination of the jn-essure-ajigle curve for the square

inclined plane, incidentally jDroviding a substantial confirmation

of Duchemin's formula.

In addition to the above, Langley claims to disjDrove " the

assumption made by Newton that the pressure on the plane varies

as the square of the sine of its inclination," and elsewhere he

states: "Implicitly contained in the Principia, jDrop. xxxiv..

Book II." Now, whatever Langley's experiments jDrove or dis-

prove, the assumption that he attributes to Sir Isaac Newton

is one that he did not make, and nothing of the kind is

'implicitly contained" in the proposition to which reference is

made.^

Prof. Langley further states that the exj)eriments with this

instrument " further show that the effect of the air friction is

wholly insensible in such experiments as these." Now, as bear-

ing on this contention. Fig. 1 from the Memoir is here reproduced

(Fig. 146), and shows the result of plotting a series of observa-

tions, with an averaging curve drawn to indicate the probable

true values. It will be noted that this curve does not pass

through the origin, but cuts the axis of ?/ at a point representing

(on the ordinate scale) a matter of some 8 per cent. ; or, if we

take the possible extremes indicated by the observed points, this

quantity will be something between 3 and 13 per cent.

The discrepancy is accounted for by Prof. Langley on p. 24 of

1 Vide "Principia." (The author relies on the translation by Andrew
Motte, 1803.)
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the Memoir, and a " corrected " curve drawn accordingly. The
explanatory paragraph is as follows :

—

" The values in the Tables are subject to a correction resulting

from a flexure of the balance arm and its support. It was

observed that the trace of the plane, set at 90 degrees, did not

coincide with the horizontal {i.e., the perpendicular to the

vertical) line marked on the trace, but was uniformly 4 degrees

or 5 degrees below it ; so that the angle between the vertical and

the trace of the plane did not measure 90 degrees, as had been
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assumed, but uniformly 94 degrees or 95 degrees, the average

being 94'6 degrees. This result was found to be due to the

bending backwards of the balance-arm and its support b}^ the

pressure of the wind, while the recording board and plumb line

presented only a thin edge to the wind, and consequently

remained relatively fixed. During motion, therefore, the plane

actual!}' had an inclination to the horizon about 5 degrees greater

than the angle at which it was set when at rest. This flexure

seemed to obtain for all angles of exi3eriment, but with indications

of a slightly diminishing effect for the smaller ones ; conse-

quently the pressure ratios above given for angles of 45,

30, 20 degrees, etc., really apply to angles of about 50, 35,

25 degrees, etc. After making this correction the final result of

the experiments is embodied in the line of Fig. 1 designated

corrected curve."

Now the author has determined the coefficient of " skin-

friction," and it has been shown in the present work that it is

nowise a negligible factor ; the value would (under the conditions

of experiment) in all j)robability be about 2 per cent., and when

the angle of the plane is sufficient to give rise to motion of the

discontinuous type it will be in effect about half this amount

;

the value would require to be considerabl}' less than this before

it could be considered as negligible. It is a quantity of this

order that Langley confidently asserts does not exist, because it

has remained unrecognised in the results of an exj)eriment of

which he himself writes as in the paragraph quoted, and which

has been subjected to a correction, on very doubtful grounds,^

many times greater than the quantity involved. The remedy for

so serious an error was obviously to redesign the apparatus with

a symmetrical Jraine ; had this been done there is every probability

that the effects of skin-friction would have been clearly recognised.

^ Tliese words are fully justified. If the correction were required fur the

reason stated then it would be of many times greater magnitude when the

plane is normal than when it presents a small angle to the line of flight.

Langley says :
" This flexure seemed to obtain for all angles of experiment,

but with indications of sliyhtly diminishing effect for the smaller ones."
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§ 233. Langley's Experiments. " The Plane Dropper."—The plane

dropper, as its name implies, is an apparatus in which the aero-

plane is allowed to fall under the influence of gravity against the

aerodynamic resistance encountered in its flight. In this instru-

ment the "plane " is clamped to a " falling piece " arranged with

friction rollers to slide freely on a vertical guide bar ; a detent is

employed to hold the falling piece in its top position until

released by an electro- magnet. The angle made by the plane

to the line of flight has a range of adjustment from horizontal up

to 45 degrees. The total fall permitted is four feet, and the time of

fall is registered electrically, both at the top and bottom, and

later in the experiments at each foot of fall, the observatory

chronograph being employed.

The experiments made with the plane dropper are numerous,

and the results are highly instructive from a qualitative point of

view; it would not seem, however, that the method is one that

should be imitated by future exjDerimenters : the results are in

general deficient in quantitative value, except in the special case

when the plane is recorded as "just soaring." The weak point

in this kind of instrument is the uncertainty that must prevail

as to the existence or otherwise of a steady state. During the

first portion of the drop there is acceleration taking place, that

is to say, part of the weight of the paraphernalia is spent in

overcoming its own inertia, and only a portion is supported aero-

dynamically ; so that a considerable calculation is necessary

before the results recorded can be made quantitatively

available.

Admitting its defects, the method is one that appeals strongly

to the imagination, imitating as it does many of the conditions

of free flight, and in the hands of Prof. Langley it was shown

capable of giving some valuable information. The chief points

demonstrated were as follows :

—

(1) That the time of fall of a horizontal plane in horizontal

motion is greater than when no horizontal motion exists, and is

greater the greater the horizontal velocity.
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(2) The vital impurtauce of the sliape of the plane and of its

aspect on the weight supported.

(3) The existence of a critical angle at \Yhich the aspect effect

undergoes reversal.

(4) The fact that planes can be superposed in flight without

sensible diminution of their individual supporting power, pro-

vided that they are separated by a certain minimum distance.

For planes fifteen inches by four inches in pterygoid aspect the

minimum distance between the superposed planes was found to be

about four inches, or approximately equal to the " fore-and-aft
"

dimension.

It is curious that, although Langley in many places elsewhere

in the Memoir has pointed out the failure of the sine'^ law (the law

of the Newtonian vieditoii) as applied to air, he apparently over-

looks the fact that the falling plane is on this point actually the

experimentum crucis, for it has been shown (§§ 145—50) that if

the sine^ law holds good in any fluid or medium, the rate of fall

of a horizontal i^lane will be independent of and unaffected by its

horizontal motion.

We find once more, iu the chapter dealing with the plane

dropper, the assumption that skin friction is negligible,

resulting in much false inference. This time the error is

tacitly assumed. No further proof is announced. The state-

ments that are afiected by this error are sufficiently numerous.

The following example will put the reader of the Memoir on his

guard :

—

" The results of these two series of experiments furnish all

that is needed to completely elucidate the proposition that I first

illustrated by the suspended plane, namely, that the effort

required to support a bird or flying machine in the air is greatest

when it is at rest relatively to the air, and diminishes with the

horizontal speed which it attains, and to demonstrate and illus-

trate the truth of the important statement that in actual horizontal

flight it costs absolutely less power to maintain a high velocity than

a low one."
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Later we find :

—

"... For the former case this is 0*0156 horse-power, and for

the latter case approximately 0'0095 horse-power—that is, less

power is required to maintain a horizontal velocity of seventeen

metres per second than of fourteen, a conclusion which is in

accordance with all the other observations and the general fact

deducible from them, that it costs less power in this case to main-

tain a high speed than a low one—a conclusion, it need hardly

be said, of the very highest importance, and which will receive

later independent confirmation."

" Of subordinate, but still of very great, interest is the fact

that if a larger plane have the supporting properties of this

model, or if we use a system of planes like the model, less than

one-horse power is required both to support in the air a plane or

system of planes weighing 100 lbs., and at the same time propel

it horizontally at a velocity of nearly forty miles per hour."

§ 234. Langley's Experiments. The "Component Pressure

Recorder."—This is by far the most important of the appliances

originated by Prof. Langley for use in conjunction with the

whirling table, and is one that should receive careful study from

future experimenters. In construction, the component pressure

recorder somewhat resembles the resultant pressure recorder

already described, but instead of measuring the magnitude and

direction of the total reaction by a symmetrical spring combina-

tion, the reaction is resolved into its horizontal and vertical

components, which are separately recorded, the former directly

on a chronograph cylinder forming part of the instrument, and

the latter by the condition that the " soaring speed " is reached.

It may be remarked that, whereas in the resultant pressure

recorder the plane is counterpoised so as to be virtually weightless,

in the present instrument the weight of the plane, loaded to

whatever extent desired, is used as a measure of the vertical

component.

The drawings of this instrument as figured in the Memoir are

356



kMJMfwf^jAiA

Cq



§ 234 AEEODYNAMICS.

given in Fig. 147, in which a light stiff beam, built on the lattice

principle, is mounted on knife-edge gimbals on a frame which is

in turn free to rotate about a vertical axis. This beam, which is

functionally comparable to the beam of a balance, carries at its

outer end {i.e., the end remote from the axis of the whirling

table) the " wind plane," attached by a tubular arm to the

divided circle G, by which it may be set to any desired angle.

The inner and outer limbs of the beam are symmetrical, and the

whole is enclosed in a box or case to afford shelter from the

wind. A dummy end is allowed to project at the inner end to

balance (as to wind pressure) the attachment arm at the outer

extremity.

A pencil arm (indicated as such in the figare) is provided,

attached to the gimbal frame, to record direct on the chronograph

drum. This pencil arm also serves to attach the spring by which

the horizontal component is measured. Friction wheels R are

fitted at both ends of the beam to limit the vertical movement.

The delicacy of suspension was found to be greater than could

be employed under outdoor conditions, and a brush H was added

to develop a certain regulated amount of friction.^

The chief work accomplished with the component pressure

recorder was the following :

—

(1) The determinations for planes of different proportions, of

the velocity of "soaring" corresponding to different values of

angle and load. Incidentally, the existence of an angle of

reversal, already mentioned in connection with the plane dropper,

was clearly brought out, the previous result being confirmed.

(2) The determination of the values of P^/Pgo for planes of

different aspect ratio.

(3) The determination by direct measurement of the hori-

zontal comj)onent of the reaction on planes at different angles

and soaring speeds supporting a known weight.

Fig. 148 gives, plotted to a reduced scale, one of the soaring

speed diagrams taken from the Memoir. The " reversal " is well

^ A crude makeshift.
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shown in the case of the curves A and B, whilst the curve C
shows that for planes of this particular proportion and aspect the

curve for small angles approximates very closely to the law

V^ X (3 ^ constant. The theoretical curve is given by the

dotted line showing the degree of approximation. This law has

already been given in the form—/3 oc —^ (§ 152 (e) ).
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forces, assuming the reaction exactly at right angles to the

surfaces of the plane—that is to say, neglecting skin-friction.

The curve drawn is a so-called corrected curve, the basis of the
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effective value = •0125 (see § 182) ; it is also supposed that the

tangential velocity of the air is proportional to cos /3—that is, equal

to V cos /3. The two curves thus plotted are given in Fig. 150.

Now, it is evident that the curve (h) (dotted line) corresponds

more closely to the actual observed values than the curve (a), and

we have certainly here prima facie evidence of a tangential force

about equal to that which we have assumed, and which is

deduced from the author's own experiments.
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Let us see what Langley says on the subject. We find (p. 63)

the story of the plotting told m a few words :

—

"... These values have been plotted in Fig. 11, and a

smooth curve has been drawn to represent them as a whole.

For angles below 10 degrees the curve, however, instead of

following the measured pressure, is directed to the origm, so that the

results uill show a zero horizontal pressure for a zero angle of

inclination.''

It may be remarked parenthetically that here the complete

assumption has been made of that which it should have been the

functian of the experiment to prove. The author of the Memoir

continues :

—

" This, of course, must be the case for a plane of no thickness,

and cannot be true for any planes of finite thickness with square

edges, though it may be and is sensibly so with those whose

edges are rounded to a so-called fair form. Now the actual

planes of the experiments presented a squarely cut end surface

one-eighth of an inch 3'2mm. thick, and for low angles of

inclination this end surface is practically normal to the wind.

Both the computed pressures for such an area and the actually

measured pressures, when the plane is set at degree, indicate

conclusively that a large portion of the pressures measured at

the soaring speeds of 2 degrees, 3 degrees, and 5 degrees, is

end pressure, and if this be deducted the remaining pressure

agrees well with the position of the curve. The observed

pressures, therefore, when these features are understood, become

quite consistent. The curve represents the result obtained from

these observations for the horizontal pressure on a plane with

'fair' shaped edges at soaring speeds."

The above argument appears to the present author to be

excusable as an attempt to explain why the results of one experi-

ment or series of experiments might difl^er from some other

experiment or established fact, but it does not constitute a

demonstration that skin friction is negligible. The fallacy of an

argument on these lines has been already pointed out in
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Chap. YL, § 158. It is in any case very difficult to defend

plausible reasoning of this kind, ichen the actual experiment icith

jylanes of "fair" form could have hern tried for the expenditure of

an additionalfew shillinys and with hut little delay.

The inevitable statement as to the power expended in flight

follows :

—

" The most important conclusion may be said to be the con-

firmation of the statement that to maintain sucli planes in

horizont:d flight at high speeds, less power is needed than for low

ones.

" In this connection I may state the fact, surely of extreme

interest as bearing on the possibility of mechanical flight, that

while an engine developing one horse-power can, as has been

shown, transport over 200 pounds at a rate of 20 metres jDer

second (45 miles per hour), such an engine {i.e., engine and

boiler) can be actually built to weigh less than one-tenth of this

amount."

§ 235. Langley's Erperiinents. The " Dynamometer Chrono-

graph."—This apparatus was devised for tlie measurement of the

thrust and torque of screw propellers, as a means of practically

testing trial models and ascertaining efficiency obtainable. Eor

the details of the instrument reference should be made to the

Memoir.

In the chapter on the use of this appliance. Prof. Langley

explicitly states that the details of his investigations are reserved

for future publication ; certain particulars are, however, vouch-

safed, including a sample determination, which is of considerable

interest in viev^ of the theory of the preceding chapter.

It would appear from the data given that the proj^eller em-

ployed, having a diameter of 30 inches, had an effective pitch

of 1 foot approximately, that is to say, its radius was 1^ times

the pitch.

Eeferring to our efficiency diagram (Fig. 127), we see that this

denotes the employment of rather more than the whole of the

363



§ 235 AERODYNAMICS.

diagram given, so that the efficiency will vary over the length of

the blade from 70*4 per cent, to about 40 per cent. ; if we take

the mean as a rough approximation of the efficiency value to be

expected, we have 55 per cent. The actual efficiency obtained

was 52 per cent., which is quite as near as could be anticipated.

Again, as to the number of blades, Langley found that two

blades gave a better result that any greater number of blades.

Now the rule laid down in § 218 can hardly be relied on in the

present case : the design of this propeller is abnormal. We
may fall back on § 211. In the propeller under discussion the

thickness of the peripteral zone (§ 210) will be evidently nearly

as great, if not quite as great, as the pitch, consequently we

must be approaching the point at which one blade will interfere

with itself, and two blades will certainly overlap to some extent.

It is consequently quite evident that any increase on the number

must be detrimental. Thus we again find substantial confirma-

tion of the peripteral theory. The concluding words of the

chapter on the Dynamometer Chronograph are singularly to the

point in view of the conclusion in § 211 on the comparison in

theory of the aerial and marine propeller. Professor Langley

says :

—

"... It may be said that, notwithstanding the great differ-

ence between the character of the media, one being a light and

very compressible, and the other a heavy and very incompressible,

fluid, these observations have indicated that there is a very con-

siderable analogy between the best form of aerial and of marine

propeller."

§ 236. Langley's Experiments. The " Counterpoised Eccentric

Plane."—An apparatus devised for determining the variations in

the positions in the centre of pressure, for varying angles of

inclination of a plane to its line of flight.

This appliance follows on established lines, the point of sus-

pension of the plane being fixed for each trial and the angle of

equilibrium being experimentally recorded. The result of these
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experiments has already been given ; in the main the work of

previous investigators receives confirmation (Fig. 94, Chap. VL,

§ 148).

§ 237. Langley's Experiments. The " Rolling Carriage."—This

instrument is a higlily si^eciaKsed contrivance for investigating

the law of pressure on the normal plane, and for determining

with a greater degree of accuracy than previously the value of the

constant relating to same.

The instrument consists of a frame beautifull}' mounted on

friction rollers, and recording direct on a chronograph barrel.

The wind plane is attached to the front end of a bar, carried

forward from the frame and clamped thereto, the pressure on

the wind plane being taken by a carefully calibrated spring and

the deflection recorded on the chronograph drum.

The experiments made with this instrument proved disappoint-

ing, the results, owing to the open air conditions, being no more

consistent than those pre\4ously obtained with the resultant

pressure recorder. The value of C, cited in Chap. YL, is that

given by Langley as determined by the rolling carriage; the

value, however, is substantiallj' the same as that previously

ascertained with the earlier instrument.

§ 238. Langley's Experiments. Summary.—Prof. Langley con-

cludes his account in the Memoir with a summari/. Much of

this deals with the question of the power required for flight,

where naturally the same error is made as elsewhere m the work,

the energy necessary to support in africtionless jinid alone being

taken into account.

It is from no wish to belittle the work of the late Prof.

Langley that attention has so frequently been drawn to the point

at issue. Langley's name will always stand as one of the most

distinguished pioneers of experimental aerodynamics. The whole

of the mis-statements to which attention has been directed hinge

upon the one fundamental error, that of the assumption of the
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negligibility of skin friction ; and if the whole Memoir be prefaced

by the words, "neglecting the influence of skin-friction,'' Langley's

position would be substantially regularised.

Professor Langley's work has, however, been widely read, and

his statements, unqualified as they stand, have been commonly

accepted, and it is therefore impossible in a work of this type to

be too emphatic in denouncing the errors in question.

It would seem probable that the publication of the " Experi-

ments in Aerodynamics" was unduly hastened ; it would otherwise

be difficult to account for the repeated misleading citation of

Newton (pp. 4, 8, 15, 24, 25, 89, and 105), when a moment's

reference to any reliable edition of the Principia would have

prevented any such mistake. Newton dealt with a hypothetical

medium clearly defined in the enunciation to prop, xxxiv., and

not with air at all, and the proposition cited is perfectly sound.

Beyond this the mathematical analysis constituting Appendix

" B " is scarcely convincing. Also the calculation forming the

second footnote, p. 9, the details of which are not given, is

manifestly conducted on insufficient premises. This calculation

purports to be a' theoretical proof of the negligibility of skin-

friction as confirming the supposed experimental result.

So far as the experimental work itself is concerned, apart from

inference, it is undoubtedly the most valuable contribution to our

knowledge that has so far appeared, with the exception perhaps

of the work of Dines already discussed. The general results of

Langley's experiments are entirely confirmatory of the theory set

forth in the present work, but the experiments suggest that we

have in our theory carried the " small angle " hypothesis to

about its limit, and that if we have to deal with angles greater

than those tabulated in Chap. VIII. some correction or refinement

of method may become necessary.

§ 239. Tlie Author's Experiments.—The author has investigated

experimentally many of the problems connected with aerial

flight. The greater part of these investigations relate to the
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subject matter of the later volume, " Aerodouetics," and only

certain experiments having an immediate bearing on the

aerodynamics of flight will be dealt with at the present

juncture.

A method of exp)eriment that the author has used to some

advantage involves the employment of gliding models. Up to

the present time the whole question of the stability of such

models has been but little understood, and it is necessary to

some extent to anticipate the conclusions of the later portion

of the work.

It is currently believed that the equilibrium of a bird in flight

is essentially maintained by the intervention of the brain and

nerve centres, and that an aerodrome or acrodone, in order that

it should possess stability, must be fitted with parts capable of

ready and rapid adjustment, and furnished with some " brain

equivalent," or be immediately directed by an aeronaut. It may
be stated at once that no such provision is necessary, and that a

properly designed rigid structure is capable of maintaining its

own equilibrium, and possesses complete stability within pre-

arranged limits ; and further, that such a rigid structure (or

aerodone) may be designed to automatically simulate many of

the apparently life-like movements of birds in flight or at will

glide steadily at its natural velocit}- at a constant angle of flight

path.

The above are mere bald statements of fact, that will be fully

substantiated in the subsequent volume. The behaviour and

stability of an aerodone in flight will for the present be taken

for granted, an indication of the underlying principles having

been given in § 162 on the Ballasted Aeroplane.

§ 240. Scope of Experiments.—The scope of the present series

of experiments has been in the main confined to the determination

of £ by a variety of methods.

This quantity, which has been frequently stated to be negligible,

is (as has been demonstrated in the present work) one of very
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great moment in relation to the dynamics of flight, and the

determination of f with a reasonable degree of accuracy is

therefore a matter of prime importance.

Incidentally, data are obtained from which other aerodynamic

constants may be deduced, though in this respect the method of

free flight experiment has not furnished as reliable data as may
be expected in the future when more suitable apparatus has been

elaborated.

The various methods employed by the author do not give

results that are altogether in accord, but in view of the extent

of the general disagreement in the work of other investigators,

and in the difficulties of determining ^ in particular, this is in no

way surprising.

Experiment apart, there is a prima facie case for the existence

of a coefficient skin-friction of some considerable magnitude in

the fact that the similar coefficient, as determined by Froude

and others, is, in the case of water, a matter of one per cent, or

thereabouts, and in the fact that the kinematic viscosity of air is

fourteen times as great as that of water.

§ 241. Author's Experiments. Method.—Three modifications of

the free flight method of experiment have been employed ; these

may be enumerated as follows :

—

(1) 21ie Added Surface Method.—In this an aerodone is first

constructed on the lines laid down in patent specification 17935

of 1905 (Fig. 151), the auxiliary surface being made about the

minimum necessary for stability. The natural gliding angle and

velocity are very carefully measured from trial "glides." The

auxiliary surface is then increased by gumming extension laminae

on to the fins, care being taken not to alter the total weight or

the position of the centre of gravity. Further glides are then

made and the angle and velocity are again measured ; the added

resistance is then calculated from the data obtained, and so the

value of the $ is determined.

(2) The Total Surface Method.—An aerodone is constructed of
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Fig. 151.
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special design, Fig. 152, the supporting member being a plane

whose centre of pressure is known from independent experi-

ment. The tail plane is divided into two portions arranged so

as to be as little as possible affected by the wake disturbance

;

this is essential on account of the fact that the angle between the

supporting plane and the tail plane is assumed to be the angle

made by the former by the line of flight. The computation of i

Fig. 152.

is made from gliding data, the whole surface being assumed as

subject to skin-friction, or an allowance may be made in respect of

the supporting plane on the lines laid down in §§ 182, 183 and 184.

(3) The Method of the Ballasted Aeroplane.—Eeference has

already been made to this method (§ 162). A number of planes

are prepared of exactly the same size and total weight, but with

their centres of gravity situated at different distances from

their geometrical centres. Trial flights are made, and the result-

ing data give simultaneous equations from which the values of

the constant may be deduced.
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§ 242. Author's Experiments. Method (continued).—In addition

to the free flight expeiiments enumerated above, an attempt has

been made to effect the direct measurement of ^ by means of a

new instrument, which may be appropriately termed an aero-

dynamic balance.^

The magnitude of ^ as determined by the method of free

flight suggested that, in spite of the failure of previous experi-

menters, it should be quite possible to effect a direct measurement

of this quantity by the aid of a suitably designed appliance.

The aerodynamic balance, Fig. 153, consists of a horizontal

arm or beam A, pivoted about a vertical axis B, the amplitude of

motion permitted being regulated by the screws CC, which also

form electrical contacts.

For the determination of f, a normal plane D is attached to

one end of the beam and a friction plane E to the other, the

areas of the two being adjusted until they exactly balance. The

instrument is used either by being exposed to the wind and

held stationary, or fitted in front of an automobile vehicle in

still air.

In either case the planes require to be carefully balanced

about the vertical axis so that gravitation and inertia forces are

inoperative. When the instrument is held stationary this pre-

caution is unnecessary so long as the axis is exactly vertical, but

it is more convenient to have the instrument properly balanced

in any case. In spite of every precaution, when the instrument

is mounted on a motor car the beam is found to be in a

continual state of oscillation between its stops, probably due to

slight rotational movements of the car body produced by the

unevenness of the road. This difficulty was actually experienced

to so great an extent that the employment of the instrument in

its present form on a motor vehicle was abandoned.^

The uses of the aerodynamic balance obviously are not

^ A prototype of the aerodynamic balance was employed by Dines (see

§49).

^ The difficulty could be overcome by re-designing the apparatus with two

beams having opposite rotary movement. (Comp. § 227.)
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confined to the determination of f ; the instrument may be used

quite generally as a comparator of the resistance of planes of

various shapes or of different solid forms.

§ 243. Method of Added Surface.—Mica Aerodone. Series C,

No. 1, Fig. 154.

Weight (after adjustment of ballast) = '60 gram.

Aerofoil, elliptical, 4| in. X f in. ; actual area = 2-65 sq. in.

Tail plane, area ....-•= '50 ,, ,,

Back-hone, surface -^ 2 = equivalent area . = "48 „ „

Fin area (without added surface) . . . = '14 ,, „

Total area (without added surface) . . . = 3*77 ,, ,,

Added surface ...... 1"06
,, ,,

Sejjt., 1905. Trial of model without added surface.

Launched from 7 ft. Altitude.
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Sept., 1905. Trial of model, ivith added surface.
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Now pressure per sq. ft. in pounds at 11*5 ft./sec. is given by

expression

-7pV^ -7 X -078 X 11-5 X 11-5^= -T~= 32^2 = '^^^

which in grams becomes

•224 X 453-6 = 101-5 grams.

••• f = ^(^1
= -o^i"

The above example is one of several determinations made by

this method. Generally speaking, the flight measurements showed

greater variation than in the example given ; the day of these

experiments was exceptionally calm, and the aerodone used

(No. 1) made a long series of good straight glides without mishap;

a performance which it is not always easy to obtain. Flights of

circular or otherwise curved path need to be rejected.

The results of different series of experiments were found to

give values of f varying from a trifle over -012 to nearly -030 as a

maximum.

Using the value above determined (| = -0214) we may calculate

the total skin resistance of the model employed.

Total area (without added surface)

= 3-77 sq. in. = -0262 sq. ft. or

resistance = -0262 x 101*5 x -021 = '0558 grams.

But total resistance = -1172 grams, hence we may audit

the resistance account for this model as follows :

—

Frictional = -0558

Aerodynamic = -0614

Total . = -1172

A result which appears to be quite consistent, as showing the

model to be approximately designed for the conditions of least

resistance within the limits of experimental error.^ (§ 164.)

1 We may compare the pressure relation of this model with the values laid

down in Table IX., § 185.

2 Z2
Ai"ea (effective) of aerofoil on -^— basis is
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§ 244. Method of Total Surface.—Mica Aerodone. Series E.,

No. I. Fig. 155.

This aerodone was one of a series of models specially designed

for the purpose of measuring ^ hy the method of total surface.

The supporting member is an aeroplane whose angle to the line

ae:rooon£
SERJE5 t.

rail srzE

{The tail planes actually inclined at

an angle = $, are shoivn parallel

to the supporting plane.)

Pig. 155.

of flight is determined by a pair of tail planes whose sole function

is directive. It may be noted that the tail planes are so placed

as to be influenced equally by the downward and upward

20-25 X 2
2-25 sq. in. = -0156 sq. ft.6X3

• r,x • J -6 *+ Qfi - 38-5 X 32-2
or weight earned = .-ttt-^ grams per sq. it. = 3b-o or 45^:^— = ri6

poundals.

Now V = 11-5 or 72 = 132 or P/F^ = ?^ = -0214 against -0286 given

in Table IX.

This difference is not more than might be expected in view of the present

state of knowledge.

376



EXPEEIMENTAL AEEODYNAMICS. §244

components of the terminal vortices, so that no error shall be

introduced by an allowance for the " downthrow current," as

would be necessary were the tail plane situated in the ordinary

position (Fig. 151).

Weight '24 grams.

Area 1-125

+ 1-030

4- -490

= 2*645 sq. in.

Angle of aeroplane i^.

Flight Data.
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A further trial with this model, repaired after damage, gave a

value of £= •025. The cause of this divergence was not ascertained.

Model No. 2. Series E. (Fig. 156).—Trials with this model

gave the result ^ = about '03. This value is probably too high.

The weather was unfavourable, and the weight of the model

(1'66 grams) proved too great for the method of construction

;

frequent repairs had to be made in the course of a single series

of experiments.

Model No. 3. Series E. (Fig. 152), Construction.—Aeroplane

and fins, varnished cedar. Tail planes, mica plates. Body,

cedar, ballasted with lead.

Weight = 46-3 grams = -102 lbs.

Ai'ea—
Aeroplane 44

Tail plane 13

Fins . 12-4

Body . 3-25

72-65 sq. in.

= -504 sq. ft.

Angle of aeroplane (13), = ji

Preliminary Trial,

altitude.

Aerodone launched by hand, 13 ft. 6 in.

Flight Data.^
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Whence tan y =^ = '33 or y = 18^° sin y = -313.

Kesistance in line of flight

= W sin y = -102 X -313 = "032 lbs.

Aerodynamic resistance

•109
= ir^ =^ = -005 „

Skin resistance

027

= -027

or per sq. ft. =
•504

= "0536 (pounds)

= 1"725 poundals.

But the normal plane reaction,

P = -7 X -078 X 32 X 32 = 55-8 (poundals)

or ^=.^ = -0309
55 8

It was evident in the course of the above trial that sufficient

velocity was not being given to the aerodone, that is to

say, its projected velocity was less than its natural velocity

and that the necessary velocity could not be given by hand

throwing without sacrificing accuracy.^ A further series of

trials made with a catapult launching device gave data as

follows :

—

Aerodone launched from 20 feet altitude.
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Whence, V = 36 ft./sec. tan y = '246 or y - 13° - 50'

or sin y = "239.

Eesistance in line of flight

= W sin y = -102 x '239 = '0244

Aerodynamic resistance

•109
= Wl3 = ^= -0050

.•. Skin resistance (Ihs.) . . . = '0194

or in poundals per sq. ft.

•0194 X 32-2 , „,= ^ 1*24
•504

But normal plane reaction at 36 ft./sec. (poundals),

P = -7 X -078 X 36 X 36 = 71

If we make an allowance in respect of the aeroplane in

accordance with §§ 182, 183, and 184, deducting half the area,

we have, 72-65 - 22 = 50-65 sq. in. = -351 sq. ft. in lieu of

•504 as above. Or skin resistance in poundals per sq. ft.

•0194 X 32^2

•351
= 1-78

.-. ^=^ = ^025

In the case of an aerodone having a natural velocity as high

as 36 ft./sec, it is impossible to be sure, in so short a flight as

65 feet, that the true natural velocity and gliding angle are

recorded ; in a short flight the launching velocity and angle have

a serious influence on the flight path.

If the altitude of discharge could be increased to 50 feet or

thereabouts, with a flight path of some 200 feet length, this

difiiculty would be overcome, or at least its importance would be

reduced to a negligible quantity.^

1 The author had intended repeating these experiments under more

favourable circumstances, but the difficulty of hitting the right weather

conditions, at an appointed place, away from home, at a time that is otherwise

convenient, has hitherto proved insuperable.
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§ 245. The Method of the Ballasted Aeroplane.—The method

of the ballasted aeroplane not only permits of the determina-

tion of the coefficient of skin-friction but simultaneously

provides data from which the constant c and the relation

between the angle and centre of pressure of the aeroplane may
be calculated.

The following examples will serve for the purposes of illus-

tration. A standard form of aeroplane has been employed

throughout (Fig. 109), measuring 8 in. by 2 in., and ballasted

by a lead shot presenting a resistance taken as equivalent to

•025 sq. in. of normal plane. The weights of different planes

employed for any given series of experiments are all brought up

to the same amount by gumming lead-foil in the region of the

centre of gravity, the only difference between the different

planes of a series being the position of the centre of gravity,

and therefore the position of the centre of pressure, and

consequently the angle of equilibrium.

The launching of the planes was in all cases effected by

means of a launching stick, the aeroplane being placed on a

small platten on the top of a straight stick, the lower end of

which is held about shoulder high, the act of launching being

accomplished by swaying the body so as to give an approximately

parallel motion. A certain degree of skill is easily acquired, and

a reasonable percentage of good straight flights may be obtained

without difficulty.

Example,

Two planes, weight 5^ grams ('372 poundals).

Launching data.

Velocity. 7-5 ft. Altitude.

No. 1

No. 2

15 ft./sec.

12-5 ft./sec.

47 ft. mean glide.

<j5 it. ,, ,,
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Or, Ti = 15 ft./sec.

T'^2 = 12'o ft./sec.

y,= ''^ = -160 1

xi + i/i = -160 X 5-25 = -84 (1)

X2 + m — •214 X 5-2o = 1-12 (2)

Now we know that x = n V^ and // = ^^ where n and m are

constants,

or, xi = IS^H, yi = j^ (3)

X2 = ]2-52», 7/2 = ^^2 (4)

Bv (1) and (3) 15hi + -^o = -84 (5)
lo

„ (2) „ (4) 12-52n +^ = 1-12 (6)

(•84 - 15^) X 152

12-5

156 n - 325 n = 1*12 - 1-21

or, 169 " = -09

n = -000532

or, .r = -000532 T^^ gi-ams.

144 3'^-2
multiplying bj^-^^to obtain ^Ya.m.s per square foot, and by —^—

to convert to British absolute units, we have

—

V^ X -000532 X -^ X -^^ = -00034 V^
lb 453*6

But normal plane pressure is given by expression

—

P,o = C p V^

, -00034 -00034 ^^^^

In the foregoing calculation no allowance has been made for

^ In these experiments the hY]iothesis of the smaU angle is taken as applying

to y values
; y is expressed in radians.
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the direct resistance of the ballast. Taking this as the equiva-

lent of a normal plane area of '025 sq. in., or '000174 sq. ft., and

144
multiplying by j^ to bring up to a ^er sq. ft. basis, we have

•00156, or resistance per sq. ft. due to ballast

= -00156 C pV^

•00034 - -00156 C p
or ^ =

-00034

7 X -078

Cp

- -00156 = -0062 - -0015

^ = -0047

Again,

Two planes, weight 5-9 grams (-418 poundals).

No. 3

No. 4

e.g. distance from
front edge.

25%
30%

Velocity.

17 ft./sec.

13 ft./sec.

8 ft. altitude.

54 ft.

37-5 ft.

or, Fg = 17 ft./sec.

Fi = 13 ft./sec.

74 = 8 = -213
37-5

JC3 + 2/3 = -148 X 5-9 = -875

Xi -\- yi = -213 X 5-9 = 1*26

xs = 17^ n, 2/3
= m

m
x^ = 13^ n, 2/4 =:

By (1) and (3)

„ (2) „ (4) 132 n + ^

13-2

ir n + -^= -875

132 n + ^^ 1-26

(1)

(2)

(3)

(4)

(5)

(6)
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132,, + "'"'-tU'" "^ '' = 1-26
(•875 -JJ2,,) X 172

.-. 169 u - 494 n = 1-26 - 1-495

or, 325 n = -235

7^ = -000724

or, X = -000724 V^ grams.

or, in poundals per square foot

144 392
•000724 X^ X T^n = -000461

lb 453 D

f = -OOO^S' _ .0015
^ -7 X -078

= -0085 - -0015 = -007

the deduction -0015 being made, as in the last example, for ballast

resistance.

Determination of constant c.

W
W = A P^ = A c 13 P = A c (3 C p V^

P 90

or, ^ =

but, y = W ^

Ac C pV^

Ac C p V

and, y =

m =

or, c =

Y2

A c C p

A m X -0546

all quantities in absolute units.

Thus, for the determination of c in any particular case the

value of m must first be obtained from the equations, the

remaining quantities in the ex^Dression A and W being the area

(sq. ft.) and weight (poundals) of the aeroplanes employed.

Examine.—Planes 1 and 2.

Flight data as given.

By (5) m = 15^ (-84 - 15^ n)

where n = -000532

A.F, 385 c c
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or, m = (225 X -84) - (225 X'llQT)

= 189 - 26-9

= 162-1

This is the value of m for // expressed in grams ; for y in

poundals this becomes

—

m = 11-5

and for the aeroj^lanes in question,

A = -111 and W = -372

. , - ^72^ - 1-98
•

•

-111 X 11-5 X -0546 - ^ ^°

This is about the vakie as determined directly by Duchemin,

Dines and Langley for the square plane ; it is probably too low

for a plane of n = 4 as used in these experiments.

Example.—Planes 3 and 4.

m = 17^ X (-875 - IV n)

where n = -000724

whence m = 192-5

or, when absolute units are employed, m = 13-6.

^ = -111 TF='418.

_ -418 X -418 ^
• • '^ -111 X 13-6 X -0546

a result which is still probably less than the true value.

Calculation of /3.

y m
r" — TJ/ — Tf/ T^2

Taking planes 3 and 4.

Plane No. 3.

or,

Plane No. 4.

^ =wfk = ''' ^° = "!
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Plotting these results on the basis of § 148 for the known

positions of centre of pressure for these planes, we have diagram

Fig. 157.

The divergence shown in the above determinations is largely

due to the temporary and insufficient character of the appa-

ratus employed, and to the fact that for want of suitable

accommodation the experiments were conducted out of doors.

It is further possible that the considerations raised in §§ 182,

183, to some extent invalidate the present method. So long as

the type of fluid motion in the periptery of the aeroplane is

frankly discontinuous the method will in theory give consistent

results, but so soon as the live stream touches the uj^per surface

.O "f 'Z -3 -4 '5

I T

^•--'^v.

Fig. 157.

of the plane, as it must do when the angle becomes very small,

the area subject to skin-friction will increase in some way as an

inverse function of the angle, and the equation x ^= nV^ will

cease to hold good. We may consequently anticipate that when

the angle ji becomes less than some critical value the curve will

cease to be of the form plotted in Fig. 112, and the present

method will break down. It is principally for this reason that

the author has confined his observations to the low velocity

portion of the curve ; it will be time enough to carry these obser-

vations further when better launching and measuring api^liances

have been developed.

§ 246. Determination of ^ by the Aerod3mamic Balance.—In the

determination of f by the aerodynamic balance, one arm of the

beam A, Fig. 153, is furnished with a lead block D, Fig. 158,

whose sectional form is an isosceles triangle, the base of which
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is formed by the face in presentation, being the normal plane

the pressure on which constitutes a measure of the reaction on

rh-

(ET^^^:= --_L-

FRo/^r etevATiofv. SECTION.

Fig. 158.

the friction plane. The area of the normal plane can be ex-

tended at will by cementing a mica plate to its face, the edges of

which are clipped until exact balance is obtained.

(E>-

K
J

L

Fig. 159.

^-_T^_.

The opposite arm of the beam carries the friction plane E
(Fig. 169) ; this is carefully formed of cedar of 6 mm. maximum
thickness, the grain being well filled and served with a thin coat

of varnish, or otherwise finished as may be required. The

friction plane is carried on a holder formed by two pen steel
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plates J riveted to a shank K which fits into a socket in the

balance arm A (Fig. 158) being secured by a set screw L.

In making any determination the area of the normal plane is

adjusted until the beam is in equilibrium. The coefficient of

skin-friction f is then calculated from the relation of the areas

of the normal and friction planes multiplied by their respective

distances from the pivot axis.

Determination, June 19th, 1907, Cobley Hill, Alvechurch.

Wind velocity (estimated) 20 to 40 miles j)er hour.^

Friction plane No. 1, cedar shellac varnished and roughly

polished. In pterygoid aspect.
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experiment, the effective value of f is approximately "09, with a

probable error of less than 10 per cent, jjlti-s or minus.

Rowihcned surfaces. June 23rcl, 1907 (later).

Wind, as before.

Friction ijlane, covered Oakey's No. 2J glass paper.
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principles discussed in §§ 182, 183, and 184, may actually result

in a diminution in the tangential reaction.

§ 247. Author's Experiments. Summary.—The experiments

described in the preceding sections are quite convincing from a

qualitative point of view, although quantitatively speaking the

results are inconclusive.

Any and all of the methods described should be capable of

giving results of a reasonable degree of accuracy—far more so

than at present achieved

—

and the results so obtained should

be in closer accord, one with another, than the author has so far

been able to demonstrate.

The deficiency in the present experiments is chiefly that of

apparatus and opportunity. The launching of free flight models

requires a suitable apparatus to be designed, by which the

initial velocity shall be placed under definite control; beyond

this it must be considered quite essential, if reliable results are

required, that experiments should be conducted inside a build-

ing ; the absolute calm necessary for aerodj-namic determinations

is so rare a phenomenon as to render outdoor experiment

almost impossible. It is only those who have watched and

waited for a really calm day who can fully appreciate its rarity.

In repeating these experiments it would be well to arrange for

the use of a large hall, well secured against draughts ; the equi-

librium of low velocity models, such as it is necessary to employ,

is very sensitive ; even the previous motion of a person across

the line of flight will afiect the gliding path. High velocity

models, although possessing greater stability, are not well suited

to the determination of aerodynamic data.

The author's conclusions as to the value of £ have been

given in § 157. Some of the exj)eriments here recorded have

been made since these conclusions were formulated, but the

dift'erences are not such as to render revision necessary.

In brief, it would appear that under all practical conditions

the coeflicient of skin-friction lies between the values '01 and
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•03, rarely being less than the former or greater than the

latter.

It is, perhaps, of some interest to record the fact that for air

in motion in a pipe the accepted resistance coefficient gives, on

the present basis of computation {i.e., for a double surface in

terms of the pressure on a normal plane of equal area), a value

of £ = -016, which is in substantial agreement with the present

conclusions, in spite of the totally different conditions that

obtain.

The author considers that the method of the ballasted aero-

plane has not at present had a fair chance of showing its

capabilities. The method is one that demands considerable

nicety of manipulation. In the absence of any mechanical launch-

ing device, it is quite easy to obtain faulty data if any but

straight uniform glides are recorded, and if such data are

utilised it is as likely as not the values of the constants deduced

will be wide of the mark, even negative values being sometimes

obtained. The method is one of which the advantages have

only very recently impressed themselves on the author, and time

and opportunity have been at present lacking to carry out

more than a few rough preliminary experiments. The present

publication, in this respect, must therefore be regarded more in

the light of an exposition of method than a serious experimental

demonstration.
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Aerofoil (Author), from the Greek a^pos and (i>v\Xov, lit. an

air-leaf. Denoting the organ of sustentation of an aerodone

or aerodrome, or the spread wings of a bird, A supporting

member (or members collectively) of undefined form ; thus

pterygoid aerofoil, an aerofoil of wing-like form
;

plane

aerofoil, an aeroplane, etc., §§ 112, 128, 172.

Aerodone (x\uthor), from the Greek a.€po-h6i-rjTos , lit, tossed in

mid air ; soaring. To denote a gliding or soaring model or

machine ; in particular, any gliding or soaring appliance

destitute of propelling apparatus or auxiliary parts ; in

contradistinction to aerodrome.

Aerodonetics (Author, see aerodone). The science specifically

involved in problems connected with the stability or

equilibrium of an aerodone or aerodrome, or of birds in

flight, and with the phenomenon of soaring. Equivalent

to Aerodromics, as proposed by Langley (p. vi. footnote 1).

Aerodrome (Langley), from the Greek aepo-bpoixus, lit. traversing

the air; an air rioiner ; originally proposed to denote a

gliding or soaring model or machine, or a flying machine

of any kind. Restricted by the author to the latter significa-

tion; a fully -developed flying appliance; a power-propelled

aerodone, or an aerodone furnished with directive apparatus.

Something more t]ta)i sinqde aerodone. (Preface, p. v.,

footnote.)

Aerodromics (Langlej^; see aerodrome), originally proposed to

denote the science concerned in the equilibrium, etc., of

an aerodrome ; equivalent to aerodonetics as used by the

author. Proposed to be extended by the author to include

the aerodynamics and aerodonetics of flight. The whole
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science concerned with the flight of an aerodrome. Thus

the present work may be entitled a Treatise on Aerodromics,

and the whole subject of aerial flight would be dealt with

at a College or University by a lecturer or professor of

Aerodromics.

Apteeoid (Author), from the Greek a, iiT^pov and ei8os, the

converse of literygoid. Thus apteroid aspect, with the

greater dimension arranged in the direction of flight

;

(the reverse to that which obtains in the wing plan-form

of birds), §§ 150, 151.

Aspect (Diet.), proposed by Langley in its present usage to

denote the arrangement of the plan-form of an aeroplane,

or other aerofoil, in relation to the direction of flight, § 144.

Ichthyoid (Diet.), fish-shaped, here applied to denote a body of

practical stream-line form, § 9.

Periptekal. See Periptery.

Peripteroid. See Periptery.

Periptery (Diet.), proposed by the author in its present usage

as denoting the region round about the wing or in the

vicinity of the aerofoil (Greek, Trept and irrepov), § 107.

Hence j^eripteral, as in p)eripteral theory (Ch. 4), peripteral

area, § 210 ;
peripteral zone, § 210

;
peripteral motion, § 126

{see also footnote 2, p. viii., Preface). Hence also peripteroid

motion, § 122 (Greek, -n-ept, irrepov and eiSos), the form of flow

proper to the inviseid fluid in a doubly connected region,

resulting from the superposition of a cyclic motion on one

of translation. Eesembling the motion in the pieriptery,

lit. round-about-the-iving-like.

Pterygoid (Diet.), icing like. Hence pterygoid aspect, with the

lesser dimension in the direction of flight, as in the wing

plan-form of a bird, § 152.

Sweep (Diet.), proposed by the author in its present usage to

denote the cross-sectional area of the stratum of fluid,

supposed by hypothesis to be that to whose inertia the

supporting reaction is due, § 160.
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INFLUENCE OF COMPRESSIBILITY OF AIR ON THE
ENERGY EXPENDED IN FLIGHT.^

The influence of compressibility as affecting the expenditure

of energy in flight is best computed from the velocity of wave

motion—sound.

The whole theory of Chapter VIIL, based on the hypothesis of

constant sweep, relates, strictly speaking, as set forth, to the

incompressible fluid ; it will be shown that the effects of com-

pressibility can be dealt with as a correction, or rather by a

preliminary correction, to the figures involved.

Let us write U for the velocity of sound, and, as before, let T"be

the velocity of flight. Then it is evident that any disturbance

will travel forward relatively to the body in flight less rapidly

than it will travel backward in the opposite direction in the

relation -

^, y, as in the case of " Doppler's principle," Now,

regarding the fluid motion as due to afield of force (Chapter IV.,

§ 113), we have the communication of upward momentum
diminished, and the communication of downward momentum
increased, in like proportion.

Thus in the ideal case of Chapter IV., if we have to deal with

a compressible fluid, an expenditure of power becomes necessary

1 The method here given is fouuded ou a suggestion made by the author

in his paper to the Birmingham Natural History and Philosophical Society

in 1894. Owing to repeated rearrangements and revisions, it was accidentally

omitted from the MS. of the present work.
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in accordance with a regime ei = y^——.-,. (1)

(Compare § 172 et seq.)

In the extreme case when T" becomes equal to Uno disturbance

can precede the aerofoil in its flight, and the whole reaction will

be due to the communication of downward momentum ; the cyclic

component in the peripteral system vanishes. In the above

expression when V = U, ei = zero, which leads to the same

conclusion.

Let us take the e of Chapter VIII. to be the e proper to an

incompressible Huid, and let the symbol emploj^ed above, e^, be the

corresponding value when U is the velocity of sound. Then from

the foregoing reasoning we have

—

.. = ^.. (2)

This expression is in harmony with equation (1), which relates

to the special case where e = unity.

Example.—Dealing with the highest result tabulated, i.e.,

80 ft. sec, and taking U = 1120,

_ 1120^ 80 _ 13 .

^^ ~ 1120 + 80 ^ ~ 15 ^ '

that is to say, for the velocity stated the value of e employed in

Chapter VIII. is too high in the relation 15/13.

But it is evident from the whole argument of Chapter VIII.

that the constant e is not the only one of the constants involved in

the equations affected by the compressibility of air. In fact, from

the reasoning employed (§§ 161, 172 et seq.) it would appear

that the constants c and k will also be affected, and we may

fairly make the assumption^ that the constants will remain

related in accordance with the equation of § 177, and that con-

sequently we may regard the influence of compressibility as

degrading the effective value of n from its actual value to a less

value in the proportion required by equation (2).

Thus in the case under discussion, if we have to deal with an

1 The method is evidently no more than an approximation.
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aerofoil whose n = 12, ^ve find by Table IV. e = '75. Taking

13/15ths of this, we have e = '65, which the table shows corre-

sponds to n = 7. That is to say (assuming the accuracy of these

" plausible values "), for a speed of ilight of 80 feet a second the

corrected values for an aerofoil of aspect ratio n = 12 can be

read from the various tables by taking the equivalent aspect

ratio n = 7.
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A NOTE ON THE COMMUNICATION OF MOMENTUM AND
ON THE VELOCITY AND MOMENTUM OF SOUND.

The " Principle of No Momentum," enunciated as a proposition

in § 5 of the present work, constitutes so far as the author is

aware an innovation in the treatment of problems in fluid

dynamics.

The proof of this proposition, indeed the principle itself, is so

perfectly simple and obvious, that it is not without some hesita-

tion that it is put forward as new. The consideration of the

following examples, involving the simple application of the

principle, and leading to results which certainly are not

generally recognised, would seem to leave no doubt as to the

fact.

Example 1.—The Vortex Atom Theory of Kelvin gives consider-

able trouble in the light of the Principle of No Momentum.

If the fluid be supposed incompressible and of uniform density

in its parts, and if we suppose for example a single vortex ring

in motion in a rigidly bounded region,^ it manifestly cannot

carry momentum (§5), and equally the momentum of a number

of such rings must be zero. It is of course possible that such a

ring or number of rings may raise the peripheral pressure of the

region, that is, the pressure on the walls of the enclosure, but the

case of an incompressible fluid and a rigid enclosure is in this

respect an indeterminate problem. Thus if, still regarding

1 The mixed nature of the conception of vortex atoms in a non-atomic

enclosure is possibly responsible for the difficulty pointed out. The enclosure,

to carry a vortex atom theory to its logical conclusion, should itself consist

of an entanglement of vortex rings or filaments.
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the fluid as incompressible, we suppose the enclosure to possess

some degree of elasticity so as to exert on the fluid a pressure

sufficient to prevent cavitation, then the peripheral pressure will

undergo no change in consequence of the vortices, for a change

of pressure on the walls of an elastic enclosure must be accom-

panied by a compression or dilatation of the fluid contents.

Under these conditions the greater the energy of the vortex

system set up in the fluid the lower will become the pressure in

the internal part of the region, so that the plus and minus

momentum of the equal and opposite flow taking place across

any imaginary barrier plane is accounted for by the ordinary

static pressure on the confines of the region, and does not give

rise to any added pressure.^

If we suppose the enclosure rigid and the fluid elastic, the

change of pressure due to the vortices on the boundary walls

depends upon the Imv of elasticity, and is not a function of the

magnitude or energy of the vortex system alone.

The result of the above reasoning is not at all in harmony

with accepted views as to the behaviour of vortices as expounded

in the Vortex Atom theory.^ According to the highest

authorities the individual vortices carry momentum just as if

they were bodies of greater density than the fluid that contains

^ The author has heard it argued that every stream of fluid passing any
imaginary barrier plane carries momentum across that plane, and therefore

must result in added pressiu'e between the fluid and the enclosure. Such an

argument is evidently unsound ; on the fluid tension hypothesis (§ 82) we
may regard these internal motions of the fluid as giving rise to tension across

the barrier plane, and this tension is equal and opposite to the momentum
per unit time transmitted by every current and counter current set up in the

fluid, and on the principles discussed in §§ 81, 82, and 83; this applies not

only for the whole region, but individually for every small element of the

fluid cut by the imaginary plane. Interpreting in the usual way, we see that

it is the ordinary hydrostatic pressure on the walls of the enclosure that

supplies the necessary force to balance the momentum transferred per second,

and that a diminution of pressure in the vicinity of the barrier arises

automatically, precisely equivalent to the momentum transference taking

place.

2 Nature, xxiv., p. 47, also " Motion of Vortex Eings," J. J. Thomson.
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them, instead of being, according to hypothesis, composed of the

fluid itself and therefore of the same density. It is not possible

in the present work to go fully into the cause of this discrepancy

which the author believes to be due to the mathematical theory

regarding the vortex ring, as the result of an impulse distributed

evenly over the disc area, instead of as the resultant of two equal

and opposite impulses, the one applied over the disc area and

the other to the confines of the fluid region. This is merely

thrown out as a suggestion, but whatever the explanation may

be, the case of a vortex ring travelling to and fro in a rigidly

bounded region filled with incompressible fluid and carrying

momentum is presented for consideration to the exponents of the

Vortex Atom Theory as involving a flagrant violation of the

third law of motion.

Example 2.

—

Momentum of Sound Waves.—This is a question

that has been widely discussed of recent years, and one on

which difi"erent authorities are not altogether in agreement.^

If we take it as essential by definition that the passage of a

complete wave or train of waves results in no permanent dis-

placement of the particles of the fluid, that is to say, that each

particle of the fluid occupies after the passage of the wave

train the same position as before its passage,^ it immedi-

ately follows that the mean density of the wave train is equal

to that of the undisturbed fluid.^

It is therefore evident (as in § 5) that if such a wave train be

supposed to travel to and fro in a box (Fig. 160), from end to end,

being repeatedly reflected, no movement of the mass centre of

1 Compare Poynting, Presidential Address, Physical Society, February

10th, 1905, with Eayleigh, Phil. Mag., vol. x., pp. 364, 374, September,

1905.

2 If this condition is infringed, the motion is obviously not pure wave

motion, but comprises a superposed translation.

3 This is evident, for if A B C be three equidistant points on the line of

propagation, the fluid in the regions A B and B C will be identically the

same when the wave train has passed from the region A B into the

region B C.
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the fluid within the box, i.e., relatively to the box, can take place,

and hence such a wave train possesses no momentam.

It follows that if the wave train have an excess of comj)ression

or rarefaction so that its mean density is greater or less than that

of the undisturbed fluid (the condition of the particles returning

to their initial positions being departed from), momentum will be

carried positive or negative, as the case may be, exactly as repre-

sented by the excess or deficit of density in the wave train.

Thus the momentum carried by any sound wave is a measure

of and is measured by the displacement of matter by that sound

wave, and if the displacement is zero the momentum is zero.^

The question of momentum carried by wave motion is fre-

^
'^

i t{-

Fig. 160.

quently regarded from the point of view of pressure developed,

that is, the pressure produced in the fluid by the communication

of momentum at reflection etc. This point of view is not without

interest.

P
Taking first the case of a gas obeying Boyle's law, i.e., — =z

constant ; the mean ijvcssure of the whole of the space can undergo

no change, for Pjp is constant for each small element through-

out the region, and the integration of p being constant (since

the whole mass of fluid in the enclosure is unchanged), the

integration of P throughout the enclosure is also unchanged.

^ There is some want of harmony between this result and the conclusions

of many eminent authorities, see Larmor, Encycl. Brit., xxxii., p. 121 b
;

Eayleigh, Phil. Mag., vol. iii., p. 338, 1902; and Poynting, I.e. ante. Eay-

leigh has amended his conclusions somewhat in a subsequent communication,

I.e. ante.

A.F. 401 D D
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Now it b}' no means follows that the mean pressm'e throughout

the region is the same as the mean pressure on the walls of the

enclosure; in fact, we know from hydrodynamic principles that

in many cases of fluid motion it is not so. In the case in

point, however, it is manifest that the mean pressure is the

same whether the integration is taken over the surface or

throughout the volume, for (Fig. 160) the pressure on the

walls of the box is point for point the same as for any surface

parallel to these walls passing longitudinally through the region,

and the pressure on the ends is of the same mean value, for the

velocity of sound can be correctl}' computed on this basis. -^ It is

therefore evident that for a fluid obeying Boyle's law the existence

of wave motion does not give rise to any change of pressure.

Under these circumstances it follows that change of pres-

sure will take place in a region containing an ordinary gas

{P j
p"^ = constant), the magnitude of which can be calculated

from the energy of wave motion that passes into, and exists in,

the thermodynamic system.-

1 See Addeudum A.
^ If heat be added to a quantity of a perfect gas contained witliin an enclo-

sui-e, the consequent rise of pressure is due to the quantity of heat added and

is independent of its distribution. "When wave motion exists in such a gas,

heat is abstracted where the gas is rarefied and added where the gas is com-

pressed, but more heat is added than subtracted ; the difference represents

the work done, according to well-known thermodynamic piinciples. We
can therefore look upon the adiabatic wave as a Boyle's law wave in which

heat has been added to one part and abstracted from another part, but in sum
an addition of heat has been made to the contents of the enclosui'e, and the

mean pressui'e increase can be calculated therefrom.

The fact that the distribution of added heat within a vessel does not affect

the pressui'e increase has been taken advantage of by the author (1894) in

the construction of an air calorimeter, a small quantity of gas whose calorific

value is to be detenniued being burnt in a large vessel and the rise of

pressure noted (see Addendum C). For mechanical reasons the appliance

was not a success.

The result that the pressui'e due to an adiabatic wave can be deduced from

the energy entering into the thermodynamic system appears to have been

reached independently by Lord Eayleigh.
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There is much confuaiou of thought at the present time on

the question of the carrying of momentinu b}' a wave train and

the generation of pressure in a fluid region occupied by wave

motion. This has probably arisen from too close attention

being paid to the special case of a continuous wave train, as in

the Kundt's tube.

It is much more difficult to distinguish between direct

momentum transference by the wave and momentum trans-

ference by the pressure generated by the wave, in the case of

the Kundt's tube, where the whole region is occupied by wave

motion than in the case of a limited wave train passing to

and fro.

Thus in the case of a limited wave train, if it carry momentum,

that momentum can be represented by some definite value

of niv, and the remainder of the system with which the wave

is associated must, relatively to the common mass centre, have

an equal and opposite momentum at every instant of time.

But a self-contained system consisting of a simple enclosure

containing fluid of uniform mean density (regarding the

individual waves of the train as small) cannot sufl'er change

of momentum without infringing the third law of motion

;

consequently the wave train (if of the same mean density as

the quiescent fluid) cannot carry momentum. This is in eflect

the argument of § 5.

In the case of the continuous train, as in the Kundt's tube,

we lose touch with this method of argument, for the action is

continuous, and a pressure increase can only be distinguished

from the true carrying of momentum by the wave train by a

process of mathematical analysis that is full of pitfalls.^

The case of light pressure, or the carrying of momentum by

electro-magnetic radiation, is not a problem in ordinary

dynamics, and is untouched by a purely dynamical argument

or method of demonstration such as here employed. The

reason for this fundamental distinction is that when motions

1 Poyuting, Pres. Add., Pliys. Soc, 1905, p. 397.
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of the all-pervading ether are essentially involved, such a term

as a self-contained system ceases to have any signification.

There is only one self-contained system known to us—the

Universe.

From another point of view we know that according to

modern theory the momentum of any finite quantity of matter,

lioivever small, moving with the velocity of light is infinite ^

;

consequently a finite quantity of momentum will be carried at

this velocity by a quantity of matter smaller than can be

expressed in finite units, or, physically speaking, communication

of momentum at the velocity of light becomes independent of

the displacement or transference of matter. Thus the present

application of the principle of no momentum is in no way

antagonistic to modern views and discovery as to the trans-

ference of momentum by light and other manifestations of

electric radiation.

ADDENDUM A.

Assuming Boyle's law, let us examine the case of an isolated

compression wave travelling to and fro in a prismatic box of

unit cross section and length = I. Let the mass of the fluid in

this wave, in excess of the normal contents of the region it occupies,

be m.

Now since the wave carries an excess of fluid it will carry

momentum, and this momentum will be represented by the

mass m transported with the velocity of wave propagation, which

we denote by the symbol U.

And the presence of this excess of fluid in the enclosure will

raise the mean pressure throughout the enclosure to the same

extent as if it were uniformly diffused. (This has already been

demonstrated.)

The proposition is to show that the pressure increase due to

1 J. J. Thomson, "Electricity and Matter," Ch, IT., p. 44.
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the wave on the ends of the enclosure is equal to the mean

pressure increase throughout the enclosure.

The proof of the proposition rests in showing that the velocity

of sound can be correctly calculated by the assumption of the

proposition as hyj^othesis.

Thus the compression wave will be in equilibrium when its

rate of communication of momentum to the ends of the enclosure

is equal to the added pressure.

Momentum of wave ^= mU.

„ communicated by each reflexion = ^mU.

Number of reflexions per second . . • = s~7

m U^
.'. force due to momentum of wave . . = —j- (1)

Let Pi be the mean pressure exerted by the additional mass

m distributed throughout the enclosure ; then, by Boyle's law,

— = k, where k is a constant,
P

(2)

and
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treated, as a matter of ordinary dynamics, it is evident that it

is the displacement of matter (if any) that gives rise to the

momentum of a wave, and it is the momentum of the wave that

gives rise to the pressure at reflection, and by equating the two,

as has been done in the foregoing demonstration, we have the

simplest known method of obtaining the expression for the

velocity of sound.

The nature of the flaw in Larmor's theorem is discussed in

Addendum B of the present Appendix.

The simplicity of the present method of the determination of

the velocity of sound is largely due to the form in which Boyle's

law is presented. It is usual to write the isothermal law (Boyle's

law), for a perfect gas PV = constant; noW' this presumes mass

constant. It would be quite as correct to write Pjni = constant,

taking the volume to remain unchanged. It is obviously best

to include both mass and volume as variables and write

P/p z= constant, as has been done.

The present method has much in its favour. The argument

not only covers waves of small amplitude, but waves of any

amplitude and any form ; we may regard a wave in a fluid

obeying Boyle's law as built up of a number of superposed

elements, each of which conforms to the pressure-momentum

equation giving the same value of U for each element alone or

in superposition. Consequently waves in a fluid obeying Boyle's

law have no tendency to travel faster in one part than in another

part ; their form is permanent and velocity uniform.

In Poynting and Thomson's " Sound," a method is given for

the theoretical determination of the velocity of sound, on the

assumption that the pressure changes are proportional to the

volume changes, and the usual well-known expression

-V![/ = A. /— is obtained. A foot-note is given in connection with
P

this demonstration, as follows :

—

" If the pressure changes are too considerable to justify the

" assumption that they are proportional to the volume changes,
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" we may regard the variation from proportionality as an external

" force represented by X Thus in a wave of very considerable

*' displacement and pressure excess, A7(P m— P,y) can be shown

" to be positive, and U is greater than the value in (5), This

" agrees with certain experimental results given below."

The suggestion here appears to be that the straight line trace

in the PV diagram (which is the equivalent of the Poynting

and Thomson hypothesis) is essential to the rigid application

of theory for waves of sen-

sible magnitude. This is /^
contrary to the result here

obtained, and surely must

be incorrect. A gas obeying

Boyle's law according to

these authorities would share

with the real gas the muta-

bility of wave form conse-

quent on the adiabatic law.

According to the present

author the straight line

diagram is to be found in

the plotting of P and p for

Boyle's law, Fig. 161 a,

which corresponds to the

hyperbola for the PV
diagram; and this straight line diagram is the looked-for analogue

of the isochronous pendulum.

If we plot the analogous form of the adiabatic law, Pjp =
constant, Fig. 161 h, we no longer have a straight line diagram,

but for small amplitude we may approximate by drawing a

tangent EF' cutting the axis of y at F, We may regard the

point F as a new origin which will give the pressures proper

to the limited portion of the curve approximated on the Boyle's

law basis. From geometrical considerations we have ylO to

AF in the relation 1 is to y, the relation of the real to the
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fictitious pressure of the gas ; this at once gives us Laplace's

correction.

In this case the assumption is obviously that the amplitude

is small, for otherwise the tangent EF no longer approximates

sufficiently to the actual curve.

The rationale of Laplace's correction may also be studied

from the direct examination of the conditions. If we suppose

in an adiabatic gas that a small isolated compression wave be

constrained to move with the velocity proper to the gas obeying

Boyle's law, the pressure during the reflection of the wave will

be in excess of the momentum the wave communicates, to

the extent that an adiabatic compression pressure is greater

than the Boyle's law pressure for a given change of density.

For small amplitude this is in the relation of y to unity.

Obviously the wave must travel faster to supply the momentum

necessary to equalise, and since the momentum communicated

per unit time varies as the square of the velocity, the velocity

must be multiplied by Jy.

The question of the behaviour of an adiabatic wave of sensible

amplitude is one of great complication that yet awaits a general

solution. The compression regions are always endeavouring

to move faster and the rarefaction regions slower than the mean

velocity. From the present standpoint this is evidently due to

the pressure increase becoming proportionately greater than the

density increase (Fig. 161), and vice versa, thus destroying the

necessary balance between the pressure reaction and the com-

munication of momentum by which it is maintained. The more

usual and equally correct point of view is to attribute the differ-

ence of velocity of different portions of the wave to the difference

of temperature of its parts.

Where we have a train of waves in a gas following the

adiabatic law, it has been shown that there must be a pressure

increase due to the energy that enters the thermodynamic

system. Where the train is continuous, as in the Kundt's tube,

no complication arises from this cause, but where we are dealing
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with a limited train, it is difficult to see in what manner this

pressm'e can be confined to the region occupied by the wave

train ; according to thermodynamic principles it must be dis-

tributed uniformly and press equally in every direction. If this

is true, the wave train as a whole will expand, and the remainder

of the fluid will be compressed, so that the mean density of the

wave train will become less than that of the undisturbed fluid. On

this basis, employing the principle of § 5, a wave train under

the conditions we are now supposing must be regarded as

conveying negative momentum.

ADDENDUM B.

In an article on radiation in the "Encyclopaedia Britannica,"^

Larmor gives a theorem which purports to be a general proof

of the transmission or communication of momentum by wave

motion. Poynting " has given a condensed edition of this alleged

proof, which may be quoted, as follows :

—

" Let us suppose that a train of waves is incident normally

"on a perfectly reflecting surface. Then, whether the reflecting

" surface is at rest, or is moving to or from the source, the perfect

" reflection requires that the disturbance at its surface shall be

" annulled by the superposition of the direct and reflected trains.

" The two trains must therefore have equal amplitudes. Suppose
" now that the reflector is moving forward towards the source.

" By Doppler's principle the waves of the reflected train are

" shortened, and so contain more energy than those of the incident

" train. The extra energy can only be accounted for by supposing

" that there is a pressure against the reflector, that work has to

" be done in pushing it forward. . . . A similar train of reasoning

" gives us a pressure on the source, increasing when the source

"is moving forward, decreasing when it is receding."

1 Vol. xxxii., p. 121 (b).

^ Pres. Address, Phj's. Soc, l.r. ante.
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Now it is evident that the whole of this reasoning rests on

the assumption that the reflector, while impervious to the

waves, is freely pervious to the medium ;
^ an assumption that

may be true in the case of light, but is certainly not true in

the case of sound.

Poynting evidently appreciates this difficulty, for he says :

—

" It is essential, I think, to Larmor's proof that we should be

" able to move the reflecting surface forward without disturbing

" the medium except by reflecting the waves." But further on

he says :

—

" But for sound waves I venture to suggest a reflector which

"shall freeze the air just in front of it, and so remove it, the

" frozen surface advancing with constant velocity u. Or perhaps

" we may imagine an absorbing surface which shall remove the

" air quietly by solution or chemical combination."

Now this is the first time that the author has heard it

seriously suggested that portions of any dynamic system,

essentially involved in that system, may be stolen away without

affecting the sequence of events ; it is, at least, evident that

any such assumption totally invalidates Larmor's theorem as a

generalisation, and in particular in its application to ordinary

dynamic wave motion. It is very surprising to find that

Poynting subsequently states that he finds Larmor's proof

quite convincing.

In the address from which the above quotations have been

given, Poynting cites an experiment by Prof. Wood intended to

demonstrate the reality of sound pressure. In this experiment

the sound waves from a strong induction- spark are focussed

by a concave reflector on to a set of vanes as used on a radio-

meter, causing them to spin round. Now it is fair to assume

that the cause of the emission of sound waves by an induction-

spark is the heating of the air suddenly and locally by the spark

energy, and consequently the wave will primarily be a compression

wave. If steps were taken to cool the air immediately after it

1 This fact is mentioned by Rayleigh, Fhil. Mag., vol. iii., 1902, p. 338.
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had been heated, doubtless a rarefaction wave of equal displace-

ment would follow, but no such steps are taken. It is true that

the air initially heated by the spark is rapidly cooled by giving

up its heat to the surrounding air, but this expands the air to

which the heat is passed on, so that, on the principle of the

author's bottle calorimeter,^ no loss of volume takes place.

There is possibly some minute quantity of heat lost to the

conductors by which the current is supplied to the spark, but

except for this the waves emitted will, on the whole, be com-

pression waves involving a displacement of matter, and carrying

the momentum appropriate to the mass displaced travelling with

the velocity of sound. Ultimately the heated air is carried away

by convection, but this does not affect the problem.

It is therefore evident that this experiment proves nothing,

except that which we know already-, i.e., a displacement of matter

carries with it momentum.

It is probable that other more or less successful experiments

designed to demonstrate the existence of sound pressure involve

some similar fallacy. It must be borne in mind that an

unsymmetrical design of sound generator may conceivably emit

pressure waves containing momentum in one or more directions,

and rarefaction waves in others, or perhaps the air displaced by

the pressure waves emitted in one direction may be replaced

by a steady flow in other directions. On the other hand, it is

possible that by some highly refined method the true pressure

of a continuous wave train may be detected and measured, and

the theoretical result that it is due to the energy passed into the

thermodynamic system may some day receive confirmation.

ADDENDUM C.

In the foregoing Appendix and Addenda A and B the assump-

tion has been made that the change of mean pressure within an

enclosure containing a perfect gas is directly proportional to the

1 Addendum C.
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heat added or taken away, and mention has heen made of a form

of calorimeter proposed by the author depending upon this

principle.

It is evident that if the principle can be proved as a general

proposition as relating to the total heat it is also proved in

relation to heat differences, that is heat added or subtracted.

The following proof goes beyond the problem as presented by

the calorimeter, and applies generally for an enclosure in which

the various portions of the gas are artificially constrained to

occupy given positions by any means whatever, including, for

example, the case of a wave train or other dynamic disturbance.

Let the enclosure be supposed divided into a number of small

equal elements, and, examining firstly the conditions that apply

to each small element to which it may be supposed that a

quantity of heat h is supplied and distributed uniformly, giving

rise to a uniform pressure P and temperature T, we have :

—

P

but for a perfect gas

= r X const.
P

T = ^ X const.
11

where m is
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Then the value of l^ for each element will depend upon the

number of elements into which the enclosure is divided, so that

l^ cc -
, and thus

n
Pi = h n hi

P2 = /^- n 112

P3 = Ic n hs etc.

where k is a constant.

Pi + P.2 + P3 + etc. = k It [III + ho + //3 + etc.)

T. , Pi -\- P-2 + Ps -^ etc. y
But = P,„

and 111 + ho + //3 etc. is total heat added = H
P,n = /•-• H

this result continues to apply when the number of elements n

becomes indefinitely great, hence the proposition is proved.

ADDENDUM D.

A Eetkospecti\'e Note.

It is perhaps of some interest to state that the investigations

included in the present appendix were actually made in the

early part of 1905 ; the portion relating to the theory of sound

momentum was submitted in the form of a draft paper to

Professor Poj'nting, then President of the Physical Society, with

whom the author had some correspondence on the subject.

The author did not receive suflicient encouragement to think

it worth while submitting the paper, especiall}^ in view of

previous experience and of the fact that not only Poynting, but

Larmor, and at that time Eaj'leigh, were thoroughly identified

with the general doctrine of sound momentum.

Pieferring to a warning note raised by the author, and with

regard to the suggested paper, Professor Poj^iting wrote on

June 9th, 1905, "Yes, I am quite sure about mj^ views. But it is

" quite evident that we are not going to see in the same direction.

" I shall probably send my proof of pressure to the Physical
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" Society some time so as to let those interested have their

" choice."

Neither paper materiaHsed. Lord Kayleigh shortly afterwards

published his article {loc. cit. ante) in the Pliil. Magazine, some-

what modifying his earlier conclusions/ and anticipating publica-

tion by the author in respect of two of the results now stated,

i.e., (1) the absence of momentum in or pressure due to a wave

train under the conditions of Boyle's law
; (2) the pressure of

sound waves in a real gas as due to energy entering the

thermodynamic system.

Before going to press the author submitted the above addendum

to Prof. Poynting, and received the following reply, October 7th,

1907 :—
" I stick to the postcard and have no objection to its publica-

" tion."

" My proof of pressure was practically identical with Rayleigh's

"and gave the result (1), and therefore I suppose (2). That is

" why the paper did not materialise."

This is a truly astonishing statement in view of certain corre-

spondence and MSS. in the author's possession. The following

quotations are given as throwing some light on Prof. Poyntiug's

actual position at the time in question.

In a letter dated June 7th, 1905, referring to a draft MS."

submitted by the author, Poynting says :

—

" On p. 3 the paragraph marked wants, I think, a few words

" inserting to make it clear."

1 Compare Fhil. Mag., vol. iii., 1902, pp. 341, 342 (Eq. 14).

2 The portion of the author's draft paper referred to is as follows :

—

" Then, let A B\iq any length in the dii-ection of propagation, at any instant,

occupied by a train of waves. Let B C be the place occupied by the same

train when it has advanced by the amount A B (p. 3).

A B G
\ I

I

Then hj {\) A B = B C, and by (3) the particle at B, when waves occupy

A B, is identical with particle at B when waves occupy B C ; therefore the

train contains the same mass of fluid as that of an equal volume of imdisturbed

fluid.
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" Say thus :—Divide the wave train into lengths each con-

" taining unit mass. The time taken by each of these lengths to

" pass a given point is proportional to the length. Also the time

" during which, etc. ... or something of the sort. But it

" appears to me that this is not the whole story, but that the

"motion docs communicate momentiun. If the velocity forward is

" u—», momentum pu x u = pii^ crosses the plane—>. If the

"velocity is u < , momentum pu^ crosses the plane <
, and

" both of these give an addition of momentum —-» to the region

" on the forward side of the plane." ^

For the purpose of reference p. 3 of the author's original MS.

is given in the accompanying footnote, the paragraph marked by

Prof. Poynting being italicised. The initial and final paragraphs

are completed as on pp. 2 and 4 of the MS.

Considering now a supposititious wave in a medium oheying Boyle's law,—
The volume occupied by any small unit of mass is by Boyle's law inversely

as the pressure. Therefore the linear distance in the direction of propagation

occupied by any small unit of mass is inversely as its pressure.

But the time during which pressure acts across the imaginary plane is by (4)

proportional to this linear distance. Therefore the time during tuhich any

pressure acts across the imaginary plane is inversely as that pressure, or p t ^
constant for any small unit of mass. But 2) t is the momentum communicated

across the imaginary plane by pressure per unit area, and we have shown the

total units of mass in any luave is the same as in undisturbed air. Consequently

in a plane wave in a fluid obeying Boyle's law the momentum communicated by

the pressure of the wave is jjrecisely that communicated by the undisturbed fluid.

And since the sum of the translation of mass [in I) by the wave is zero, the

sum of the communication of momentum by motion {m v) is also zero.

That is to say, the pAane ivave in an elastic fluid obeying Boyle's laiu carries

no momentum.

If the adiabatic wave is examined by the foregoing method an excess of

mean pressui'e is found to exist, and without doubt, if the soiu-ce of sound

emits a continued succession of waves, momentum accompanies such waves

as an ever-spreading field of excess mean pressure, but it is not clear that if

the source ceases to emit, this pressui'e region will be confined to and move
with the advancing waves ; it appears more probable to the author that the

ail" contained within the wave sphere shares in the excess pressui'e."

^ This argument appears to involve a fallacy similar to that mentioned in

footnote, p. o99. The note in question is the answer to an argument actually

used by Poynting in conversation with the author.
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It would appear from the above transcript that Poynting

unquestionably held the view on June 7th, 1905, that a Boyle's

law wave train would give rise to pressure increase or momentum
transference, just as he held this view at the time of his address

to the Physical Society in February of that year. Furthermore,

it is evident that, at the time in question, result (2) was not a

consequence anticipated by Poynting, for in another communi-

cation about the same date in reply to the author he says :

—

"I have not thought of the sound pressure as accounted for

" by the kinetic theory of gas. S. Tolver Preston, I think, did

" so somewhere. It appears to me best in the first place to get

" at the idea as I have done in the paper ^ as resulting from

" known observable properties. Then go to the kinetic theory if

" you like."

" The perfectly elastic solid—if by that is meant one that

"obeys Hook's law rigidly—would give pressure apparently

'* from Larmor's theorem."^

It is difiicult to understand how Prof. Poynting can have been

led to make so extraordinary a statement as that contained in

his present letter in view of the facts above given, and the

author trusts that he will see his way to give publicity to some

adequate explanation.

^ Presidential Address, Phys. Soc, I.e. ante.

^ At this time Poynting evidently has no misgivings as to the soundness

of Larmor's theorem, and therefore must still have supposed that a Boyle's

law wave-train carries momentum, apart from the evidence already given.
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APPENDIX III.

A NOTE ON DISCONTINUOUS MOTION.

In § 101 allusion has been made to the instability of a surface

of kinetic discontinuity in an inviscid fluid, and at the same time

the impossibility of such a surface breaking up into finite vortex

filaments is pointed out.

Helmholtz^ has suggested that the instability takes the form

of a development of convolutions of the surface of discontinuity

or surface of gyration. He says :

—

" An infinitely extended plane surface uniformly covered with

parallel straight [infinitesimal] vortical filaments might indeed

continue stable, but where the least flexure occurs at any time

the surface curls itself round in ever narrowing spiral coils, which

continually involve more and more distant parts of the surface

in their vortex."

It is, unfortunately, not easy to form a clear picture of the

continued transition that the above implies, or even of the

resulting system of flow. There would appear to be no doubt,

however, that Helmholtz's view is substantially correct.

^ " Sensations of Tone," Appendix YII., B II.
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APPENDIX IV.

LEAPING OE BOUNDING FLIGHT.

Many of the smaller birds habitually fly at a considerably

greater velocity than would be computed from the pressure-

velocity tables (Tables IX. and X.) on the lines of § 187.

The means by which this is accomplished is instructive. The
bird flies briskly for a short distance and then closes its wings,

continuing its flight as a simple projectile, so that the total flight

consists of alternations of active flight and projectile flight. The

flight path under these conditions consists of a series of leaps, as

given in Fig. 162, in which the thick lines represent the periods

of active flight and the fine lines the periods when the wings are

closed.

It is evident both from the form of the flight path and from

the behaviour of the bird that the whole of the sustentation

takes place while the wings are spread, and that during this

period the wings actually sustain both the weight of the bird and

the centrifugal component due to its curvilinear flight path, and

the sum of these is the eftective load on the wing area in the

sense of §§ 185—187.

The present note is based on visual observation. The largest

bird witnessed by the author as employing the leaping mode of

flight is the green woodpecker {Picus viridis) ; the weight of

this bird averages about six to seven ounces (180 grams).

Larger birds, as, for instance, the partridge, glide with wings

outstretched when not in active flight.

The greatest length of " leap " in proportion to the corresponding

active j)eriod, noted by the author, is about 3 : 1 (Fig. 162, c).
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In this instance the species of bird was not identified. This

proportion means that the reaction sustained by the wings when

in action is approximately four times the weight of the bird,

on which computation the flight velocity should be about twice

that proper to the actual weight and wing area measurement.^

It is difficult to assess accurately the speed of flight of a bird

under any circumstances, and most of all under the conditions

now under discussion. Travelling at somewhat over thirty miles

Fig. 162.

per hour on a motor vehicle, it is not an uncommon sight to see

ajjied wagtail or other small bird endeavouring to escape directly

ahead by adopting the mode of flight under discussion. When
hard pressed in this way the wagtail flies low, and its motion

closely resembles the bouncing of an india-rubber ball on the

1 It has already been pointed out (§ 187) that the problem is in all likeli-

hood modified by the conditions of active flight, so that the tabulated figures,

which relate to the gliding mode, may require to be multiplied by some

unknown coefficient. In aU probability the velocity of least resistance for a

given bird in active flight is somewhere about 20 per cent, greater than for

the gliding or soaring mode.
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surface of the road, showing that the periods of active flight

become very short in comparison with the length of the " leap,"

Most of the smaller birds are able, by adopting the leaping

mode of flight, to attain speeds of about thirty or forty miles

per hour.

The probable reason for the leaping mode of flight being con-

fined to the smaller birds is to be found in the considerations

discussed in §§ 195, 196. The influence of aerofoil weight (wing

weight) is less important in the case of a small aerodrome or

bird than of a large one. Consequently nature can endow a small

bird relatively with an extent of wing surface not " commercially
"

possible in the case of a larger bird, so that the smaller bird can,

in normal active flight, fly slower than a large one, but by

adopting the leaping mode it can, in effect, divest itself of its

superfluous surface, and can then rival the larger birds in

velocity. The leaping mode is, in fact, a means of adjustment,

by means of which the conditions of least resistance can be

approximated under considerable variations of velocity. If one

of the larger birds, with its limited relative area, were to force

its velocity up to the point at which leaping flight would pay, it

would require an amount of energy per second far beyond its

actual horse-power capacity.-^

^ Ceteris paribus, the horse-power of any animal or machine varies as the

square of its linear dimension, whereas the weight varies as the cuhe. Thus

the power per unit weight is greater for a small bird than a large one. (See

"The Horse-power of the Petrol Engine in its Relation to Bore, Stroke, and

Weight," " Proc. Inst. Automobile Engineers," April, 1907.)

Incidentally it may be remarked that it is probably for this reason that

the soaring mode of flight, in which energy is captured from the wind, is

principally employed by the larger birds, many of which are otherwise

incapable of prolonged flight.
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SOAEING.

Authorities are generally agreed at the present time that one

at least of the varieties of soaring ^ practised by the larger birds

involves the abstraction of energy from the wind fluctuation,

that is to say, the soaring bird can derive the power required

for its flight from the energy of turbulence of the wind (comp.

§§ 37, 131).

It is clear that a bird having no horizontal force applied to it

from ivithout (in contradistinction to a kite which is connected

to the earth by a string), is unable to effect any change in the

total (horizontal) momentum of the air that comes within its

grasp ; consequently it cannot raise or lower the mean velocity

of the wind, although it may be able to cause some parts to

move faster and some more slowly.

It is evident that if a bird can, by altering its angle and

altitude, so manipulate the wind coming within its grasp, that

the portions that are moving in excess of the mean velocity

have their velocity reduced, and those that are moving at less

than the mean velocity are accelerated, the total energy of the

1 Other metliods of soaring are practised by many of the larger birds. In

some cases soaring is accomplished by merely gliding on an up-cirrrent

whose velocity is equal to or in excess of the late of fall for gliding in still

air ; the up-current is sometimes due to the wind ascending the slope of a

mountain or cliff, or may be due to the direct ascent of hot air from, for

example, a sun-baked coast region.

Another form of soaring depends upon the proximity of masses of air having

different velocities, as the live stream and " dead-water " region in the wake
of an obstacle ; the bird circles round and round, playing off the one mass

of air against the other.
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wind will be reduced, and the energy thus taken from the wind

may become available for the purposes of propulsion. It is

further evident that if a bird can carry the procedure suggested

to the extent of reducing the whole of the air handled to a

uniform velocity, that is to say, to its mean velocity, it will have

taken away the whole of the energy that is available; i.e., it will

have removed the whole of the turbulence energy from the air

within its reach. The foregoing assumes that the energy of

turbulence consists wholly of motions in the direction of the

main current, but the argument may, if required, be extended

to include motions in the directions of the other two co-ordinate

axes of space.

Without discussion of the means whereby the bird operates

to play off one portion of the wind against another, we may,

from the above considerations, form an outside estimate of the

available enerc/y. Thus if we prescribe some conventional form

as representing the motion of turbulence, s^ich as a simple

harmonic motion in the line of flight, or a compound harmonic

or circular motion of known velocity, we can calculate the

turbulence energy per unit volume, and we may convert this

into a thrust force per unit area of the stratum of air handled
;

if, then, we know the extent of this area in the case of any

particular bird, and the weight of the bird, we can determine

the gliding angle y, the minimum value of which is a quantity

otherwise known. Conversely we may, starting from the gliding

angle and other data, determine the minimum velocity of tur-

bulence on the convention chosen that will render soaring flight

possible.

A question that presents some difficulty is the estimation of

the area of the stratum of air handled. At first sight this might

be supposed to be the " sweep " of the aerofoil, i.e., = k A
(§§ 109, 160), but the energy estimated on this basis from

known fluctuation data appears to be insufficient.

The conception of the peripteral area (§ 210) suggests that,

as in the case of the propeller blade, the cyclic or peripteral
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system may distribute the momertum over a much greater mass

of fluid than that coming within the sweep of the aerofoil, and

so a far larger mass of the air than that coming within the

sweep area will be " handled " in the sense of the present

discussion. On this basis the area of the stratum from which

energy may be drawn is given by the expression, :. k A

(comp. § 210).

In the following example the turbulence velocity is computed

necessary to provide the requisite energy to a hypothetical

albatros, whose data are :

—

Weight . . = 14: lbs.

Area . . . = 5 square feet,

n . . . = 12, hence k = 1-195 and e = '75.

y . taken = 1/7

The computation will be made both on the basis of su-et'})

and that of jieripteral area, and the figures will be given both

for a simple harmonic motion and for circular motion, the

assumption being in all cases that the whole of the available

energy is utilised. As in all probability the bird can only

utilise a comparatively moderate portion of the total available

energy, the actual velocity of fluctuation will require to be very

much greater than that stated in each case, in order that soaring

should become possible.

Now resistance to flight = W y, which from the foregoing

data = 14-^7 = 2 jDounds, or in absolute units = 61"4 poundals,

or energy required per foot traversed = 64'4 ft. poimdals.

Sweep ^ K A = 5 X 1*195 = 6 (approx.), and mass of air

handled (on basis of sweep) per foot traversed = "078 = 6 = '47.

If V be the velocity of mean square of turbulent motion,

energy per foot traversed is

•47 X v'^

2

.-. -47 X r' = 64-4 X 2

whence v^ = 274

or V = 16'5
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Thus if the motion of turbulence is equivalent to a super-

posed circular motion, that is to say, if it consist of two

component horizontal simple harmonic motions at right angles,

and if the bird is able to abstract the total energy of both com-

ponents, then V will be the maximum velocity of either component,

or the uniform velocity of the equivalent circular motion

;

hence under the supposed conditions the maximum velocity of

turbulence = 16'5 feet per second.

If the turbulence contain only one harmonic component, or

if, which amounts to the same thing, the bird is only able to

take advantage of the harmonic component in the line of flight,

the available energy for a given maximum velocity will be only

half that on tlie basis of circular motion ; hence, in order that

the necessary energy should exist in the wind, the maximum

velocity must be multiplied by >/2, or, on simple harmonic

basis, the maximum velocity (plus or minus) of fluctuation

becomes 23'4 feet per second. *

The above estimates are on the basis of siveep. On the

basis of jjeripteral area we have mass of air handled per foot

traversed

—

= \^^-^P K 4 =^ X -47 := 3-3 lbs.
1 — e lb

O'O X ? 1^ A A
.-. 2~ = ^^^

v^ = 39, or, V = 6-25.

.'. on the basis of circular motion the maximum velocity of

turbulence = 6*25 feet per second.

Or, on the simple harmonic basis, 6*25 X J^ = 8*8 feet

per second.

In the foregoing investigation the question of the means

whereby the energy is trapped, or the possible percentage of the

total that is available, is left untouched. The whole subject

belongs essentially to the later portions of the -wovli, Aerodo)ietics,

where the matter will be treated more fully ; the present publica-

tion is only made as an illustration of the employment of the

peripteral theory expounded in the present work.
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AN ELECTRO-MAGNETIC ANALOGY.

The Eulerian theoiy of the inviscid fluid gives results that, it

has ah-eady been remarked, bear but little resemblance to the

behaviour of any actual liquid or gas. It is the more remarkable

that these self-same results possess much that is in common
with electrical phenomena. Tlius the hj^drodynamic plottings are

true representations of the electrical and magnetic fields, and the

theorem of energy and other Eulerian propositions in general

apply.

The present analogy (for it is so far no more than an analogy)

is one that has frequently attracted attention, and it is not without

interest to follow the matter into the by-ways of hydrodynamic

theory dealt with in the present work.

If we take the magnetic flux as the analogue of the flow (\/^

function), then the electric current becomes a cj^clic motion

around the conductor. This point of analogy is emphasised by

the need for a doubly or multiply connected region in both cases,

in the case of the electric current for the completion of the

circuit, and in the case of hydrodynamic theory in order that

cyclic motion should become possible.^

If the conductor be situated in a magnetic field, it will

experience a force at right angles to the direction of the field,

^ The making or breaking of an electrical circuit alters simultaneously

the connectivity of the regions both internal and external to the conductors
;

it is the latter that is the essential according to modern views, although it is

the connectivity internal to the conductor that is usually present in the

mind when reference is made to the completion of the circuit.
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just as has been shown to exist in the case of the peripteral

system, so that again we find the analogy holds. Thus, let us

suppose a straight conductor in a uniform rectilinear magnetic

field, the conductor and the lines of force being at right angles,

and let the conductor be part of a completed circuit of zero

resistance, carrying a current of some stated strength ; then

the conductor will experience a force at right angles to the

direction of magnetic flux = F. Now let us apply a force Fi

equal and opposite to F, acting from without on the conductor,

so that the latter will be held stationary ; we may regard this

force as the analogue of the weight of an aerodone supported in

an Eulerian fluid, the electric current representing the cyclic

component of the peripteroid motion, and the magnetic flux the

superposed translation, in accordance with the regime of §§80
and 122.

If we suppose now a resistance to be inserted in the electrical

circuit, the current, and therefore the force F, wilj tend to fall off,

but the applied force Fi continues, so that the conductor is set

in motion in the magnetic field and is maintained in motion, the

energy expended by the applied force F^ being accounted for as

energy lost in the electrical circuit ; this is in fact the principle

of the generation of an electric current by means of a dynamo.

The motion of the conductor under the influence of the force

Fi corresponds in our analogy to the descent of an aerodone in

its gliding path, the gliding angle being represented by the

velocity of the conductor divided by the velocity of the magnetic

flux.

It is difficult to carry the present analogy much further with-

out some stretching of the imagination or distortion of fact

;

even thus far there are many difficulties. For example, there is

nothing in the hydrodynamic analogue of the electro-magnetic

system depicted to give the conductor a sense of direction in the

magnetic flux ; its only knowledge of its motion through the

supposed hydrodynamic stream is its relative motion, and as

such it is difficult to see in what manner a conductor consisting
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of symmetrically disposed components (molecules) can distinguish

between the real and apparent directions of the magnetic stream,

in other words, how it can distinguish between an impressed

transverse motion and a transverse component of the magnetic

field. The analogy between the Eulerian fluid and the lumini-

ferous ether is strong, but at present is not strong enough to

bear any great weight.

In spite of difficulties, it appears probable to the author that

in the near future some use may be made of existing electrical

theory as an auxiliary means of investigating the aerodynamics

of flight. Thus, in the general dynamics of the periptery, and in

connection with the relations of the strength of the cyclic motion

and the magnitude of the load reaction, it may be that mathe-

matical solutions exist, ready to hand, in the analogous electrical

theory, such as appropriately interpreted may some day be found

to be of service.
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FLUID RESISTANCE STUDIED BY THE AID OF AN
IMPROVED KIND OF HYPOTHETICAL MEDIUM.

In § 131 a suggestion is made that leads to a new method of

treatment of problems in fluid resistance.

Let us imagine a modification of the medium of Newton in

which the particles, instead of being at rest, are in a state of

agitation, and in the first instance let us suppose that all

the particles, moving in directions at random, YtSbve the same

velocity.

Taking first the case of a normal plane travelling at a velocity

greater than that of the particles, we have the resistance propor-

tional to the energy per unit volume (§ 131), the energy being

reckoned only in respect of motion in the direction of flight, of

either plus or minus sign. This energy is made up of two parts,

the corpuscular energy of the medium, of which one third only

counts as being in the direction of the axis of flight, and the

energy of translation.

Now the corpuscular energy is constant in respect of the

velocity of flight, and the energy of translation varies as the

square of this quantity, consequently the law of resistance for

this modified Newtonian medium will be, P = k V^ + n, where

k and n are constants.

If the velocity of the plane, instead of being greater than that

of the particles, be less, the medium will exert a j^ressure on the

back of the plane as well as on the face, and the resistance will

be due to the pressure difference.
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Taking the velocity as very low, then, the pressure being due

to the bombardment of the particles, it may be easily demon-

strated that the pressure difference and therefore the resistance

must vary directly as the velocity. This may be regarded as the

equivalent of " Stokes stage " in the case of a real fluid.

If the particles of the medium have different velocities the

same general principles apply, only if the method is to be

interpreted quantitatively the problem becomes a trifle more

complex as involving the integration of a series of some kind.

In the case of a normal plane such as vre have so far con-

sidered, the components of the motion of the particles transverse

to the direction of flight have no influence. In the case of a

solid body or curved lamina this is not the case, the lateral

bombardment cannot be without effect on the total resistance.

Without examining the problem analytically, it ajDpears

obvious to the author that if (as is the case in a real gas) the

energy of the particles is equally distributed in the three " degrees

of freedom," that is in the directions of the three co-ordinate

axes, the resistance at high velocities will not, in respect of the

corpuscular energy, depend upon the form of the surface in

presentation, but will depend upon the cross sectional area only

;

and any relief that can be obtained by rounding off or pointing

the surface in presentation will take effect only in respect of the

portion of the resistance that varies as T"^. That is to say, in

the expression, P =: k V^ -\- n, giving easy entrance lines will

diminish the constant k, but will have no influence on the value

of the constant n.

The modified Newtonian medium of our present hypothesis

resembles in many ways the perfect gas of kinetic theory, but

differs in one very important respect. The molecules of a perfect

gas are not only in a state of motion, but are undergoing fre-

quent encounters one with another. Whether these encounters

are due to gross impact or to some kind of action at a distance is

immaterial from the point of view of the present discussion.

The particles or corj)uscles of the hypothetical medium have no

429



App. VII. APPENDIX.

magnitude, consequently they do not encounter one another, and

therefore the medium has no continuity.

It is jDrobable that the difference in the behaviour of air or

any other gas, and the medium, will be least at very high and

very low velocities ; at intermediate velocities the present mode

of treatment is unlikely to be of any utility. It seems possible

that the j)resent theory may find some application in relation to

the flight of high velocity jorojectiles.
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PROPULSION BY SAILS.

It is scarcely necessary to point out that the peripteral theory

set forth in the present work is capable of wider application than

to the problems concerned in aerial flight.

The sailing boat, for example, offers a very promising field for

the application of the peripteral principles of flight, and furnishes

strong confirmation of the present theory. We may look upon

the sailing boat, and especially the racing craft with its fin or

deep keel, as an aerofoil combination in which the under-water

and above-water reactions balance one another.

Laying on one side for subsequent consideration the part of

the problem that relates to the heeling of the vessel and its

stability, we may treat the matter in the first instance as if the

under-water and above-water forces lie in one horizontal plane.

Under these conditions the problem resolves itself into an

aerofoil combination in which the aerofoil acting in the air (the

sail spread) and that acting under water (the keel, fin, or dagger

plate) mutually supply each other's reaction.

The result of this supposition is evidently that the minimum
angle at which the boat can shape its course relatively to the

wind is the sum of the under and above-water gliding angles.

If the boat had no body (hull), and the conditions of our sup-

position be complied with, this reasoning shows that the minimum

angle of the course relatively to the wind would be the sum of

the y for water and the y for air, which is probably a degree or

so less than 20 degrees, or rather less than two " points."
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In practice, the two reactions (under and above water) not

being in one plane, there is a resultant torque which has to be

taken by the moment of heel due to the stability of the vessel.

This results in a necessity for added surface and resistance due

to the motion of the hull, both above and below water, especially

the latter ; the actual course is in consequence at a greater

angle, about twice that stated even in the most carefully

designed craft.

It seems to the author that by taking the present view many
points hitherto but partially understood appear in a new light.

For example, the bulging or filling of sails beyond the line of

relative wind direction, a phenomenon well known to yachtsmen

and other sailors, is the strict analogue of the arched section with

dipping front edge of the aerofoil so amply demonstrated in the

foregoing pages. %

Further, the " dagger plate," the well-known expedient of the

designer of light-draught racing craft, evidently " scores " over

the ordinary centre-board by reason of its greater aspect ratio.
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A.

Added surface, method of, for the determuaation of i, § 243
Aerial tourbillion, the, § 30
Aerodone, definition, glossary ; trajectories of, § 176 ; ballasted aero-

plane, § 162 ; experiments with, § 241 et seq.

Aerodonetics, definition, glossary.

Aerodrome, aerodromics, definition, glossary.

Aerodynamic balance, construction of, § 242 ; emplojonent of, § 246
Aerodynamic support, theory of, § 112; field of force, § 113

Aerofoil, definition, § 128, glossary ; the, § 172 et seq.
;
plane and ptery-

goid, § 128 ; angles, table of, § 181 ; best value of (3, § 173 ; form of,

§§ 118, 119, 120, 188, 191 ; a standard of form, § 192 ; equivalent

area, § 192
;

generation of vortices by, § 117
;

grading of, § 192
;

pressure on, § 185 ; best pressure values, § 185 ; weight of, as affectiag

least resistance, §§ 169, 194 ; relative importance of weight, §§ 195,

196, App. IV. ; hydrodynamic standpoint, § 189 ; discontinuity in

peripteral system, § 189 ; angles of leading and traihng edges, § 188

Aeroplane, the, § 128 et seq. ; infinite lateral extent, case of, § 115 ; in

Eulerian fluid, peripteroid motion, typical cases of, § 122 ; thickness,

edge resistance, §§ 128, 158 ; considered as medium of experiment,

§ 128 ; resolution of forces, §§ 128, 156 ; history of experimental

study, § 29 ; inclined, present state of knowledge, § 144 ; the sine-

squared law of Newton, § 145 ; the sine-squared law at variance with

experience, § 146 ; the falling plane, the experimentum criicis of the

sine-squared law, §§ 145, 233 ; the aeroplane a problem distinct from

the surface in presentation of a solid bodj-, § 144 ; inclined planes of

square proportion, Dmes and Langley compared, § 147 ; centre of

pressure, Joessel, Kummer, Langley, § 148 ;
planes ui apteroid aspect,

§§ 150, 151
;
planes m pterj-goid aspect, §§ 152, 153 ;

superposed

planes, § 154 ; the law of the small angle, § 159 ; the ballasted

aeroplane, § 162 ; best angle of, § 172 ; aspect ratio influence on best

angle, § 172 ; tables of pressure values, § 186 ; flow of Rayleigh-Khch-

hoflf type, §§ 152, 182, 183 ; compared to pterygoid form as organ of

sustentation, § 184
Albatros, wing pressm-e and velocity of flight, § 187; soai-ing energy

available, App. V.
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Allen's experiments, fluid resistance, §§ 50, 51

Allen's law, f. n. § 35
Apteroid aspect, planes in, §§ 150, 151

Arched section, §§ 107, 108, 118, 188
Area, aerofoil area proper to least resistance, § 165 ; as a factor affecting

total load, § 170
Aspect, meaning- of, glossary ; apteroid and pterygoid, §§ 151, 153 ; as

ati'eeting pressure reaction, § 144 et seq. ; as affecting position of centre

of pressure, § 155
Aspect ratio, meaning, § 150 ; influence of, on pressure reaction, § 159

;

emi^loyed by experimenters in flight, § 119

Author's experiments, § 239 et seq. ; on discontinuous flow, § 21 ; on
orbital motion of fluid particles, § 17 ; on attendant vortices, § 125

B.

Ballasted aeroplane, the, 162 ; stability of, § 162 ; determination of

aerodynamic constants by means of, §§ 241, 245 ; launching device

for, § 245
Beaufoy, pressure on normal plane (water), §§ 135,*136

Best values of /3, tables of, § 181

Body resistance, effect of, § 175
Borda nozzle, theory of, § 96
Boundary circulation, positive and negative, § 67; the measure of

rotation, § 66
Bounding flight, theory of, App. IV.

Cavitation, §§ 12, 82 ; in connection with screw propeller, § 215

Centre of pressure, square plane, § 148 ; theoretical, for infinite lamina,

§ 155 ; changes with change of angle, § 148 ; determined by the

ballasted aeroplane, § 245
Changes of index value, in curve of resistance, § 52
Compressibility, relative, of air and water, § 1 ; influence of, on power

expended in flight, App. I.

Conjugate property, of <^ and \p, § 61

Connectivity, §§ 62, 63
Conservative system, in periptery, proof of, §§ 115, 116

Constant sweep, as basis of quantitative theory, § 172 et seq.

Constants, the aerodynamic, C table of, § 177; c, table of, § 177;

K and e, § 178 ; k and e, auxiliary hypothesis, § 179 ; « and c, plausible

values, table of, § 180
Continuity of motion, provisional assumption of, § 173
Contraction, efHux coefficients, §§ 95, 96
Corresponding speed, law of, § 39
Counterwake current, the, § 22
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Cyclic motion, simple case, § 62 ; irrotational, § 64 ; a cyclic function,

§ 64 ; nature of, § 64 ; two opposite cyclic motions, superposed on
translation, § 86; on translation, force at right angles, §§ 89, 90;
superpositions plotted, § 122 ; in simply connected region, § 125 ; in

different planes, compounding of, § 127 ; in propeller race, § 217
Cylinder, streamlines of, §§ 21, 79 ; energy in tluid, § 83

Dead-water, meaning of term, § 19 ; negative pressure in the, § 139
Design of propeller, § 218
Density, relative, of air and water, § 1 ; as related to pressure, § 58
Dimensional investigation, law of fluid resistance, § 36
Dimensional method, application to phenomenon of discontinuity, § 105
Dines' experiments, § 223 et seq. ; reference to publications, § 223 ; basis

of method, § 224 ; centrifugal balance, §§ 223, 225 ; results of resist-

ance experiments, § 226 ; aeroplane investigations, §§ 227, 228
;

currents on back of plane, § 228 ;
pressure on normal plane, §§ 133,

136
;
perforated plates, § 143 ; curve for square plane, § 147 ; com-

parison of results. Dines, Langley, § 153 ; on law of fluid resistance,

§ 49
Dipping- front edge, see Arched section ; rudmientarj' development in

the ornithoptera, § 184
Discontinuity, physical and kinetic, §§ 12, 19, 94 et seq. ; resistance due

to, § 19 ; surface of, due to corners or sharp curves, §§ 18, 20 ; doctrine

of kinetic, §§ 20, 94 et seq. ; surface of discontinuity a stratum in

viscous fluids, § 20 ; experunental demonstration of, § 21 ; consequences

and examples of, §§ 21, 30 ; surface of kinetic discontinuity unstable,

§ 101, App. III. ; kinetic, doctrine of, Kelvin's objections, §§ 100, 101,

102 ; case of normal plane, § 97 ; explanation of anomalous case of

fluid resistance by doctrine of kmetic discontinuity, § 55

Discontinuous flow. See Discontinuity.

Displacement of fl.uid due to body in motion, § 15 ; its orbital character,

§ 16 ; demonstrated by smoke experiments, § 17 ; Eankine's investiga-

tion, § 18 ; due to fluid in motion, § 29
Dissipation of supporting wave, § 117

Dragon-fly, whig pressure and velocity, § 187

Duchemin, formula and curve plotted, § 147
Dynamical equations, § 59
Dynamic support, Newtonian basis, § 109 ; broadly considered, § 111

;

without expenditiu'e of energy, § 111

E.

Economics of flight, § 163 et seq.

Effi.ciency, of propulsion, § 198 ; of screw propeller, § 206
Efla.ux theory, § 95 et seq. ; in its relation to pressure on a normal plane,

§ 140
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Elasticity, influence of, on resistance, § 55 ; as defining pressure-density

relation, § 58 ; influence of, on power expended in flight, App. I.

Electro-magnetic analog-y, App. VI.

Energy, expended in fluid resistance, § 40 ; kinetic, in sj-stein of flow,

§ 81 ; kinetic, in ij/,
<f),

squares equal, § 81 ; of the fluid surrounding a

cylinder in motion, § 83 ; of superposed sj'stems, §§ 84, 85 ; of vortex

pair, § 86 ; numerical illustration of energy theorem, § 87 ; conditions

of minimum expenditure m flight, §§ 163, 164 ; in the periptery, § 123
Entrance and. run, § 11

Equation of continuity, § 59
Equations of motion, § 59
Equilibrium, of ballasted aeroplane, § 162
Eulerian theory, the, § 59 et seq. ; deficiencies of, §§ 98, 99
Evanescent load, special case considered, §§ 104, 115

Experimental confi^rmation of dimensional theory of resistance,

Froude's experiments, §§ 47, 48 ; Dines, §§ 49 ; Allen, § 50
Extremities, form of, §§ 120, 191

Field offeree, §§ 60, 113

Finite lateral extent, conditions considered, § 117

Flight, power expended in, §§ 219, 220 ; estimated extreme range of,

§ 220 ; of golf ball, § 30 ; bounding or leaping, App. IV.

Flow, lines of, § 79
Fluids, properties of, §§ 1, 31, 58
Fluid prismatic column, as defining application of Newtonian method,

§112

Flux (i/' function), § 61

Force, luaes of, field of, §§ 60, 113

Frictional wake, due to viscosity, § 17 ; its influence on propulsion,

§§ 200, 216
Froude, theory of propulsion, §§ 8, 198, 200, 216 ; negative slip of

propeller, § 200 ;
pressure on normal plane, §§ 135, 136

G.

Gliding angle, conditions governing, §§ 166, 167 ; least value, § 174
;

equation for, § 174 ; for least horse power, § 176 ; in excess of

theoretical value, § 181

Grading, of aerofoil, § 192 ; of propeller blade, §§ 208, 209
Gull (Larus argentatus), wing pressure and velocity of flight, § 187 ; wing

section, § 107
Gyration surface (Helmholtz), § 99, also App. III.

H.

Height of aeroplane above earth's surface, as affecting load sustained,

§112
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Helmholtz, on discontinuous motion. §§ 99, 104 ; Helniholtz-Kirchhoff,

pressin-e on infinite lamina, §§ 97, 136 ; surface of gyration, § 99,
App. III. ; surface of discontinuity unstable, App. III.

Homcnorplious motion, in fluid system, general expression for, § 38
Horse-power in flight, tables of, § 220
Huttoa, pressure on normal plane, § 136 ; experiments in resistance,

§§221, 222
Hydrodynamic theory, general treatment, Chs. I. and II. ; aualj-tical

theorj' of inviscid fluid, § 57 et scq. ; applied to conservative system of

sustentation, § 121 et seq.

I.

Impulsive forces, in fluid dj-namics, § 60
Infinite lateral extent, special case of, § 115 ; aeroplane in pterj-goid

aspect, case of, § 152
Infinitesimal load, special case of, § 115

Interchangeability, of velocity and linear quantities in the dimensional

equation of resistance, §§ 43, 45 ; of
(f>
and i/' in hydrodynamic plottmg,

§61
Inviscid, definition of, § 58
Irrotation, definition of, § 68 ; ia its relation to velocity potential, § 70
Irrotational motion, fundamental forms, § 73 ; compounding by super-

position, §§ 73, 74

J.

Joessel, centre of pressure for square plane, § 148

Kinematic relations, kinematic—viscosity and kinematic^resistance, § 36
Kinetic discontinuity. See Discontinuity.

Kinetic energy. See Energy.
Kirchhoff'-Rayleigh, equation for inclined infinite lamina, §§ 97, 152

;

plotting, § 152
;

position of centre of pressure and magnitude of

pressure reaction, table, § 97
Kumnier, centre of pressure, § 148

L.

Lagrange's theorem, an interpretation of, § 71

Lanchester, form of aerofoil used in 1894, § 108 ; experiments by, see

Author's experiments.
Langley, pressure on normal plane, §§ 133, 136 ; experiments with falling

plane, a direct disproof of sine-squared law, § 146 ; curve for plane in

apteroid aspect, § 151 ; cm-ve for plane in pterygoid aspect, § 153 ; form
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of aeroplane emploved, § 153 ; superposed planes, §§ 154, 233
;
pres-

sure-velocity and pressure-angle laws, § 232 ; influence of aspect, § 233 ;

critical angle, or angle of reversal, §§ 233, 234 ; on the efficiency of an
aerial propeller, § 235 ; misquotes Newton, §§ 232, 238

Langley's experiments, § 230 et seq. ; suspended plane, § 231 ; resultant

pressure recorder, § 232 ;
plane dropper, § 233 ; component pressure

recorder, § 234 ; dynamometer chronograph, § 235 ; counterpoised

eccentric plane, § 236 ; rolling carriage, § 237 ; summary', § 238
liarmor's theorem, sound monientum, discussion of, App. II. B.
Leaping or bounding- flight, theory of, App. IV.
Least energy, conditions of, § 164
Least horse power, values of (3 and y, § 176
Least resistance, equation of, § 171
Least value of y, table of, § 181
Length of blade (screw propeller), conjugate limits, § 212
Lilienthal, arched section, § 108
Linear grading, of propeller blades, § 209
Lines of force (see Force), §§ 60, 113

Load grading, of propeller blades, § 208

M.

Mathematical treatment, hydrodynamics, § 59
Maxwell, definition of viscosity, § 31 ; method of hydrodynamic plotting

due to, § 74
Moilliard, the ballasted aeroplane mentioned by, § 162 ; supposed change

in position of centre of gravity, § 162
Momentum, continuous conmiunication of

, § 3 ;
j^rinciple of no momentum,

§§ 5, 6, App. II. ; in theory of propulsion, communication of, § 197
et seq. ; transference of, from different standpoints, § 7 ; comimmica-
tion of, as source of sustentation in flight, §§ 109, 111, 112, 160, 161,

174 ; apparent momentum, § 81 ; of sound waves, App. II.

Motion of fluid, in vicinity of streamline body, § 13 ; relative motion,

stream lines, § 14 ; in vicinity of wing or aerofoil, § 107 et seq. ; hypo-

thetical in theory of flight, §§ 160, 161 ; discontinuous in vicinity of

aerofoil, §§ 188, 189, 190, see also Discontinuity ; round about

propeller and in race, § 217 ; in wake of a loaded aerofoil, §§ 126, 127
Multiple connectivity, meaning of, §§ 62, 63
Mutilation of streamline form, §§ 26, 27

N

Negative slip, in propulsion, Froude's explanation, § 200
" Neoids," Rankine's water lines, § 77
Newton, definition of viscosity, § 31 ; medium of, its nature, § 2 ;

medium
of, essentially discontinuous, § 23 ; method of, founded on third law of

motion, § 2 ; method of the Newtonian medium, demonstration, § 3
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Newtonian method, application to normal plane, §§ 4, 136 ; deficiency of

the, § 5 ; application bj' Eankine and Froude to theory of propulsion,

§§ 8, 198 ; results in the sine-squared law. § 145 ; sine-squared law

plotted, § 147 ; Newtonian law subjected to experimental investigation,

§ 222. See also Momentum.
Newtonian theory modified, the hypothesis of constant sweep, §§ 160,

161, 172, et seq.

Normal plane, stream lines and lines of How, for iuviscid fluid, § 79 ;

theory and data of the, § 130 et seq. ; law of pressure, § 130 ;
pressure

due to wind on, § 131 ; still air pressure determination, § 132 ;
quanti-

tative data. §§ 133, 134 ; in fluids other than air, § 135 ;
theory

summarised, § 136 ; theory and experiment compared, §§ 136, 137
;

influence of shape of plane. § 139 ; in the light of efflux theory, § 140 ;

effect of projecting lip, §§ 140, 141
;
planes of varying proportions,

pressure on, § 142 ; influence of perforations, § 143

Orbital motion, of fluid particles, §§ 16, 17 ; Ranldne's curve, § 18

Osborne Reynolds, on turbulence, § 37

Parachutist, weight borne by earth's surface, § 6

Peripteral area, meaning of, § 210 ; expression for, § 210 ; in relation to

the soaring mode of flight, App. V.

Peripteral zone. See Peripteral area.

Peripteral motion, §§ 126, 127 ; alternative theories relating to, § 190

Peripteral system, considered as wave motion, § 116

Peripteroid motion, types of, § 122 ;
plotting of the field of flow, § 122

;

energy in the periptery, § 123 ; modified systems of, § 124 ;
in a simply

connected region, § 125

Periptery, the, f. n. § 107 ; motion in the, § 107 et seq.

Phillips, H. F., on arched section of aerofoil, § 108 ; superposed support-

ing members, § 154
Plan-form of aerofoil, aspect ratio, § 119 ; a standard of form, § 192

Plausible values, employment of, §§ 177, 178

Power, conditions of least h.p., § 164 ; expended in flight, 5§ 219, 220

Poynting, momentum of sound waves. App. II. B. and II. D.

Pressure, as related to density, 58 ; lines of equal, §§ 60, 113 ; distribution

in a field of flow, § 82 ; system compounded of accelerative system and

steady motion system, ^ 88 ; on normal plane, §§130, 138 ; on pterygoid

aerofoU, best value of, § 185 ; on aeroplane, best value of, 186 ; tables

of best values, §§ 185, 186 ; actual examples, § 187

Propulsion, theory of, § 197 et seq. ; in relation to body propelled, § 199 ;

hypothetical study in, negative slip, § 200 ; Newtonian method vindi-

cated, jet propulsion fundamentally deficient, § 201 ; variety of methods

of, § 201 ; the screw propeller, § 202 et seq.
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Proximity to earth's surface, influence on load sustained, § 112

Pterygoid aspect, planes in, §§ 152, 153

Pterygoid aerofoil, best values of jB, least gliding angle, §§ 173, 174, 181

R.

Rankine, theory of propulsion, §§ 8, 198
;
plotting stream lines, § 78 ;

"water lines " derived from source and sink system, § 77
Rayleigh, momentum of sound waves, App. II. ; see also Kirchhoff-

Rayleigh.
Resistance, nature of fluid resistance, § 1 e^ seq. ; as a function of velocity,

§ 41 ; as a function of size, 42 ; characteristic curve of, § 43 ; least

resistance, conditions of, § 163 et seq. ; complete equation, § 171 ; of

aerodone in flight, plotting, § 176 ; load for least resistance, §§ 186,

187 ; of a new kind of hypothetical medium, App. VII.

Resolution of forces, in case of inclined aeroplane, §§ 128, 156, 167
Reversal, of relative pressure reaction, critical angle of, § 153
" Rift," Stokes', § 99
Robins, inventor of the whirling table, an early experimenter in aero-

dynamics, § 221

Robinson, enunciation of pressure law for inclined aeroplane, § 146
Rotation, in fluid dynamics, conservation of, § 65 ; measured by boundary

circulation, § 66 ; of fluid, mechanical illustration, § 69
'' Run." See Entrance.

S.

Sail area (or wing area), measurement of, § 193

Sailing vessel, peripteral theory applied to the, App. VIII.
" Scale " of fluid, as due to the viscosity, §§ 36, 56
Screw propeller, theory of, § 202 et seq.

;
peripteral theory, blade treated

as analogue of aerofoil, § 202 ; efficiency of, §§ 203, 204, 235 ; blade

equivalent to sum of its elements, § 205 ; efficiency computed over

whole blade, § 206 ; thrust grading, § 206 ; load grading, distribution

of pressure on blade, §§ 207, 208 ; linear grading, § 209 ;
peripteral

zone and area, § 210 ; number of blades, § 211 ; conjugate blade limits,

§ 212 ; marine propeller, §§ 214, 215 ; cavitation, § 215 ; relative

reaction borne by back and face of blade, § 215 ; marine propeller,

limiting blade velocity, § 215
Sectional form, of aerofoil, §§ 107, 108, 118, 188 ; of aeroplanes used by

Langley and Dines, § 153
Simply connected, meaning, §§ 62, 63
Sine-squared law, curve representing, §§ 147, 151

; plausibility of the,

§ 149 ; applicable in particular case, § 150. See also Newtonian
method.

Skin-friction, no slippinf of fluid at surface, § 33 ; investigation and law
of, 34, 35 ; Froude's experiments in sea water, §§ 47, 48 ; roughened

surfaces, §§ 48, 246 ; magnitude of, coefficient of, § 157 ; in its relation
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to edge resistance, § 158 ; Langley on, 232 ; supposed negligibility,

Dines in agreement with Langley and Maxim, § 229 ; anomalous value

of, §§ 182, 183
;
prinid facie evidence of, § 240 ; determination of

coeliicient of, § 240 et seq. ; as deduced from loss of pressure in

pneumatic transmission, § 247
Small angles, planes at, the laws for, § 159

Soaring-, rationale of, energy derived fi'om wind fluctuation, App. V.

Sound waves, momentum of, due to displacement of matter, App. II.
;

velocity of, calculated from cormnunication of momentum, App. II. A.
;

negative momentum, App. II. A. ; Larmor's theorem defective in

respect of, App. II. B. ; sound pressure experiments discussed,

App. II. B.

Source and sink, definition, § 62 ; <^, \f/,
lines of, § 75 ; superposed on

translation, § 76 ; system the equivalent of a solid, § 78
Speed of flight, of greatest range and least power, § 164 ; of bnds

computed from pressm-e, § 187
Sphere, stream lines, § 79
Stability of flow set up by impulse, § 60
Stability of aerodone, statement as to, § 239
Stokes' law, in the curve of resistance, confirmed by Allen, §§ 50, 51

Stokes, on discontinuous motion, § 99
Streamline body, Newtonian method not applicable, §§ 8, 9 ; resistance

absent, Froude's demonstration, § 10 ; transference of energy by, § 11
;

imperfect form of, § 19 ; as interpreted by nature and art, tish forms,

torpedo forms, § 24 ; conclusions as to, § 25 ; mutilations of the,

truncated forms, §§ 26, 27 ; dictum of Froude, limitations of, § 27 ;

definition of, § 23 ; streamline form not based on analytical theory,

§ 78 ; imiversal character of streamline motion, § £8 ; all bodies of

streamline form in Eulerian fluid, §§ 23, 78, 79
Stream lines, definition of, as distinct from lines of flow, § 79 ; examples,

plotted from hydrod^-namic equation, §§ 79, 122

Streamline motion. See Streamline body.

Superposed planes, §§ 122, 154 ; thickness of layer acted upon by, §^ 160,
161

Superposed rotation, impossibility of, § 92
Superposition, of fundamental nrotational forms of motion, §§ 73, 74
Sweep, meaning of term, § 109, glossary; hj'pothesis of constant sweep,

§§ 109, 160, 131
*' Swish " of stick in motion, explanation of pitch note, § 106 ;

" swish "

or " whirring " of bii'd's wing an evidence of discontinuous motion in

periptery, § 190

T.

Tables, constants C and c, § 177 ;
plausible values k and e, § 180 ; f^ and y

values, § 181 ; aerofoil pressui-es appropriate to least resistance, §§ 185,

186
Tension, fluid tension as hypothesis, § 82
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Thrust grading, of propeller blade, §§ 206, 213
Torricellian principle, in its application to the field of flow, §§ 82, 138
Total surface, method for determination of coefficient of skin friction,

§ 244
Transverse force, consequent on cyclic motion, §§ 89, 90
Tree on cliflf, as evidence of kinetic discontinuity, § 30
Turbulence, § 37

U.

Up-current, induced in vicinity of a falling plane as a factor in aerodynamic

support, § 110

V.

Velocity gradient, in viscous motion, § 31 ; in skin friction, § 33
Velocity of flight, of greatest range and least power, § 164 ; of birds

computed from pressure, § 187
Velocity of design, in its relation to velocity of least resistance, § 168
Velocity potential, § 60 ; in cychc system, § 64 ; in its relation to

irrotational motion, §§ 70, 71

Vince, experiments with normal and inclined aeroplanes, §§ 146, 222

;

demonstrates fallacy of sine-squared law, § 222
Viscosity, as a factor in causing resistance, § 1 ; definition of, § 31 ; in its

relation to shear, §§ 32, 58 ; action of, in giving rise to turbulence,

§ 55 ; the nearly inviscid fluid, § 104 ; its influence as modifying the

equation of least resistance, § 169 ; viscous resistance due to distortion

of fluid in its passage through a tube of flow, § 32
Vortex atom theory, § 93, App. II.

Vortex filaments, trailing from extremities of aerofoil, ?§ 125, 126, 127 ;

attached to blade of screw propeller, § 217 ;
generation of, by aerofoil,

§§ 117, 126, 189, 190
Vortex hoop, sustaining a load in flight, § 125

Vortex motion, a case of, § 72 ; brief exposition of, § 93 ; filaments and

rings, § 93 ; compound systems, § 93

"W.

"Wake and counterwake, momenta equal and opposite, § 22
"Weight, as affected by aerofoil area, § 170 ; relative importance of wing or

aerofoil weight, § 196, App. IV. ; of aerofoil as aff'ecting conditions of

least resistance, §§ 171, 194, 195

Whirling table, the, § 221; invented by Eobins, §§ 129, 221; used by

Langley, § 230
Wing area, or sail area, equivalent area, measurement of, §§ 192, 193

Wing form, arched section, §§ 107, 108, 118 ; section deduced from theory,

§ 124 ;
plan form, §§ 119, 120
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